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Abstract

Let F be a nonarchimedean local field, |EXt be a division algebra oveF, let GL(n) =
GL(n, F). Let v denote Plancherel measure for @Gl Let Q be a component in the Bernstein
variety Q(GL(n)). Then Q vyields its fundamental invariants: the cardinaliyof the residue
field of F, the sizesmq,...,m;, exponentsey,...,e¢;, torsion numbersrq,...,r;, formal
degreesdy, ..., d; and conductorsfiy, ..., fi;. We provide explicit formulas for the Bernstein
componentg of Plancherel measure in terms of the fundamental invariants. We prove a transfer-
of-measure formula for Glz) and establish some new formal degree formulas. We derive, via
the Jacquet-Langlands correspondence, the explicit Plancherel formula for, Gl
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1. Introduction

In this article we provide an explicit Plancherel formula for firadic group Gln).
Moreover, we determine explicitly the Bernstein decomposition of Plancherel measure,
including all numerical constants.
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Let F be a nonarchimedean local field with ring of integeis let G = GL(n) =
GL(n, F). We will use the standard normalization of Haar measure otgfor which
the volume of Gl(, or) is 1. Plancherel measuneis then uniquely determined by
the equation

fg) = f tracen(A(g) f) dv(m)

for all g € G, f € C(G), where f¥(g) = f(g™b.
The Harish-Chandra Plancherel Theorem expresses the Plancherel measure in the
following form:

dv(@) = c(GIM) 2 )(GIM) ™ gy (@) d () do,

whereM is a Levi subgroup ofG, w € E>(M) the discrete series d¥l, ¢(G|M) and
7(G|M) are certain constantg.;,, is a certain rational functiond(w) is the formal
degree ofw, and dv is the Harish-Chandra canonical measure.

In this article we determine explicitly

(GIM)2)(GIM) g py () () do

for GL(n).
The support of Plancherel measureadmits a Bernstein decompositig23] and
thereforev admits a canonical decomposition

v=|_|vQ,

where Q is a component in the Bernstein varie®(G). We determine explicitly the
Bernstein componenty for GL(#n).

We can think ofQ as a vector of irreducible supercuspidal representations of smaller
general linear groups. If the vector is

(61,...,01,...,0¢,...,0¢)
with g; repeatede; times, 1<i<t¢, andoay, ..., o, pairwise distinct (after unramified
twist) then we say tha€) hasexponentsy, ..., ¢;.

Each representatiom; of GL(m;) has atorsion number the order of the cyclic
group of all those unramified characteysor which ¢; ® n=~¢;. The torsion number
of o; will be denotedr;.

We may choose each representatignof GL(m;) to be unitary: in that case; has
a formal degreed; = d(g;). We have O< d; < oo.

We will denote by f;; = f(s;” x o;) the conductor of the pais;’ x ;. An explicit
conductor formula is obtained in the article by Bushnell et[@].
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In this way, the Bernstein componetf2 yields up the following fundamental
invariants

e the cardinalityq of the residue field of;

e the sizesmi, ma, ..., m; of the smaller general linear groups;
e the exponentgy, eo, ..., ¢;

e the torsion numbersy, ro, ..., ry;

e the formal degreeds, do, ..., d;;

e the conductors for pairgii, fi2, ..., fu-

Our Plancherel formulas are built from precisely these numerical invariants.

If Q has the single exponest then the fundamental invariants yielded up Qyare
qg,m,e,r,d, f. The componenf) determines a representation in the discrete series of
GL(n), namely the generalized Steinberg representation, 8. The formal degree of
n = St(a, e) is given by the following new formula, which is intricate, but depends
only on the fundamental invariants 6, in line with our general philosophy:

dm _ m @@ xarr-2ntyz (@ Z DT |Gliem. )]
d)e rele g —1 |GL(m,q)|¢

In Section2, we give a précis of the background material which we need, following
the recent article of Waldspurger [34].

The Langlands—Shahidi formula gives the rational functigy,, as a ratio of certain
L-factors ands-factors [26]. In Sections 3 and 4, we compute explicitly the expression

c(GIM)"3p(GIM) g py () deo

when M is a maximal parabolic. The resulting formula is stated in Theo#e#n in
this formula we correct certain misprints in [27, pp. 292—-293].

In Section 5, we compute the Plancherel dengity,, in the general case by using
the Harish-Chandra product formula and we give the explicit Bernstein decomposition
of Plancherel measure.

As a special case, we derive the explicit Plancherel formula for the (extended) affine
Hecke algebraH(n, g).

We have, in effect, extended the classical formula of Macdonald [19,20,
Theorem 5.1.2] from the spherical component of (@Lto the whole of the tempered
dual.

The Plancherel formulas for Gk, F) and GlL(m, D) are dominated byepeating
patterns which we now attempt to explain. The repeating patterns are expressed by
transfer-of-measure theorems, of which the first is as follows. Vyita 1, 2, let F;
be a nonarchimedean local field and {2f be a component in the Bernstein variety
of GL(n;, F;). Let v denote the Plancherel measure of @}, F;). If Q1,Q, share
the same fundamental invariants, then

@ _ @
Vo, = Vo,
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The next transfer-of-measure theorem is more surprising{l. e a component in
the Bernstein variety of Glu, F), and letv be Plancherel measure. L& have the
fundamental invariantgg, m, e, r, d, f). Let K/F be an extension field witgx = ¢".
Let Go := GL(e, K), let Qp be a component in the Bernstein variety @, and let
v® be Plancherel measure. §fy has fundamental invarianig’, 1, e, 1, 1, 1) thenvg
and vgg are proportional i.e.,

VQ=K~VS);,

wherex = k(q, m, e, r,d, f). This phenomenon was first noted by Bushnell et B0, [
Theorem 4.1] working in the context of types and Hilbert algebras. We reconcile our
result for GL(n) with (a special case of) their result by proving that

k(q,m, e, rd, f)=vol(J)"1-vol(lp) - dim(A),

where (J, 2) is an Q-type, Ip is an Iwahori subgroup oiGo: for this result, see
Theorem6.12. Theorem 5.7, which in essence is the Harish-Chandra product formula,
then allows one to compute the Plancherel measgréor any componenf).

Using the explicit value for the formal degree of any representation in the discrete
series ofG previously obtained by Silberger and Zink, we show that the comparison
formula between formal degrees, proved by Corwin, Moy and Sally in the tame case
[14], is valid in general.

In the last section of the paper we consider the case of a group’GQR), whereD
is a central division algebra of indekover F. We extend the transfer-of-measure result
of Arthur and Clozel [1, pp. 88-90] to the case whiéns of positive characteristic,
by using results of Badulescu.

Let G’ = GL(n/, D), G = GL(n, F) with n = dn’. Let v, v denote the Plancherel
measure folG’, G, each with the standard normalization of Haar measur&0i;. Let
JL: E»(G") — E»(G) denote the Jacquet—Langlands correspondence. Then we have

dv' (@) = A(D/F) - dv(IL(w")),
where
AD/F)=]]@"-D7*

the product taken over ath such that Km<n — 1, m # 0modd.
For example, letG’ = GL(3, D), G = GL(6, F) with D of index 2. Then we have

&' (@) =(@q - -1 g® -7t dvIL@)).

Our proof of this is in local harmonic analysis, ¢1, pp. 88-90].
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Historical note The Harish-Chandra Plancherel Theorem, and the Product Theorem
for Plancherel Measure, were published posthumously in his collected papers in 1984,
see[16]. The theorems were stated without proof (although Harish-Chandra had ap-
parently written out the proofs). At this point, we quote from Silberger’s article [30],
published in 1996:

In [16] Harish-Chandra has summarized the theory underlying the Plancherel formula
for G and sketched a proof of the Plancherel theorem. To complete this sketch it
seems to this writer that details need to be supplied justifying only one assertion of
[16], namely Theorem 11. Every other assertion in this paper can be readily proved
either by using prior published work of Harish-Chandra or the present author’s notes
on Harish-Chandra’s lectures.

For Silberger's Notes, published in 1979, see [29]. Complete and detailed proofs were
finally published by Waldspurger in 2003, see [34, V.2.1, VIII.1.1]. None of these
sources contains any explicit computations for (@)L

Some of the results in this article have been announced in [2].

2. The Plancherel formula after Harish-Chandra

We shall follow very closely the notation and terminology in [34].

Let £ = GL(n, or). Let H be a closed subgroup a@ = GL(n, F). We use the
standardnormalization of Haar measures, following [34, 1.1, p. 240]. Then Haar mea-
sure iy on H is chosen so thati, (HNK) = 1. If Z = Ag is the centre ofG then
we haveu,(ZNK)=1. If H= G then Haar measurg = pi; is normalized so that
the volume ofC is 1.

