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Abstract

Let F be a nonarchimedean local field, letD be a division algebra overF, let GL(n) =
GL(n, F ). Let � denote Plancherel measure for GL(n). Let � be a component in the Bernstein
variety �(GL(n)). Then � yields its fundamental invariants: the cardinalityq of the residue
field of F, the sizesm1, . . . , mt , exponentse1, . . . , et , torsion numbersr1, . . . , rt , formal
degreesd1, . . . , dt and conductorsf11, . . . , ftt . We provide explicit formulas for the Bernstein
component�� of Plancherel measure in terms of the fundamental invariants. We prove a transfer-
of-measure formula for GL(n) and establish some new formal degree formulas. We derive, via
the Jacquet–Langlands correspondence, the explicit Plancherel formula for GL(m,D).
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

In this article we provide an explicit Plancherel formula for thep-adic group GL(n).
Moreover, we determine explicitly the Bernstein decomposition of Plancherel measure,
including all numerical constants.

∗ Corresponding author.
E-mail addresses:aubert@math.jussieu.fr(A.-M. Aubert), plymen@manchester.ac.uk(R. Plymen).

0022-314X/$ - see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jnt.2005.01.005

http://www.elsevier.com/locate/jnt
mailto:aubert@math.jussieu.fr
mailto:plymen@manchester.ac.uk


A.-M. Aubert, R. Plymen / Journal of Number Theory 112 (2005) 26–66 27

Let F be a nonarchimedean local field with ring of integersoF , let G = GL(n) =
GL(n, F ). We will use the standard normalization of Haar measure on GL(n) for which
the volume of GL(n, oF ) is 1. Plancherel measure� is then uniquely determined by
the equation

f (g) =
∫

trace�(�(g)f ∨)d�(�)

for all g ∈ G, f ∈ C(G), wheref ∨(g) = f (g−1).
The Harish-Chandra Plancherel Theorem expresses the Plancherel measure in the

following form:

d�(�) = c(G|M)−2 �(G|M)−1 �G|M(�) d(�)d�,

whereM is a Levi subgroup ofG, � ∈ E2(M) the discrete series ofM, c(G|M) and
�(G|M) are certain constants,�G|M is a certain rational function,d(�) is the formal
degree of�, and d� is the Harish-Chandra canonical measure.

In this article we determine explicitly

c(G|M)−2�(G|M)−1�G|M(�)d(�)d�

for GL(n).
The support of Plancherel measure� admits a Bernstein decomposition[23] and

therefore� admits a canonical decomposition

� =
⊔

��,

where � is a component in the Bernstein variety�(G). We determine explicitly the
Bernstein component�� for GL(n).

We can think of� as a vector of irreducible supercuspidal representations of smaller
general linear groups. If the vector is

(�1, . . . ,�1, . . . ,�t , . . . ,�t )

with �i repeatedei times, 1� i� t , and �1, . . . ,�t pairwise distinct (after unramified
twist) then we say that� hasexponentse1, . . . , et .

Each representation�i of GL(mi) has a torsion number: the order of the cyclic
group of all those unramified characters� for which �i ⊗ ���i . The torsion number
of �i will be denotedri .

We may choose each representation�i of GL(mi) to be unitary: in that case�i has
a formal degreedi = d(�i ). We have 0< di < ∞.

We will denote byfij = f (�∨
i × �j ) the conductor of the pair�∨

i × �j . An explicit
conductor formula is obtained in the article by Bushnell et al.[9].
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In this way, the Bernstein component� yields up the following fundamental
invariants:

• the cardinalityq of the residue field ofF;
• the sizesm1,m2, . . . , mt of the smaller general linear groups;
• the exponentse1, e2, . . . , et ;
• the torsion numbersr1, r2, . . . , rt ;
• the formal degreesd1, d2, . . . , dt ;
• the conductors for pairsf11, f12, . . . , ftt .

