Proceedings Mathematical Sciences | |
Density of Primes in ð‘™-th Power Residues | |
Prem Prakash Pandey1  R Balasubramanian2  | |
[1] $$;The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 00 , India$$ | |
关键词: Distribution of primes; higher residue symbols.; | |
DOI : | |
学科分类:数学(综合) | |
来源: Indian Academy of Sciences | |
【 摘 要 】
Given a prime number ð‘™, a finite set of integers $S={a_1,ldots,a_m}$ and ð‘š many ð‘™-th roots of unity $ðœ^{r_i}_l,i=1,ldots,m$ we study the distribution of primes ð‘ in $mathbb{Q}(ðœ_l)$ such that the ð‘™-th residue symbol of $a_i$ with respect to ð‘ is $ðœ^{r_i}_l$, for all ð‘–. We find out that this is related to the degree of the extension $mathbb{Q}left(a^{frac{1}{l}}_1,ldots,a^{frac{1}{l}}_might)/mathbb{Q}$. We give an algorithm to compute this degree. Also we relate this degree to rank of a matrix obtained from $S={a_1,ldots,a_m}$. This latter argument enables one to describe the degree $mathbb{Q}left(a^{frac{1}{l}}_1,ldots,a^{frac{1}{l}}_might)/mathbb{Q}$ in much simpler terms.
【 授权许可】
Unknown
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO201912040507022ZK.pdf | 202KB | download |