Denote by® the set of pairO, P = MU) whereP is a semi-standard parabolic
subgroup ofG and© C E>(M) is an orbit under the action of Ixi(M). (Here Eo(M)
is the set of equivalence classes of the discrete series of the Levi sublgroapd
Im X (M) is the group of the unitary unramified charactershvhj

Two elements(O, P = MU) and (O’, P’ = M'U’) are associatedif there exists
s € WY such thats- M = M', sO = O'. We fix a set®/assoc of representatives @
for the classes of association. FaP, P = MU) € ©, we setW(G|M) = {s € W¢ :
s-M=M}/WM, and

Stab O, M) = {s € W(G|M) : sO = O}.

Let C(G) denote the Harish-Chandra Schwartz spac& aind Ietlga) denote the
normalized induced representation fram Let f € C(G), w € Eo(M). We will write

n=Ifo, n(f)= / f(@m(e)dg, 05(f) = tracen(f).
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Theorem 2.1 (The Plancherel formuld34, VIII.1.1]). For each f € C(G) and each
g € G we have

£(8) =) c(GIM)"*)(G|M)~!StaliO, M)|~* /O 1 (@)d ()05 (A(g) f¥) dw

where the sum is over all the pai®, P = MU) € ®/assoc.

Note that
U m (@) -C(GIMY2 : ”/(GIMY1 =(G|M) - j(w)*l, 1)

wherej denotes the composition of intertwining operators definefB# 1V.3 (2)].
The map

(O, P =MU) - I (G), o IS
determines aijection
| . P=mv)/stano, M) — r'(G).

The tempered dual IfG) acquires, by transport of structure, the structurelisjoint
union of countably many compact orbifolds

According to[34, V.2.1], the functionug,,, is a rational function or©. We have
tig (@) =0 and gy (sw) = u(w) for eachs € WY, w € O. This invariance property
implies thatu descendgo a function on the orbifoldD/StabliO, M). We can view
u either as aninvariant function on the orbitO or as a function on the orbifold
O/Stak O, M).

We now define thecanonical measuredw. The map ImX (M) — O sendsy +—
o ® y; the map ImX (M) — Im X (Ay) is determined by restriction. Let;, B;, ;)
be finite measure spaces with= 1,2 and letf : Y1 — Y» be a measurable map.
Then gy is the pull-back of u, if uy(f1E) = uy(E) for all E € By. This surely is
the meaning oforéserve localement les mesuies[34, pp. 239, 302].

The compact group I (Ayy) is assigned the Haar measure of total mass 1. Choose
Haar measure on the compact ortit Now Im X (M) admits two pull-back measures:

IMmX(Ay) < ImX(M) - O.

These must coincide: this fixes the Haar measure ot O, see[34, pp. 239, 302].
Let E be a Borel set inO which is also a fundamental domain for the action of
StallO, M) on O. Since F(w) : = gy (@)d(w) Gg()b(g)fv) is StalfO®, M)-invariant,
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we have
|Stal(O, M)|_l-/ F(w) dw:f F () dw.
O E

The Plancherel densitywith respect to the canonical measurey,ds therefore
c(GIM)? - p(GIM) ™ g (@) d (),

where d(w) is the formal degree ofv. It is precisely this expression which we will
compute explicitly for Gl(n). To this end, we will use the following result.

Theorem 2.2 (The Product formuld34, V.2.1). With M = GL(n1) x --- x GL(ng) C
GL(n) andw =mw1 ® --- ® w; we have

tom@ =[] HeLo+n)i6Lmx6Lm) @ © ©)).
1< j<i<k

The Plancherel measureis determined by the equation

(o) = f tracen(A(g) ) dv(m)

for all f € C(G).

Theorem 2.3 (The Bernstein decompositid@3]). The Plancherel measureadmits a
canonical Bernstein decomposition

v=|_|vQ,

where Q is a component in the Bernstein varie®(G). The domain of eachg is a
finite union of orbifolds of the forn®/Stakl®, M) and is precisely a single extended
quotient.

We will use Theoren®2.3 to compute the Plancherel measure of the (extended) affine
Hecke algebraH (n, ¢q) (see Remark 5.6).

3. Calculation of the y factors
Theorem 3.1. We have

IGL(n, 9)|
IGL(n1, @)| x -+ x |GL Gk, @)

'Y(G|M) = q7221<i<j§kni”j
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Proof. By applying the formula given i34, p. 241, 1.7] to the groupH = I, +
wM (n, op), We obtain

GIM) = _2R,U(M0H)’
P(GIM) =q TuH)

with R = Z(G)™ — Z(M)™, whereZ(G)* (resp.X(M)™) denotes the set of positive

roots inG (resp.M). We have

On the other hand, since the Haar measureGois normalized so that the volume of
K is 1, it follows from the exact sequence

1—- H— K— GL(n,q),

that

u(H) = |GL(n,¢)| " and u(H N M) = |GL(n1,q)| ™' x -+ x |GL(u, )| ™. O

Remark 3.2. Observe that 3, ;_; <, nin; equals the length of the element =
WM WLy, Wherewy (resp.wgl,)) denotes the longest element in the Weyl group

of M (resp. Gl(n)). Let Ps,(X) denote the Poincaré polynomial of the Coxeter group
S.. Then, using the fact that (see for instarj2é, (2.6)])

_ IGL(n, q)|
Ps, (g hH=—— 11—, (2
g™ "(q — 1"
we obtain from Theoren3.1
Ps,(g™h
©))

WG|M) = .
' Ps, (g71) x -+ x Ps, (¢g7h)

This gives the following expression for ttefunction defined in[34, 1.1]:

1_[ PSni+nj (q_l)

1<i<j<k
(4)

- .
Ps, (g7 - T1(Ps,, (g7 1)*2

i=

c(GIM) =
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4. The Langlands—Shahidi formula

Let w denote a fixed uniformizer. We will choose a continuous additive chard¢tter
such that the conductor ¢F is or. Note that Shahidi uses precisely this normalization
in [25]. We shall need thd.-factor L(s, m1 x m2) and thee-factor ¢(s, 71 x w2, )

for pairs, wheres denotes a complex variable (see [18,26]). We define the conductor
f(m x m2) (see [9]) and the-factor y(s, m1 x 72, ) (see [18, p. 374]) for pairs as

e(0, 11 x mp, V) = ¢/ 1) L g1, 1y x w2, V), (5)
P(s, 1 x 12, V) = &(s, m1 x m2, W) - L(1— s, ] X my)/L(s, M1 X m2). (6)

We assume in this section th&tis the upper block triangular maximal parabolic
subgroup ofG with Levi subgroupM = GL(n1) x GL(n2). We have the Langlands—
Shahidi formula for the Harish-Chandgafunction, se€[25, §6] or [27, 8§7]:

> 70, 0] x w2,'¥)

tgm (01 ® w2) = (GIM) Loy % 02, ) %)
It is useful to note that
70, w) x w2, 'P) _ S @i ®)
74, w x w2, \P)
where
, L, 01 x 0))L(1, o] x 02) ©)

L0, w1 x @y)L(0, 0] x w2)

For any smooth representatianof G and any quasi-charactgr we denote byyn
the twist of & by y:

g7 = (yodeh ® m.
If o1 (resp.a2) is an irreducible supercuspidal representation of#zl) (resp. GlL(imy)),
then we havelL (s, o1 x o-g) =1 unlesso1 =~ yo2 with y an unramified quasi-character
of F*.
The next formula is fron{18, Proposition 8.1] or [27, p. 292].

Lemma 4.1. Let o2 have torsion number r and let; =y, with y an unramified
quasi-character such that(w) = {. Then we have

L(s,o1x 03) =(1—{"g7") "
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Let x4, xo be unramified (unitary) characters Bf. The group of unramified (unitary)
characters InkX (M) of M has, via the map

(x10deh) ® (y2 0 ded = (y1(@), y2(@))
the structure of the compact tori&.
Let ; be in the discrete series of Gk) with i = 1,2, and letn; have torsion

numberr. Consider now therbit Im X (M) - (71 ® 72) in the Harish-Chandra parameter
spacth(G). The action of ImX (M) creates a short exact sequence

15>G6->T2>T2>1
with
T? — T2, ({4, L) = ({1, &Y.

The finite groupg is precisely the finite group ifb, Lemma 25] and is the product
of cyclic groups:

Gg=72/rZx Z]rZ.

We will write z1 = {4, z2 = {, so thatzi, z2 are precisely the co-ordinates of a point
in the orbit.