Our Plancherel formulas are built from precisely these numerical invariants.
If � has the single exponente, then the fundamental invariants yielded up by� are

q,m, e, r, d, f . The component� determines a representation in the discrete series of
GL(n), namely the generalized Steinberg representation St(�, e). The formal degree of
� = St(�, e) is given by the following new formula, which is intricate, but depends
only on the fundamental invariants of�, in line with our general philosophy:

d(�)
d(�)e

= me−1

re−1e
· q(e2−e)(f (�∨×�)+r−2m2)/2 · (q

r − 1)e

qer − 1
· |GL(em, q)|

|GL(m, q)|e .

In Section2, we give a précis of the background material which we need, following
the recent article of Waldspurger [34].

The Langlands–Shahidi formula gives the rational function�G|M as a ratio of certain
L-factors and	-factors [26]. In Sections 3 and 4, we compute explicitly the expression

c(G|M)−2�(G|M)−1�G|M(�)d�

when M is a maximal parabolic. The resulting formula is stated in Theorem4.4: in
this formula we correct certain misprints in [27, pp. 292–293].

In Section 5, we compute the Plancherel density�G|M in the general case by using
the Harish-Chandra product formula and we give the explicit Bernstein decomposition
of Plancherel measure.

As a special case, we derive the explicit Plancherel formula for the (extended) affine
Hecke algebraH(n, q).

We have, in effect, extended the classical formula of Macdonald [19,20,
Theorem 5.1.2] from the spherical component of GL(n) to the whole of the tempered
dual.

The Plancherel formulas for GL(n, F ) and GL(m,D) are dominated byrepeating
patterns, which we now attempt to explain. The repeating patterns are expressed by
transfer-of-measure theorems, of which the first is as follows. Withj = 1,2, let Fj
be a nonarchimedean local field and let�j be a component in the Bernstein variety
of GL(nj , Fj ). Let �(j) denote the Plancherel measure of GL(nj , Fj ). If �1,�2 share
the same fundamental invariants, then

�(1)�1
= �(2)�2

.
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The next transfer-of-measure theorem is more surprising. Let� be a component in
the Bernstein variety of GL(n, F ), and let � be Plancherel measure. Let� have the
fundamental invariants(q,m, e, r, d, f ). Let K/F be an extension field withqK = qr .
Let G0 := GL(e,K), let �0 be a component in the Bernstein variety ofG0, and let
�(0) be Plancherel measure. If�0 has fundamental invariants(qr ,1, e,1,1,1) then ��

and �(0)�0
are proportional, i.e.,

�� = 
 · �(0)�0
,

where
 = 
(q,m, e, r, d, f ). This phenomenon was first noted by Bushnell et al. [10,
Theorem 4.1] working in the context of types and Hilbert algebras. We reconcile our
result for GL(n) with (a special case of) their result by proving that


(q,m, e, r, d, f ) = vol(J )−1 · vol(I0) · dim(�),

where (J, �) is an �-type, I0 is an Iwahori subgroup ofG0: for this result, see
Theorem6.12. Theorem 5.7, which in essence is the Harish-Chandra product formula,
then allows one to compute the Plancherel measure�� for any component�.

Using the explicit value for the formal degree of any representation in the discrete
series ofG previously obtained by Silberger and Zink, we show that the comparison
formula between formal degrees, proved by Corwin, Moy and Sally in the tame case
[14], is valid in general.

In the last section of the paper we consider the case of a group GL(n′,D), whereD
is a central division algebra of indexd overF. We extend the transfer-of-measure result
of Arthur and Clozel [1, pp. 88–90] to the case whenF is of positive characteristic,
by using results of Badulescu.

Let G′ = GL(n′,D), G = GL(n, F ) with n = dn′. Let �′, � denote the Plancherel
measure forG′,G, each with the standard normalization of Haar measure onG′,G. Let
JL : E2(G

′) → E2(G) denote the Jacquet–Langlands correspondence. Then we have

d�′(�′) = �(D/F) · d�(JL(�′)),

where

�(D/F) =
∏
(qm − 1)−1

the product taken over allm such that 1�m�n− 1,m �= 0 modd.
For example, letG′ = GL(3,D),G = GL(6, F ) with D of index 2. Then we have

d�′(�′) = (q − 1)−1(q3 − 1)−1(q5 − 1)−1 · d�(JL(�′)).

