期刊论文详细信息
JOURNAL OF NUMBER THEORY 卷:199
α-Expansions with odd partial quotients
Article
Boca, Florin P.1  Merriman, Claire1 
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
关键词: alpha-Expansions;    Odd continued fractions;    Gauus map;    Natural extension;    Invariant measure;    Ergodicity;   
DOI  :  10.1016/j.jnt.2018.11.015
来源: Elsevier
PDF
【 摘 要 】

We consider an analogue of Nakada's alpha-continued fraction transformation in the setting of continued fractions with odd partial quotients. More precisely, given alpha is an element of [1/2 (root 5-1), 1/2(root 5+1)], we show that every irrational number x is an element of I-alpha = [alpha - 2, alpha) can be uniquely represented as x = e(1) (x; alpha)vertical bar/vertical bar d(1) (x; alpha) + e(2) (x; alpha)vertical bar/vertical bar d(2)(x; alpha) + e(3) (x; alpha)vertical bar/vertical bar d(3) (x; alpha) + ... , with e(i) (x; alpha) is an element of {+/- 1} and d(i) (x; alpha) is an element of 2 N - 1 determined by the iterates of the transformation phi(alpha)(x) := 1/vertical bar x vertical bar - 2[1/2 vertical bar x vertical bar + 1 - alpha/2] - 1 of I-alpha We also describe the natural extension of (phi(alpha) and prove that the endomorphism phi(alpha) is exact. (C) 2018 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jnt_2018_11_015.pdf 1731KB PDF download
  文献评价指标  
  下载次数:5次 浏览次数:0次