Remark 4.2. We recall the following facts about the discrete series of(f3L Let
71 and 2 be two discrete series representations of(#/3l and GL(ny), respectively.
By Zelevinsky [35], there exist two pairs of integer@ni, 1) and (m2,[l2) and two
irreducible unitary supercuspidal representatiensand oo of GL(m1) and GL(m»),
respectively, such that, far= 1, 2, we havel;m; = n; and the representation; is
the unique irreducible quotient associated to the Zelevinsky segment

{|det| "% g;, | det| ¢, ..., |det|¥1a;, | det|% o;),
where 2; + 1 =1;. We will follow the notation in[1, p. 61] and write
n; = St(o;, ;).
So n; is a generalized Steinberg representatioffe observe that
ymi = St(yai, ;).

It follows that the torsion numbers of; and ¢; are equal.
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Theorem 4.3.Let o1, o2 be irreducible unitary supercuspidal representations of
GL(m1), GL(m2). Let 1, mp be discrete series representations @f(n1), GL(n2)
such thatr; = St(a;, [;). Let yq, y» be unramified characters. &1 # yo2 for any
unramified quasi-charactey; of F* then as a function on the compact torus?,
Kaim (11T ® ypm2) is constant: we have

K (a1 ® 1am2) = P(G|M)? - g'1f2 ] 71x02)

We also have

f(] x mp) = lilaf (6] x 02).

Proof. Let w; = y;m; and t; = y;0; for i = 1,2. We will use the multiplicative
property of they-factors. From[17, p. 254] or [18, Theorem 3.1], we have, with
b=g1+ g2,

I1—1 11

7G5, 0f x w2, W) = [T [Tv6 11770 x 12, 9).
i=0 j=0

On the other handy(s, | |'/=°1} x 12, ¥) equals

LA—s,| |77/t x 1))

(s, | M 7Py x 10, W) - —
o ! " TLe T x

Since

8(07 | |i+j_bTI X 12, ‘P) . qf(‘ [i+i=b

i WXt f@ X o f (6 x02),
e(L, | [Tt x 12,'¥)

it follows that

7(0, ] x w2, \P) = ghl2 fe{xo0) [/ (10)
7L, of x w2, V) ’
with
WHBI L |ty x ) L Y x 1)
L/Zl_[ l—[ s ’C]_X‘Cz ) s ‘El X T2 . (11)
izo o LO =0ty x)  LO |74ty x 1)

Since o1 # yo2, thenty # yt2 for any unramified quasi-charactgr and L’ = 1.
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The multiplicative property of thé.-factors[18, Theorem 8.2] implies that” = 1.
Therefore, by (8) we have

. v
(0, o] x w2, V) _ qf(u){xwz) (12)

(1, 0] x w2, \P)

Then the results follow from the Langlands—Shahidi formufa, @nd from (10)
and (12). O

Theorem 4.4. Let ¢ be an irreducible unitary supercuspidal representationGif(m)
with torsion number rLet 1, 7o be discrete series representations@if (n1), GL(n2),
with n; = I;m, such thatn; = St(o, ;). Let y1, x» be unramified characters. Let
i@ =, zi =, i =12 Then as a function on the compact torug? with
co-ordinates(z1, z2), we have

1 _or 2
1-—2z22z77q

1— 2oz Tq=(&HDr

B (AT ® 7am2) = (GIM)? - g2l @< . T

where the product is over those g for whigh — g2| <g < g1+ g2. Note thatg; — g2
and g1 + g2 can both be half integers
We also have

f(n] x m2) =llaf (6" x ) + r(lilz — min(ly, [2)).
Proof. Let 7; = ;0. We have
L—1l—1

L=T11TI

i=0 j=0

LAd—i—j+btuxty) Li+j+1-b1 x12)
LG+ j—b,t{ x12) L(—i—j+btix1y)’

where L’ is defined by {1).

Now we delve into the combinatorics. To this end, we make a change of variable,
and a change of notation.

Let A(s) = L(s, 7y x 12), A"(s) = L(s, 71 x 73). Note that, for alls € R, 2*(s) is
the complex conjugate of(s). Let nowk =i + j — b. We have

h—11-1

;L -k Al+k)
b= E) ,11) k) 2N(=k)

We now define the function

a:{=b,—b+1,...,b—1b) — (1,2,3,...,min(l4, 2)}
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as follows:

ak)=8{Gi, j):k=i+j—b0<i<li —10<j<l2—1}.

Note that the functiora is even:a(—k) = a(k). It first increases, then is constant with
its maximum value mid1, [2), then decreases. Quite specifically, we have

e a(—b) =1,

o b<k<—lgr—gl=ak+1 —ak) =1,
o a(—|g1— g2|) = min(l1, ),

o —|g1—g2l<k < |g1— g2l = alk+ 1) = a(k),
o a(|lg1— gz2) = min(ly, I2),

o [g1—gl<k<b=alk+1) —alk) =-1,

e a(b) =1.

We have

. ﬁ PA—0*® A+ k) ®
Ll A 2 (—ke®

B A4 414 ke
= I = T

b 2

:l—[b

ke=—

(L + k)e®

ROEE (13)

We also have, setting(1+ ») =0,

b b

I AL+k)® 1 I AL+ kye®)
A(k)e® T J(=b) (1 + k)ad+k)

k=— k=—b

1 —lg1—g2|-1 1

= J(=b) Hb 2+ 1)

k=—

b
[T a+n
k=|g1—g2|
_ A1+ b) A1+ 1g1— g20)
(—=b) A(—1g1 — g21)

81182

- I

g=lg1—g2l

AL+ g)
M=g)

(14)
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Note thatt, = 71 where (@) = ({7 *. Thereforey(m) ™" = z1z,*. The first result
now follows immediately from Lemmd.1, since

AMg) = L(g, 1y x 12) = L(g, 12 x 1§) = (1 — 2125, ¢ ¢") L.

Note also that|l — zzz[lq‘grl = |1- zlzglq‘grl since zzz[l,zlzgl are complex
conjugates.
In addition we have

1 erp2 12 2 1 —grp2
11— 2227 7q%"1° = g% — 222771 = ¢**" |1 — 2221 "¢~ %]

and so we have

(8)
A(=8)

2
_ 2er

The multiplicative property of thé-factors[18, Theorem 8.2] leads to the equation

81+82 2

L// — l_[

g=lg1—g2l

Al+g)
(&)

Therefore, we have

81182

L//L// — 1_[

g=lg1—g2l

Q)
A(=8)

‘ 2

81+82

= qufg

g=lg1—g2l

— qr(lllzfmin(ll,lz)) (15)
thanks to the identity
2|g1 — g2l + -+ + 2(g1 + g2) = l1l2 — min(ly, I2)

which follows from the classic identity

2lg1— g2l + 14+ 2(g1+ g2) + 1= lilo.
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Since

V(l, 60;_/ X w2, l,bF) _ f(of xm) L) = Il f(6Y x0) L
70, Y x w2 ) 1 1
) 1 9 F

we have

llp f(6Y x0)  r(lila—min(l,l2))

qf((x)ZX(x)z) — qlllzf(o'vxa) . L//L// =gq q

and we conclude that

f(n] x m2) = lilaf (6" x o) + r(lilz — min(l1, [2)). O

The above formulas are invariant under the m@ap, z2) — (Az1, Az2) with 1 a
complex number of modulus 1, and under the niap z2) — (z2, z1). In Section6 of
the paper we shall interpret’ as the cardinalityyx of the residue field of a canonical
extension fieldK /F.

For example, letM = GL(1) x GL(2) ¢ GL(3), w1 = 1, w2 = St(2) = Sti(1, 2).
We havel; =1,1pb =2, g1 =0, g2 = 1/2, r = 1. This gives the following (rational)
function on the 2-torus:

1,-1/2 2

1 _ —
1y ® 12 St(2)) = V(GL(3)|M)2 q- ‘ 2224

1- zzzl_lq_s/z

Theorem 4.5.Let G = GL(2m), M = GL(m) x GL(m) and lets be an irreducible
unitary supercuspidal representation &iL(m) with torsion number r. Then we have

2
v 1— 2277t
1 (710 ® 120) = P(GIM)? - g7 ). 1

1- zzz[lq_r
Proof. This follows from Theorem4.4 by takingl; = I = 1, so thatg; = g» =
g=0 040

5. The Bernstein decomposition of Plancherel measure

5.1. The one exponent case

Let X be a space on which the finite grolipacts. The extended quotient associated
to this action is the quotient spacé/I" where

X={p,x)eT x X :yx =x)}.
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The group action orX is g.(y,x) = (gyg~ L, gx). Let X” = {x € X : yx = x} and let
Z(y) be theI'-centralizer ofy. Then the extended quotient is given by:

X/T =[xz,

b

where oney is chosen in eachi™-conjugacy class. Ify = 1 thenX7/Z(y) = X/I" so
the extended quotient always contains the ordinary quotient

X T=X/Tu-- .