Our proof of this is in local harmonic analysis, cf.[1, pp. 88–90].
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Historical note. The Harish-Chandra Plancherel Theorem, and the Product Theorem
for Plancherel Measure, were published posthumously in his collected papers in 1984,
see [16]. The theorems were stated without proof (although Harish-Chandra had ap-
parently written out the proofs). At this point, we quote from Silberger’s article [30],
published in 1996:

In [16] Harish-Chandra has summarized the theory underlying the Plancherel formula
for G and sketched a proof of the Plancherel theorem. To complete this sketch it
seems to this writer that details need to be supplied justifying only one assertion of
[16], namely Theorem 11. Every other assertion in this paper can be readily proved
either by using prior published work of Harish-Chandra or the present author’s notes
on Harish-Chandra’s lectures.

For Silberger’s Notes, published in 1979, see [29]. Complete and detailed proofs were
finally published by Waldspurger in 2003, see [34, V.2.1, VIII.1.1]. None of these
sources contains any explicit computations for GL(n).

Some of the results in this article have been announced in [2].

2. The Plancherel formula after Harish-Chandra

We shall follow very closely the notation and terminology in [34].
Let K = GL(n, oF ). Let H be a closed subgroup ofG = GL(n, F ). We use the

standardnormalization of Haar measures, following [34, I.1, p. 240]. Then Haar mea-
sure�H on H is chosen so that�H (H ∩ K) = 1. If Z = AG is the centre ofG then
we have�Z(Z ∩ K) = 1. If H = G then Haar measure� = �G is normalized so that
the volume ofK is 1.

Denote by� the set of pairs(O, P = MU) whereP is a semi-standard parabolic
subgroup ofG andO ⊂ E2(M) is an orbit under the action of ImX(M). (HereE2(M)

is the set of equivalence classes of the discrete series of the Levi subgroupM, and
ImX(M) is the group of the unitary unramified characters ofM.)

Two elements(O, P = MU) and (O′, P ′ = M ′U ′) are associatedif there exists
s ∈ WG such thats ·M = M ′, sO = O′. We fix a set�/assoc of representatives in�
for the classes of association. For(O, P = MU) ∈ �, we setW(G|M) = {s ∈ WG :
s ·M = M}/WM , and

Stab(O,M) = {s ∈ W(G|M) : sO = O}.

Let C(G) denote the Harish-Chandra Schwartz space ofG and let IGP � denote the
normalized induced representation from�. Let f ∈ C(G), � ∈ E2(M). We will write

� = IGP �, �(f ) =
∫
f (g)�(g)dg, �G�(f ) = trace�(f ).
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Theorem 2.1 (The Plancherel formula[34, VIII.1.1]). For each f ∈ C(G) and each
g ∈ G we have

f (g) =
∑

c(G|M)−2�(G|M)−1|Stab(O,M)|−1
∫
O

�G|M(�)d(�)�G�(�(g)f ∨)d�

where the sum is over all the pairs(O, P = MU) ∈ �/assoc.

Note that

�G|M(�) · c(G|M)−2 · �(G|M)−1 = �(G|M) · j (�)−1, (1)

where j denotes the composition of intertwining operators defined in[34, IV.3 (2)].
The map

(O, P = MU) → Irr t(G), � �→ IGP �

determines abijection

⊔
(O, P = MU)/Stab(O,M) −→ Irr t(G).

The tempered dual Irrt(G) acquires, by transport of structure, the structure ofdisjoint
union of countably many compact orbifolds.

According to [34, V.2.1], the function�G|M is a rational function onO. We have
�G|M(�)�0 and�G|M(s�) = �(�) for eachs ∈ WG,� ∈ O. This invariance property
implies that � descendsto a function on the orbifoldO/Stab(O,M). We can view
� either as aninvariant function on the orbitO or as a function on the orbifold
O/Stab(O,M).

We now define thecanonical measured�. The map ImX(M) → O sends� �→
� ⊗ �; the map ImX(M) → ImX(AM) is determined by restriction. Let(Yi,Bi ,�i )
be finite measure spaces withi = 1,2 and letf : Y1 → Y2 be a measurable map.
Then �1 is the pull-back of �2 if �1(f

−1E) = �2(E) for all E ∈ B2. This surely is
the meaning ofpréserve localement les mesuresin [34, pp. 239, 302].

