期刊论文详细信息
JOURNAL OF NUMBER THEORY 卷:112
Plancherel measure for GL(n, F) and GL(m, D):: Explicit formulas and Bernstein decomposition
Article
Aubert, AM ; Plymen, R
关键词: Plancherel measure;    Bernstein decomposition;    local harmonic analysis;    division algebra;   
DOI  :  10.1016/j.jnt.2005.01.005
来源: Elsevier
PDF
【 摘 要 】

Let F be a nonarchimedean local field, let D be a division algebra over F, let GL(n) = GL(n, F). Let v denote Plancherel measure for GL(n). Let Q be a component in the Bernstein variety Q(GL(n)). Then Q yields its fundamental invariants: the cardinality q of the residue field of F, the sizes m(1),..., m(t), exponents e(1),..., e(t), torsion numbers r(1),..., r(t), formal degrees d(1),..., d(t) and conductors f(11),..., f(tt). We provide explicit formulas for the Bernstein component v(Omega) of Plancherel measure in terms of the fundamental invariants. We prove a transfer-of-measure formula for GL(n) and establish some new formal degree formulas. We derive, via the Jacquet-Langlands correspondence, the explicit Plancherel formula for GL(m, D). (c) 2005 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jnt_2005_01_005.pdf 427KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:1次