We shall need only the special case in whiXhs the compact torug” of dimension
n and I is the symmetric groug, acting onT” by permuting co-ordinates.

Let f be a partition ofn, and lety have cycle types. Each cycle provides us with
one circle, and cycles of equal length provide us with a symmetric product of circles.

For example, the extended quotieht/Ss is the following disjoint union of compact
orbifolds (one for each partition of 5):

TuT?uT?U(T x SymPT) u (T x Syn?T) u (T x SynPT) L SynPT,

where SymiT is the n-fold symmetric product of the circld. This extended quotient
is a model of the arithmetically unramified tempered dual of(8L

Let Q c Q(GL(n)) have one exponerde Then we haves|n and soem = n.

There exists an irreducible unitary supercuspidal representatiof GL(m) such
that the conjugacy class of the cuspidal p@L(m) x --- x GL(m),c®---®a) is an
element inQ. We haveQ=~Synf C* as complex affine algebraic varieties. Consider
now a partitionp = (I1, ..., 1) of einto k parts, and write 21+1=11,...,2¢g+1=
Ir. Let

n; = St(a, [;)

as in Remark3.2. Thenny € E>(GL(mly)), ..., nx € Eo(GL(ml)). Note thatmly +
-+ +mly = n so that Gliml1) x --- x GL(ml) is a standard Levi subgroupl of
GL(n). Now consider

T=1m1 Q- & YTk

with x4, ..., x, unramified (unitary) characters. Thene E>(M). We have

w=I"" 1) et GL(»)
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and each elementb e Irrt GL(n) for which inf.ch.w € Q is accounted for in this way.
As explained in detail if23], we have

X/ T2t GL(n)q, (16)
whereX =T¢ T =S, i.e.,

| [ X7/ =it GLm)q.

I

The partitionp = (I3, ..., ) of e determines a permutationof the set{1, 2, ..., e}:
y is the product of the cycle€l, ..., l1)--- (1, ..., ). Then the fixed seX” is

{(z1, ..y 20 s Tk e 2k) €ETC 120, ...,z € T}

and soX’~T*,
Explicitly, we have

X" — It GL(n)q.

GL
(21, ..., 2k) = IMN(n)(Xlﬂl ® - @ JTk)

with y1(@) = {1, ..., (@) = (22 = {4, ..., 2z = (| exactly as in Remark 3.2. This
map is constant on each(y)-orbit and descends to anjective map

X7/ Z(y) = It GL(n)q.

Taking oney in eachI'-conjugacy class we have the bijective map

|_|x>'/z<y);|rrGL(n)Q.
t
This bijection, by transport of structure, equipst@L(n)q with the structure of
disjoint union of finitely many compact orbifolds.
We now describe the restrictionn of Plancherel density to the compact orbifold
X'/Z().

Theorem 5.1. Let ¢ be an irreducible unitary supercuspidal representationGif(m)
with torsion number r. Fori =1, ...k, let

m; = St(o, [;),

let x; be an unramified character witl; (w) = {;, and letz; = (;.
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Then as a function on the compact tord& with co-ordinates(z1, . .., zx) we have

1- ZjZflqgl‘
1—zjz; g~ &+Dr

WOmL @ -+ Q@ k) = Constl_[ ‘

where the product is taken over thosg,ig for which the following inequalities hald
1<i < j<k, lgi —gjl<g<g +gj, 286 +1=1.

Proof. Apply Theorem4.4 and the Harish-Chandra product formula, Theorem 2.2.
Note that the function

-1 _gr 2

1—z;z; tq=(e+Dr

(21, ...\ 2k) — constl_[

is a Z(y)-invariant function on the-fixed setX” = T*, and descends to a nonnegative
function on the orbifoldX”/Z(y):

X")Z(y) — Ry, O
In the above theorem, the co-ordinatgs. . ., zx should be thought of ageneralized
Satake parametersThe k-tuple t = (z1,...,zx) iS a point in the standard maximal
torus T of the unitary groupU (k, C). In that case, the roots of the unitary group are
given by
O(,'j([) = Zi/Zj-
The p-function may now be written in the more invariant form

pGam ® -+ @ gpm) = const [ [(L— o)) (1 — a(t)g =& D)7,

where the product is taken over all roats= o;; of U(k, C) and allg for which the
following inequalities hold: i<k, 1< j<k,i # j, 1gi—gjI<g<gi+gj, 28+1=1,.

Theorem 5.2. We have the following numerical formula fopnst.
const = g!M1 @' X0 (G IM)Z . o(GIM)Z,
where £(y) = Zlgkjgklilj.

Proof. The numerical constant is determined by Theoreh#sand 2.2. Explicitly, for
i,jef{l, ..., k}, setting

Vi,j = 7(GL(n; +n;)|GL(n;) x GL(n;)),
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for the y-factor of the Levi subgroup Glz;) xGL(n ) of the maximal standard parabolic
subgroup in Gln; +n;),

o lili f(0Y x0) 2
Const — Zlgzqgk ) . i
4 ngkjgkyl'f

— g!DI@ XD (GIM2 . (GIM)2. O

Corollary 5.3. We have

_ 2
1-zjz; 16]_(g+1)r

. 1 4
j(w) = ql(/)f(ﬂ X0a) | 1_[

1—2zjz; g%
Proof. This follows immediately from Theorems.1, 5.2 and the fact that
c(GIM)2)(GIM) ™ gy (@) = 9(GIM) j@) . O

Given G = GL(n) = GL(n, F) choosee|n and letm = n/e. Let Q be a Bernstein
component inQ(GL(n)) with one exponene. The compact extended quotient attached
to Q has finitely many components, each component is a compact orbifold. We now
have enough results to write down explicitly the componemntLetii+-- -+ = e be
a partition ofe, lety=(1,...,01)--- A, ...,k €S, =T, g1=01—-1)/2,..., 8 =
(Ix — 1)/2. Then we have the fixed set” = T*. Let ¢ be an irreducible unitary
supercuspidal representation of the group (&) and let the conjugacy class of the
cuspidal pair(GL(m)¢, ¢®¢) be a point in the Bernstein compone@t Let r be the
torsion number ofr and choose a fiel& such thatgx = g}

We have 16):

It GL(n, F)o=~X/T.

This compact Hausdorff space admits the Harish-Chagdreonical measuredw: on
each connected component in the extended quoffeit, dw restricts to the quotient
by the centralizerZ(y) of the normalized Haar measure on the compact tofus

Let dv denote Plancherel measure on the tempered dual @fi GL).

Theorem 5.4. On the componenk”/Z(y) of the extended quotierff/l" we have

_ 2
—zjz; g

v 1
dv(w) = ¢*PT T y(GIM) - d(w) - H’l_

-1 _
2jz; °q (g+Dr
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Proof. By 2.1, the Plancherel measure on' ®L(n, F)q is given by
dv(w) = c(GIM) 2 9(GIM) ™ p(w) d(w) do.

Then, the result follows from Theorentsl and 5.2. [J

Let T be the diagonal subgroup @& and take forQ the Bernstein component in
Q(G) which contains the cuspidal paif’, 1). ThenQ has the single exponemt and
parametrizes those irreducible smooth representations ¢&,G1) which admit nonzero

lwahori fixed vectors.
Now letl; +--- + I be a partition ofn, and let

M =GL(,F) x---xGL(, F) Cc GL(n, F).

The formal degree of the Steinberg representatiqi)Sis given by

d(Sti) =

i—12)/2 . li-1

g IGLUi, )l 1 ;

=T [Tw@ -D. (17)
i q =1

1
We also have the inner product identity in pre-Hilbert space:

(018 ®0)@QE® & 1@ ®&) = [[lo,(©)¢).&)).