The compact group ImX(AM) is assigned the Haar measure of total mass 1. Choose
Haar measure on the compact orbitO. Now ImX(M) admits two pull-back measures:

ImX(AM) ← ImX(M) → O.

These must coincide: this fixes the Haar measure d� on O, see[34, pp. 239, 302].
Let E be a Borel set inO which is also a fundamental domain for the action of

Stab(O,M) on O. SinceF(�) : = �G|M(�)d(�) �G�(�(g)f ∨) is Stab(O,M)-invariant,
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we have

|Stab(O,M)|−1 ·
∫
O
F(�)d� =

∫
E

F(�)d�.

The Plancherel density, with respect to the canonical measure d�, is therefore

c(G|M)2 · �(G|M)−1 · �G|M(�) d(�),

where d(�) is the formal degree of�. It is precisely this expression which we will
compute explicitly for GL(n). To this end, we will use the following result.

Theorem 2.2 (The Product formula[34, V.2.1]). With M = GL(n1)× · · · × GL(nk) ⊂
GL(n) and � = �1 ⊗ · · · ⊗ �k we have

�G|M(�) =
∏

1� j<i�k
�GL(ni+nj )|GL(ni )×GL(nj )(�i ⊗ �j ).

The Plancherel measure� is determined by the equation

f (g) =
∫

trace�(�(g)f ∨)d�(�)

for all f ∈ C(G).

Theorem 2.3 (The Bernstein decomposition[23] ). The Plancherel measure� admits a
canonical Bernstein decomposition

� =
⊔

��,

where� is a component in the Bernstein variety�(G). The domain of each�� is a
finite union of orbifolds of the formO/Stab(O,M) and is precisely a single extended
quotient.

We will use Theorem2.3 to compute the Plancherel measure of the (extended) affine
Hecke algebraH(n, q) (see Remark 5.6).

3. Calculation of the � factors

Theorem 3.1.We have

�(G|M) = q
−2

∑
1� i<j � k ninj

|GL(n, q)|
|GL(n1, q)| × · · · × |GL(nk, q)| .
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Proof. By applying the formula given in[34, p. 241, l.7] to the groupH = In +

M(n, oF ), we obtain

�(G|M) = q−2R �(M ∩H)
�(H)

,

with R = �(G)+ − �(M)+, where�(G)+ (resp.�(M)+) denotes the set of positive
roots inG (resp.M). We have

R =
∑

1� i<j�k
ninj .

On the other hand, since the Haar measure onG is normalized so that the volume of
K is 1, it follows from the exact sequence

1 → H → K → GL(n, q),

that

�(H) = |GL(n, q)|−1 and �(H ∩M) = |GL(n1, q)|−1 × · · · × |GL(nk, q)|−1. �

Remark 3.2. Observe that 2
∑

1� i<j�k ninj equals the length of the elementw =
wMwGL(n), wherewM (resp.wGL(n)) denotes the longest element in the Weyl group
of M (resp. GL(n)). Let PSn(X) denote the Poincaré polynomial of the Coxeter group
Sn. Then, using the fact that (see for instance[21, (2.6)])

PSn(q
−1) = |GL(n, q)|

qn
2−n(q − 1)n

, (2)

we obtain from Theorem3.1

�(G|M) = PSn(q
−1)

PSn1
(q−1)× · · · × PSnk (q−1)

. (3)

This gives the following expression for thec-function defined in[34, I.1]:

c(G|M) =

∏
1� i<j�k

PSni+nj (q
−1)

PSn(q
−1) ·

k∏
i=1
(PSni (q

−1))k−2

. (4)
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4. The Langlands–Shahidi formula

Let 
 denote a fixed uniformizer. We will choose a continuous additive character�
such that the conductor of� is oF . Note that Shahidi uses precisely this normalization
in [25]. We shall need theL-factor L(s,�1 × �2) and the	-factor 	(s,�1 × �2,�)
for pairs, wheres denotes a complex variable (see [18,26]). We define the conductor
f (�1 × �2) (see [9]) and the�-factor �(s,�1 × �2,�) (see [18, p. 374]) for pairs as

