期刊论文详细信息
JOURNAL OF NUMBER THEORY | 卷:164 |
Extremal primes for elliptic curves | |
Article | |
James, Kevin1  Brandon Tran3  Minh-Tam Trinh4  Wertheimer, Phil2  Zantout, Dania1  | |
[1] Clemson Univ, Dept Math Sci, Box 340975, Clemson, SC 29634 USA | |
[2] Univ Maryland, Dept Math, College Pk, MD 20742 USA | |
[3] MIT, Dept Math, Cambridge, MA 02142 USA | |
[4] Univ Chicago, Dept Math, Chicago, IL 60637 USA | |
关键词: Frobenius distributions; Trace of Frobenius; Distribution of primes; Elliptic curves; Lang-Trotter conjecture; | |
DOI : 10.1016/j.jnt.2016.01.009 | |
来源: Elsevier | |
【 摘 要 】
For an elliptic curve E/Q, we define an extremal prime for E to be a prime p of good reduction such that the trace of Frobenius of E at p is +/-[2 root p], i.e., maximal or minimal in the Hasse interval. Conditional on the Riemann Hypothesis for certain Hecke L-functions, we prove that if End(E) = O-K, where K is an imaginary quadratic field of discriminant not equal -3,-4, then the number of extremal primes <= X for E is asymptotic to X-3/4/ log X. We give heuristics for related conjectures. (C) 2016 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jnt_2016_01_009.pdf | 379KB | download |