Let eachl; € V; be a unit vector. With respect to the standard normalization of all
Haar measures we then have (dfl, (7.7.9)])

Yoo -om = | / | < 0,0 ¢; > Pdjyy = [ 1/do,
and so
doyo-0, = | [ do;- (18)

Using (18) and Theorem 3, we obtain the following result.
Corollary 5.5. On the orbifoldX7/Z(y) we have
2

-1
_ iji qg
-1 _
iji q (g+1D)

1
dv(e) = (GIM) - d(@) - ]‘[‘1_
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where
d(w) = [ [d(Sti)).
So we have
k li—1 ~1 o
1 4 1-zjz;7¢q¢
dv(@) = y@GIM) - []+[]@ -1 - .y do>

i1 ll' j:l 1 — iji q_(g+l)

P I B 1 2

_ ]‘[ > (g 1r i - dw. (19)
ie1 l(q’_l) —ZZ17(8+1)

Remark 5.6. Using [10, Theorem 3.3], we obtain that the Plancherel measure of the
(extended) affine Hecke algeb#a(n, ¢) is given onX?/Z(y) by

2

]
u(D) - 9(GIM) - d(w) - 1"[' — 45

1-2z;z ~1lg—G+D

Concerning the volume(7): by Bushnell and Kutzkd11, 5.4.3] we have

pGL( op) = Y pwlh = Y ul)-q"™ = Ps,(q) - p().

weWp weWp

The explicit formula is then (using2}):

1- iji_lqg

1- iji—lq—(g+1)

2
q 2 (q—l)’ n—n?
gy (@) = HW—_D.Q 2]

where the second product is taken over thipgeg for which the following inequalities
hold: 1<i < j<k, |gi —gj1<g<g +¢gj, 2¢i +1=1;. Note that Plancherel measure
for lwahori Hecke algebras has been already calculated by Opdanj2@e2.8.3]).

We will now consider a special case. Thadic gamma function attached to the local
field K (see [32, p. 51]) is the following meromorphic function of a single complex
variable:

1—q% /ax
1— qx L

(9 =
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We will change the variable via = q}; and write

11—
o) = T4

a rational function ofs. Let s € iR so thats has modulus 1. Then we have

2
N

1-—
1/ 2o | —
/l K(S)| '1_qus

Let T be the standard maximal torus in Gi) and let7 denote the unitary dual of
T. ThenT has the structure of a compact torli§ (the space of Satake parameters)
and the unramified unitary principal series of @) is parametrized by the quotient
T"/S,. Let nowt = (z1,...,z4) € T". Applying the above formulas the Plancherel
density ug 7 is given by

2

o
Ugir = const - (20)
o E “a
= const - l_[ ‘ —a) |° (21)
Hoir = — /g
uyr = const - [ [ 1/T (). (22)

whereo is a root of the Langlands dual group Gi. C) so thato;; () = z;/z;.

For GL(n), one connected component in the tempered dual is the compact orbifold
T"/S,, the symmetric product afi circles. On this component we have the Macdonald
formula [19]:

du(wy) = const - di/ [ [T GA0e"))

the product over all roots whereo" is the coroot. This formula is a very special case
of our formula for GL(n).

5.2. General case

We now pass to the general case of a compoiernt Q(GL(n)) with exponents
e1,...,e. We first note that each compone®dtc Q(GL(n)) yields up its fundamental
invariants:

e the cardinalityg of the residue field of;
e the sizesm; of the small general linear groups;
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the exponentg;;

the torsion numbers;;

the formal degreegd;;

the conductorsf;; = f(a;” x a;);

with 1<i <zt.
We now construct the disjoint union

E = Q(GL(c0)) = “_lQ(GL(n)) ‘n=0123.. }

with the convention tha€2(GL(0)) = C.

We will say that two componentQ;, Q, € E aredisjoint if none of the irreducible
supercuspidals which occur €; is equivalent (after unramified twist) to any of the
supercuspidals which occur €. We now define a law of composition agisjoint
componentén E. With the cuspidal paitM1, 61) € Q1 and the cuspidal paitM2, a2) €
Q, we defineQ; x Qp as the unique component determined by

(M1 x M2,01 ® 02).

The setE admits a law of compositionot everywhere defineslich thatE is unital,
commutative and associative. Rather surprisinglyadmits prime elements: the prime
elements are precisely the components with a single exponent. Each elemEnt in
admits a unique factorization into prime elements:

Q=0Q; x - xQ.

Plancherel measure respects the unique factorization into prime elements, modulo
constants. Quite specifically, we have

Theorem 5.7. Let Q have the unique factorization
Q=01 x---xQ

so thatQ has exponentgy, ..., e; andQq, ..., Q, are pairwise disjoint prime elements
with the individual exponents, ..., ¢;. Let

V= |_| 70}
denote the Bernstein decomposition of Plancherel measure. Then we have

VQ = const.vg, -+ VQ,,
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wherevg,, ..., vq, are given by Theorens.1 and the constant is giverin terms of
the fundamental invariantdy Theoremb.2.

Proof. In the Harish-Chandra product formula, all the cross-terms are constant, by
Theorem 4.3. O

6. Transfer-of-measure, conductor, and the formal degree formulas
6.1. Torsion number

The theory of types of [11] produces a canonical extensioof F such thatgx =
q". Indeed, lete be an irreducible supercuspidal representation of(3l. and let
(J, A) be a maximal simple type occurring in it. L8t be the hereditaryg-order in
A = M(m, F) and let E = F[f] be the field extension of attached to the stratum
(see [11, Definition 5.5.10 (iii)]). It is proved in [11, Lemma 6.2.5] that

P=— (23)
e(E|F)

wheree(E|F) denotes the ramification index & with respect toF. Let B denote the
centralizer ofE in A. We setB := AN B. ThenB is a maximal hereditary order in
B, see[11, Theorem 6.2.1]. LeK be an unramified extension & which normalizes
B and is maximal with respect to that property, as in [11, Proposition 5.5.14]. Then
[K : F] = m, and (23) gives that is equal to the residue indeX(K|F) of K with
respect toF. Thus Q = ¢" is equal to the ordegk of the residue field oK.

Also the numberQ is the one which occurs for the Hecke algel##aGL(n), 1)
associated tqJ, 1), see [11, Theorem 5.6.6]. Indeed, since the order of the residue
field of E is equal tog/1F) | that number is(g/ 1))/ with

m

f:[E:F]e(QS)’

wheree(B) denotes the period of a lattice chain attache®tas in[11, (1.1)]. Since
o is supercuspidale(B) = 1 (see [11, Corollary 6.2.3]). It follows that
m - f(E|F) _om

f - fEIF)= B F CeER "

(24)

6.2. Normalization of measures

We will relate our normalization of measures to the measures us¢tilin(7.7)].
Bushnell and Kutzko work with a quotient measturethe quotient ofu; by ;.

Let Z denote the centre of Gk). The second isomorphism theorem in group theory
gives:

JZ]Z~J]INZ.
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We have
JNZ=oj.

One way to see this would bé:contains2* N B, whereB is the centralizer iV (n, F)

of the extensionE. Now certainly Z is contained inB. On the other hand)l is an

op-order so certainly contains® . Thanks to Shaun Stevens for this remark.
Then we have

JZ|Z=T]o¥.

Now J is a principal o-bundle overJ/oy. Each fibre over the basé/o, has
volume 1. The quotient measure of the base space is then given by

wJZ/Z) = p(J). (25)

Similar normalizations are done wiittip = GL(e, K). We also need the correspond-
ing quotient measur@ (see[l11, (7.7.8)]). We have

AUTK*/K™) = gy (D).

Let M = [[GL(n;). We haveZy =[[Z;, K =[[K;, with Z; = ZgL(n,,F) and
K; = GL(n;, or). With respect to the standard normalization of all Haar measures, we
havesuy =[] u; (Whereu; denotesugy,, r)) anduz, =[] uz,. This then guarantees
that '

i =1 Th (26)

6.3. Conductor formulas (the supercuspidal case)

We will first recall results from{9] in a suitable way for our purpose.

Let (JS, %) be a simple type in G{2m) with associated maximal simple tyge, 1)
(in the terminology of [11, (7.2.18) (iii))]). Whern(J, 4) is of positive level, we set
Jp = (JSN PYHY(B, A) c JS (in notation [11, (3.1.4)]), wher® denotes the upper-
triangular parabolic subgroup of G2m) with Levi componentM = GL(m) x GL(m),
and unipotent radical denoted By. Following [11, Theorem 7.2.17], we defingr
as the natural representation @ on the space ofJ N N)-fixed vectors in/°. The
representationtp is irreducible andip ~ c—Indj; /5.

The pair(J x J, A® 2) is a type inM which occurs ine ® ¢, and, as shown in [13,
Proposition 1.4],(Jp, Ap) is a GL(2m)-cover of (J x J, A ® A).

Theorem 6.1 (Conductor formulad9]). Let Go = GL(2, K), let Ng denote the unipo-
tent radical of the standard Borel subgroup 6% and let | denote the standard Iwa-
hori subgroup ofGo. We will denote by, the Haar measure oitip normalized as in
Section6.2.

Let (JCL@m )6y be anyGL(2m)-cover of (J x J, A® 1).
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Then

uw(JSNN) - u(JC m_ﬁ) _feVx0) _ j(e® o)
to(I N No) - tio(I N No) Jo(1)

where j jo denote the j-functions for the group, G respectively

Proof. The first equality is[9, Theorem in §5.4], using the fact thak(/ N No) -
to(I N'No) = qlgl. The second equality is [9, Theorem in 85.4] (note that in [9] the
normalizations have been taken so thaf “NN)-u(J¢ NN) = (1N Np)-uo(INNp)).

It also follows directly from our Corollary 5.3.0

We will now extend the above theorem to the casafo& GL(m)*¢, with e arbitrary.

Corollary 6.2. Let M = GL(m)*¢ with n = em, and Gog = GL(e, K), let No denote
the unipotent radical of the standard Borel subgroupGaf and let | denote the standard
Iwahori subgroup ofGo.

Let (JC, 2%) be a cover inG = GL(n) of (J*¢, i%°) (the existence of which is
guaranteed by Bushnell and Kutzkb3]).

Then

HIONN) - nINN) g0k _ 107
to(I N No) - tio(I N No) Jo(1)

Proof. Let M’ be a Levi subgroup of a parabolic subgroup Gsuch thatP is a
maximal parabolic subgroup d¥/’. Then,M'/M ~ GL(2m)/GL(m) x GL(m) and

w(JC N M NN) = u(J®@ nGLE2n) N N).

It follows from [12, Proposition 8.5 (ii)] tha(J¢ N M’, 19|79 N M’) is an M’-cover
of (J*¢, 1%%).
Because of the unipotency of, we have

e(e—1)

u(J N N) = (u(IC-@M NGLE2m) N N)) " 2 (27)

and similar equalities for the three others terms. Sincg2@l N N is the unipotent
radical of the parabolic subgroup of @m) with Levi GL(m) x GL(m), the first
equality in the corollary follows from Theore®.1.

The second equality follows from our Corollary 5.3. It is also a direct consequence
of Theorem 6.1, using the product formula foand for jo from [34, IV.3. (5)]. O
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6.4. Formal degree formulas

Using Corollary 6.2, we will deduce from [11, (7.7.11)] a formula relating the
formal degree of any discrete series of @)L and the formal degree of a supercuspidal
representation in its inertial support.

Given G = GL(n) = GL(n, F) choosee|n and letm = n/e. Let o be an irreducible
unitary supercuspidal representation of @l and let (J, A) be a maximal simple
type occurring in it. Letg = (e — 1)/2. We consider the standard Levi subgroup
M = GL(m)*¢ of GL(n, F) and the supercuspidal representation

oy =|det()|¥o® - @ |det()|¢o

of it. Then (Jyr, Ay) = (J*¢, 2%°) is a type inM occurring ino ;.

Let © = St(g, ¢) and let(JS, /°) be a simple type in Glz) occurring inn (it has
associated maximal simple tygd, 1)).

The following result is rather intricate, but note that only fhbedamental invariants
m,e,r,d, f(6¥ x ) occur in it, in line with our general philosophy.

Theorem 6.3. We have

dm) _ mt g pram? @ =D |GL(em. q)|
doy  re1g 1 " —1 |GL(m, )¢

Remark 6.4. The right-hand side in the above equality can be rewritten, by udiny (
as

e @ —D@G" =D Eeir(ouorirm? _degStem)) .
(@™ —1D¢(@q -1 (degSt(m)))©

Proof. Let T denote the diagonal torus in @&, K) and letl denote the Iwahori
subgroup ofGg = GL(e, K) attached to the Bernstein component @Q{GL (e, K))

which contains the cuspidal paifl’, 1). Note that/ N T = GL(1, og)*¢. From [L1,

(7.7.11)], applied to the representatiomsand o, we have

() dim(z)

AW =005 «EF)

- d(n)o, (28)

whered(m)o denotes the formal degree afe E2(Gp), and

u(GL(L, 0g)  dim(A)
d(o) = - .
() e(E|F)

(29)
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Using 28), (29) and (24), we obtain

dm _mTh o) pGx) o dim@d)
(@ remt o p(J9  wGLA, 0)*)  (dim(2)

- d(n)o. (30)

We setJp = (JSN PYHY(B, A) c JS, where P is the upper-triangular parabolic
subgroup ofG with Levi componentM, and unipotent radicaN. We definelp as
the natural representation ofp on the space ofJ N N)-fixed vectors ini%. The
representationi.p is irreducible andip ~ c—Indjz (25). Then (Jp, Ap) is a G-cover of
(Ju, Am). In the case whereJ, A) is of zero level, we denote by, /%) = (Jp, Lp)
an arbitraryG-cover of (Jys, ).

SinceJSNM =J*¢=Jy=JpNM, and

dim(4)¢ = dim(iy) = dim(lp) = [J3: Jp]~ L dim(iS),
(30) gives

dm _m ™t pe)  pCw)
d(o)y — re b u(Jp) oI NT)

d(m)o.

On the other hand, by applying formuja4, p. 241, I.7] to the grou@d, we obtain

w(Jp NN) - u(Jp N M) - u(Jp N'N)

GM =
GIM) u(Jp)

(31)

Similarly, we have

to(I N No) - pig(I NT) - ig(I N No)
Ho(1) '

2(GolT) =

We then obtain

d(m) _ 9(GIM)  po N No) - pioI N No)

— = — d(m)o.
d(@)*  7(GolT) u(JpNN)-u(JpNN)
Applying Corollary 6.2, we get
e—1 o— v )
dm _m " edpoixg  2GIM)

d(o)e  rel 7(GolT)
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Since Haar measure on @, K) has been normalized so that the volume of(&lok)
is equal to one, the formal degree of the Steinberg representation @f &l is given
as in (L7) by

q<efe2>/2
d(m)o = X

6L, qx)]
e 95 -1

On the other hand, TheoreB1 gives

_n2  |GL(n, g _2 |GL(e, gk)I
GIM) = gm? . 220D and y(GolT) = g - B I
7G| 1 IGL(m, )| /Goll) =4 (qx — 1)°

The result follows. O

We will now recall the explicit formulas foe/(w) and d(¢) from [31], using also
[36]. We would like to thank Wilhelm Zink for explaining these works to us.

Let n be the Heisenberg representation J¥(f3, ) attached to a maximal simple
type (J(B, ), 1) occurring in the supercuspidal representatiof GL(m) (see [11,
(5.1.1), (5.5.10)]). Letp denote the Jacobson radical¥fand letU? () = 1+P'. Let

1
”113 be the compactly induced representatieﬂnd?l((/;l?m (). Thennk is irreducible, see

[11, (5.2.3)]. More generally the restriction gfto Ji (8, ) = JX(B, WNA+P) is a
multiple of an irreducible representatigh which induces irreducibly to a representation
n% of U'(2) (see [36, 2.2]). LetE_; be any field such that

U - ToLon (™) - U Q) = UNQ) - GL(m/[E—; : F1, E—) - UH(W),

where IGL(m)(n;;'l) denotes the intertwining ofc%“ in GL(m, F). In particular, we
have Eg = E.

Theorem 6.5 (Explicit formal degrees formulaf31,36]). The formal degrees af and
7 are, respectively given by

m_ 1
d(o) = r - Q;r — a2 degStim)),
em _ 1 N
d(m) = r - T glrem 2. degtem)),
=

where

S=rm -y (1—[E_;:FI™".

i>0
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Proof. It follows directly from [31, Theorem 1.1] and [36, Corollary 6.7], using the
fact thatr = f(K|F) andm/e(E|F) =r. O

As immediate consequences, we obtain the following results.

Corollary 6.6.

dm 12 @"=D@ =D 2 e dedStem))

do? @ — D" - 1P (degStm))**

Remark 6.7. We observe that the above formula extends to the general case the formula
obtained in[14, Theorem 4.6] in the case whe(e, p) = 1 andF has characteristic
zero. The existence of such a formula was expected in [14, Remark 4.7]. Our formula
also extends [33, Theorem VI1.3.2].

Corollary 6.8.

d(m) _ e @ -D@" =D q(e2—2)5/2 ~degSt(em))
d(o)° (g" — (g™ — D¢ (degSt(m)))¢”

The comparison of Corollar$.8 with Remark 6.4 gives the following expression
for the conductor for pairg (6" x o).

Theorem 6.9. We have
f@' xa)=0+m?—r.

Remark 6.10. In [10, 86.4] (see also [10, 6.13]) is introduced a certain discrimi-
nant functionC(f) and an integer(f) such thatC(f) = ¢“@. It follows from our
Theorem 5.1 and [10, Theorem 6.5 (i)] that

[E : F]?

m2

- 0.

«(p) =

6.5. Conductor formulas (the discrete series case)
Let ¢ be an irreducible supercuspidal representation ofi@3l. and let(J, 1) be a

maximal simple type occurring in it. Let|n, and leti; + --- + [; = e be a partition
of e. It determines the standard Levi subgroup

M = GL(lgm) x --- x GL(lzm) C GL(n, F). (32)

Let g1 = 1 — D/2,...,8t = (I — 1)/2, and letny,..., n; be discrete series
representations of Gllym), ..., GL(ym) such thatn; = St(s,[;). Let 71 = 11 ®
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--- ® m; be the corresponding discrete series representatioi.ofFor eachi €
(1,...,k}, we fix a GL(;m)-cover (JCLUim) ;CLUmy of (yxli @iy (35 in the proof of
Theorem6.3). Then

(JMa ;LM) — (JGL(I]_m) TR, JGL(lkm), /”LGL([]_m) ® - ® ;LGL(lkm)) (33)

is an M-cover of (J*¢, 1%¢). Then let(JC, /%) denote aG-cover of (Jy, L) (the
existence of which is guaranteed by Bushnell and KutZ&® Main Theorem (second
version)]).

At the same time the patrtitiofiy, ..., ;) determines the standard Levi subgroup

Mo = GL(I1) x --- x GL(y) C GL(e, K) = Go. (34)

Let P (resp. Pp) be the upper-triangular parabolic subgroup ®f(resp. Go) with
Levi componentM (resp. Mp), and unipotent radical denoted Y (resp. Np). Let |
denote the standard Iwahori subgroup@j.

Theorem 6.11.We have

w(JSNN) - u(J°NN) _ gt F o) _ j(a®9)
tto(I N No) - pto(I N No) Jo(1)

Proof. The second equality follows from our CorollaBy3.

We will prove the first equality. Let) denote the unipotent radical of the upper-
triangular parabolic subgroup db with Levi component Glun)*¢, and, fori =
1,...,k, let U; denote the unipotent radical of the upper-triangular parabolic subgroup
of GL(/;m) with Levi component Glun)*/i. We observe that

k
U=NxUNM)=N x l_[Ui.
i=1

Similarly, let Uy be the unipotent radical of the standard Borel subgrouiw@f and,
for i =1,...,k, let Up; be the unipotent radical of the standard Borel subgroup of
GL(;, K). We have

k
Uo = No x (Uo N Mo) = No x [ [ Uo.-
i=1

It follows from [12, Proposition 8.5 (i)] thatJ ¢, 1) is also aG-cover of (J*¢, 1%¢).
Applying Corollary 6.2 to(J¢, U) and to (JCLUm y;) for eachi € {1,...,k},
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we obtain

nwJSNU) - uJ® m_ﬁ) _ el gy
oI N'Uo) - up(I N Uo)

lu(JGL(lim) N Ul) . 'u(JGL(ll_m) ﬂvl) _ q_w.)"(avxﬂ)-
oI NUo;) - (I NUo,;)

SinceJ9NM = Jy (by definition of covers), it follows from33) that/¢ NGL(l;m) =
JCLUm Then using the fact that
k
pUCNN) = (¢ nU) x [Tu@ 0 nwy
i=1

and the analogous equalities for the others terms, we obtain

HICON) - pIINN) ety 100, o) (35)
to(I N No) - pto(I N No)

G GAN
RUZON)-pUZON)  pfe'xo O (36)

to(I N No) - io(I N No)

6.6. Transfer-of-measure

The following result reduces the case of an arbitrary compo€ieat the one (studied
in Corollary 5.5) of a component (of a possibly different groG) which contains the
cuspidal pairT, 1). We give a direct proof which is based on our previous calculations.
It is worth noting that it is also a direct application of [10, Theorem 4.1].

Let Q = ¢¢ be a Bernstein component R(GL(n)) with single exponent. Let T
be the diagonal subgroup @fp = GL(e, K), and letQq be the Bernstein component
in Q(GL(e, K)) which contains the cuspidal paif’, 1). The component$?, Qqy each
have the single exponerd, and we have a homeomorphism of compact Hausdorff
spaces

I GL(n, F)o=Irr' GL(e, K)q,- (37)

This homeomorphism is determined by the map

k k
® Q/alFodetp Q7 — ® (C;)valKodetK ® St(;).
i=1 i=1



58 A.-M. Aubert, R. Plymen/Journal of Number Theory 112 (2005) 26-66

This formula precisely allows for the fact that has torsion number and that Sg;)
has torsion number 1. Note that whéris replaced byw(, wherew is anrth root of
unity, each term remains unaltered.

The equatiorr = f(K|F) and the standard formula

valg (y) = f(K|F) " valr (N F ()
lead to the more invariant formula:
k k
Q) (1 o detr) @ mi > Q) (1; 0 Nk o dety) ® St(ly),
i=1 i=1
wherey; is an unramified character df *.
Let (JC, 19) be defined as in the previous subsection. It is a typ& iattached to

Q. Recall thatl denotes the standard Iwahori subgroupGy.

Theorem 6.12. Let dv, dvo, respectivelydenote Plancherel measure tm' GL(n, F)q,
It GL(e, K)q,. We have

%(ZG)) - dv(w) = pp(I) - dvo(wo),
where
W=y1T1Q - ® ypTk
and

o = (x10 Nk p)St(1) ® - - ® () © Nk |r)Stp).

Proof. We first have to elucidate the canonical measures ddg. First, let M =
GL(n), and letw have torsion number. Then the map InX (M) — O is ther-fold
covering map:T — T,z — Zz". The map ImX(M) — Im X(Ay) sends the map
T > 7ValdelT) to the mapx > zValdelxln)) — (znyvalidelv)) gand so induces the-fold
covering mapl — T. The canonical measurewdon the orbitO is the Haar measure
of total massn/r. If M = GL(l1) x --- x GL(/x) andw; has torsion number; then
the canonical measureadon the orbit©® of w1 ® --- ® wy is the Haar measure of
total massly - - -l /r1-- - rg. For the canonical measuresoddwg we therefore have

do = (mly---ml/r®) - dv =11 I - (m*/r%) - dr,

dwo=11---1j - dr,
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where d is the Haar measure ofi* of total mass 1. So, we have
(38)

do = (m*/r*) - dwy.
By Theoremb5.4,

N FaY 11—z g8
dv(@) = ¢" P/ y(GIM) - d(w) - [ ‘ PR
—2jz; 4

and
2

1—2zz7q%
1—zjz; g~ &tDr

dvo(wo) = 7(GolMo) - d(wo) - [ |

Hence
WGIM) | d@)  do @)
P(GolMo)  d(wo)  dwg

V@) irevxo
dvo(wo)
We keep the notation of Sectidhb. It follows from (26), (25) that

() = p(J By s (g GGy (40)

since Jyy = JOLm 5 ... % JOLUM |n the same way, we have

1io(I N Mo) = pg(I N GL(Im)) x -+ x po(I N GL(lem)), (41)

On the other hand, formulfll, (7.7.11)] gives

_ dim(ACLEm)y
GLUM)Y . J(m) — ) . , 4
w(J ) - d(m) = (I N GL(I;, K)) EIF) d(Stdy)).

Then @0), (41), (33), and (18) imply

) dim(/lM)

w(In) - d(w) = po(I N Mo) C(EIF)F (42)

d(wo).

Applying (31) to bothy(G|M) and y(Go|Mp), we obtain

HGIM) I ONIRUEON) o) i) 43)
7(GolMo)  po(I N No)uo(I NNo)  1(JF)  po(I N Mo)
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It then follows from 9), (42) and (43) that

dv(m) _ I o) u(Je N NI NN) s dim(iy) do
dvo(wo) oI N NoYpg(I N No)  u(JC)  e(E|F)* dwg’

Noting that dim{1%) = dim(/), and using Eq.44) and Theorem 6.11, we have

dv(w) _ D
dvo(wo) — u(J%)

k
Ly o doope(h) LG
dim(1”) - 7dwo_,u(JG) dim(1"),
using 38). O

7. The central simple algebras case

Let D be a central division algebra of indekover F and ring of integersp, and
let A = A(n’) denote the algebra of’ x n’ matrices with coefficients iD. Then A
is a central simple algebra with centfe of reduced degree = dn’ and the group
of units of A is the groupG’ = GL(#/, D). In Theorem 7.2 we will prove a transfer
of Plancherel measure formula fa@’: this will be deduced from properties of the
Jacquet-Langlands correspondence. In order to do this, we will adapt the proof of
[1, (2.5), p. 88] to the case wheR is of positive characteristic by using results of
Badulescu.

We use thestandardnormalization of Haar measures, in particulgy is normalized
so that the volume oK’ = GL(#/, op) is 1.

7.1. A transfer-of-measure formula

The aim of this subsection is to prove the transfer-of-measure formula stated in
Theorem 7.2.

An elementx’ in G’ will be called semisimple(resp. regular semisimple if its
orbit Og/(x") = {yx'y™ : y € G’} is a closed subset af’ (resp. if its characteristic
polynomial admits only simple roots in an algebraic closurd=pflLet G, denote the
set of regular semisimple elements GH.

Let G', denote the centralizer i6" of x". Then the groug’, is unimodular, and the
choice of Haar measures @& and G’, induces an invariant measure @n G'/G",.
The orbital integral off’ € C.(G’) atx’ is defined as

O(f', x") = / FOo7 i y) dy. (44)
G'/G,

Since the orbitO¢/ (x’) is closed inG’, the integral is absolutely convergent. Indeed, it
is a finite sum, since the restriction gf to Os/(x’) is locally constant with compact
support. Note that, i’ € G|, thenG’, is a maximal torus inG’.
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Orbital integrals have a local expansion, due to ShaJi@], which we will now
recall. If O’ is a unipotent orbit inG’, let Ao denote the distribution given by in-
tegration over the orbi0’. There exist functionsl“g/,:as — R (the Shalika germps
indexed by unipotent orbits of;’ with the following property:

O(f,x) =Y TTE) - Ao (), (45)
0/

for x" € Gy sufficiently close to the identity. Observe thag = f7(1).

Harish-Chandra proved that the geﬂﬁf associated to the trivial unipotent orbit is
constant, and Rogawsk24] has determined its value assuming the characteristie of
to be zero:

n—n'

re - &7 (46)
d(Stg)
Equality @6) is still valid in the case wheh is of positive characteristic. Indeed, [Et
be of positive characteristic and IEtbe a field of zero characteristic sufficiently close
to F, that is, such that there exists a ring isomorphism fropy@'or to og/@'oE,
for some sufficiently big integef>1. Let Dg be a central division algebra ové
with the same indexd. Then by Badulescu [4, Lemma 3.8] the liftg; of f’ to
G'; = GL(m, D) (resp. fr of f to G = GL(n, E)) also satisfy fz < (—1)"~" f.
On the other handf. (1) = f'(1), independently ofn: since the way to liftf’ to f;
consists in cutting the grou’ into compact open subsets on whigh is constant,
in associating to these subsets compact open subsefs.jnand assigning tahese
subsets the same constants in order to defihgbut the compact open subset 6f
containing 1 corresponds to the compact open subsét,incontaining 1.
If = is a smooth representation & or G’ with finite length, we will denote by,

its character.

Theorem 7.1 (The Jacquet—-Langlands correspondefi8€l5]). There exists a bijection
JL: E2(G) — E2(G)

such that for eacht’ € E»(G'):

O (x) = (=)™ Oy (1), (47)
for any (x, x") € G x G’ such thatx < x’.
Recall thatA = A(n’) denotes the algebra af x n’ matrices with coefficients iD.

Let Nrds4r: A — F denote the reduced norm éf over F as defined in7, §12.3, p.
142]. We shall view the reduced norm Ng@ as a homomorphism fron&’ to F*.
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If 7 is a quasi-character af * then we will write
nn' = (1o Nrdap) @ 7'.

If # is an unramified quasi-character then we will referytd as anunramified twist
of 7',

Each representation’ of G’ has atorsion numberthe order of the cyclic group of
all those unramified charactersof F* for which

nw' =n'

The Jacquet—Langlands correspondence has the property that
n(IL(n")) = JL(nn'), (48)

for any square integrable representatidnof G’ and any (unitary) character of F*
(see[15, (4), p. 35]). It follows that the torsion number of is equal to that of Jirr').

For each Levi subgroupf = GL(n1, F) x --- x GL(ng, F) of G such thatd does
not dividen; for somei € {1, ..., k}, we have

0%(f) =0, for any w € Ex(M)

(see the beginning d#, 83] and the proof of [4, Lemma 3.3]).

We consider now a Levi subgroum of the form M = GL(dn}, F) x --- x
GL(dn}, F), and defineM’ = GL(n}, D) x --- x GL(n}, D) (a Levi subgroup ofG’):
M is the transfer of M’. The Jacquet-Langlands correspondence induces a bijection
JL: Ex(M’) — E2(M), by setting

L] ® - Q@ wp) = IL(w) ® - @ IL(wy).

For anyw € E»(M), there existsw’ € E»(M’) such thatw = JL(o').

Let Q'(G), Q'(G) denote the Harish-Chandra parameter spacé’ot;. Each point
in QYG’) is a G’-conjugacy class of discrete-series paitg’, ') with o' € Eo(M').
The topology onQ'(G’) is determined by the unramified unitary twists: theh'G")
is a locally compact Hausdorff space. The map

M', &) = (M, IL()),
where M is the transfer ofM’, secures arnjective map

JL:OYG) — QUG).
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We will write ¥ = JL(Q'(G’)). Since the JL-map respects unramified unitary twists,
we obtain a homeomorphism 61(G’) onto its image:

JL: QYGH~Y c QYG).
Theorem 7.2 (Transfer of Plancherel measyreLet G' = GL(n', D), G = GL(n, F)
with n = dr’. Let v/, v denote the Plancherel measure Gf, G, each with the standard
normalization of Haar measure o6’, G. Then we have

V(o) = MD/F) - dv(JL(w")),

where

AD/F)=]]@"-D7!
the product taken over all m such thakm <n — 1, m # 0modd.

Proof. If x € G andx’ € G’, we will write x < x" if x, x’ are regular semisimple
and have the same characteristic polynomialx I G, we will say thatx can be
transferredif there existsx’ € G’ such thatx < x’.

Let /' € C.(G'). Then, by[4, Theorem 3.2.], there exists € C.(G) such that

D(f, x) = (—1)" " - d(f’,x") for eachx’ € G’ such thatx < x/,
0 if x cannot be transferred

for any x € Gys.
It then follows from the germ expansiod§) that

f/@ -9 == . f@ - 1Y,
that is, using 46),

@
d(Stg) ~ d(Sto)’

(49)

We recall thatHg(f) = 0 on the complement of in Q'(G). Next, we use Eq.409),
and apply twice the Harish-Chandra Plancherel theorem, firsGforthen for G. We
obtain

/ 05, (£ dv' (o) = £/(D)

= d(Stg) - d(Ste) ™+ f(1)
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= d(Stc/)-d(Stc)’l~/08(f) dv(w)
= d(StG’)‘d(StG)_l'/Qg(f) dvly (@) (50)

for all f’ € C.(G).

We recall that the parameter spa@'é‘(G/) is the domain of the Plancherel
measurey’.

By the refinement of the trace Paley—Wiener theorem due to Badule$cu [
Lemma 3.4] we have

{0 — 05 (fV): f € Cu(G), o € QUG")} = LQYG)),

where L(QY(G")) is the space of compactly supported functions®nG’) which, upon
restriction to each connected component (a quotient of a compactdriey a product
of symmetric groups), are Laurent polynomials in the co-ordinéteszo, . . ., zk)-

Now L(Q'(G")) is a dense subspace 66(Q(G")), the continuous complex-valued
functions on Q'(G’) which vanish at infinity. On the other hand, it follows from
[4, Proposition 3.6] that

0% (1) = 05,y (f) Tor any o' € Eo(M)). (51)

Eq. 6G0) therefore provides us with two Radon measures (continuous linear func-
tionals) which agree on dense subspacef Co(QY(G")). Therefore the measures are
equal:

dv' (@) = d(Stg) - d(Stg) L - dvly (o). (52)

At this point, we have to elucidate a normalization issue. Két= GL(n’, op).
The groupAg by definition is theF-split component of the centre @’ and can be
identified with F*. As in Section 6.2, we hav& *K’/F* = K'/K'N F* = K'/oj.
But the Haar measure oA has, as in[34, p. 240], the standard normalization
megK'NAg) =1, i.e., mesoy) = 1. Since me&k’) = 1, we have megF*K'/F*) =
1. It follows (see for instance [31, 3.7]) that the formal degree of the Steinberg repre-
sentation S is given by

n'—-1
1 .
dStg) =~ [T@¥ - D.
j=1

We then have

dv' (@) = A(D/F) - dv(w), (53)
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where
MD/F) =@ = D@ =D @ =g - P -D @ =D
so that
AD/F)=]]@"-D7* (54)
the product taken over ath such that Km<n —1, m #0modd. O

This result may be expressed as follows:

Theorem 7.3. Let (Q'G’, B',v') be the measure space determined by the Plancherel
measure/’, let (Y, B, A(D/F)-v|y) be the measure space determined by the restriction of
JMD/JF)-vtoY =JLQYG") c QYG). Then these two measure spaces are isomorphic

Q'G', B, V)=, B, A(D/F) - v|y).
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