	(0,�1 × �2,�) = qf (�1×�2) · 	(1,�1 × �2,�), (5)

�(s,�1 × �2,�) = 	(s,�1 × �2,�) · L(1 − s,�∨
1 × �∨

2 )/L(s,�1 × �2). (6)

We assume in this section thatP is the upper block triangular maximal parabolic
subgroup ofG with Levi subgroupM = GL(n1) × GL(n2). We have the Langlands–
Shahidi formula for the Harish-Chandra�-function, see[25, §6] or [27, §7]:

�G|M(�1 ⊗ �2) = �(G|M)2 · �(0,�∨
1 × �2,�)

�(1,�∨
1 × �2,�)

. (7)

It is useful to note that

�(0,�∨
1 × �2,�)

�(1,�∨
1 × �2,�)

= qf (�
∨
1 ×�2) · L′′, (8)

where

L′′ = L(1,�1 × �∨
2 )L(1,�

∨
1 × �2)

L(0,�1 × �∨
2 )L(0,�

∨
1 × �2)

. (9)

For any smooth representation� of G and any quasi-character�, we denote by��
the twist of � by �:

�� := (� ◦ det)⊗ �.

If �1 (resp.�2) is an irreducible supercuspidal representation of GL(m1) (resp. GL(m2)),
then we haveL(s,�1 × �∨

2 ) = 1 unless�1���2 with � an unramified quasi-character
of F×.

The next formula is from[18, Proposition 8.1] or [27, p. 292].

Lemma 4.1. Let �2 have torsion number r and let�1���2 with � an unramified
quasi-character such that�(
) = �. Then we have

L(s,�1 × �∨
2 ) = (1 − �−rq−rs)−1.
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Let �1, �2 be unramified (unitary) characters ofF×. The group of unramified (unitary)
characters ImX(M) of M has, via the map

(�1 ◦ det)⊗ (�2 ◦ det) �→ (�1(
), �2(
))

the structure of the compact torusT2.
Let �i be in the discrete series of GL(ni) with i = 1,2, and let�i have torsion

numberr. Consider now theorbit ImX(M) ·(�1⊗�2) in the Harish-Chandra parameter
space�t(G). The action of ImX(M) creates a short exact sequence

1 → G → T2 → T2 → 1

with

T2 → T2, (�1, �2) �→ (�r1, �
r
2).

The finite groupG is precisely the finite group in[5, Lemma 25] and is the product
of cyclic groups:

G = Z/rZ × Z/rZ.

We will write z1 = �r1, z2 = �r2 so thatz1, z2 are precisely the co-ordinates of a point
in the orbit.

Remark 4.2. We recall the following facts about the discrete series of GL(n). Let
�1 and �2 be two discrete series representations of GL(n1) and GL(n2), respectively.
By Zelevinsky [35], there exist two pairs of integers(m1, l1) and (m2, l2) and two
irreducible unitary supercuspidal representations�1 and �2 of GL(m1) and GL(m2),
respectively, such that, fori = 1, 2, we havelimi = ni and the representation�i is
the unique irreducible quotient associated to the Zelevinsky segment

{| det|−gi�i , | det|−gi+1�i , . . . , | det|gi−1�i , | det|gi�i},

where 2gi + 1 = li . We will follow the notation in[1, p. 61] and write

�i = St(�i , li ).

So �i is a generalized Steinberg representation. We observe that

��i = St(��i , li ).

It follows that the torsion numbers of�i and �i are equal.
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Theorem 4.3. Let �1, �2 be irreducible unitary supercuspidal representations of
GL(m1),GL(m2). Let �1, �2 be discrete series representations ofGL(n1), GL(n2)

such that�i = St(�i , li ). Let �1, �2 be unramified characters. If�1 �= ��2 for any
unramified quasi-character� of F× then, as a function on the compact torusT2,
�G|M(�1�1 ⊗ �2�2) is constant: we have

�G|M(�1�1 ⊗ �2�2) = �(G|M)2 · ql1l2f (�∨
1 ×�2)

We also have

f (�∨
1 × �2) = l1l2f (�∨

1 × �2).

Proof. Let �i = �i�i and �i = �i�i for i = 1,2. We will use the multiplicative
property of the�-factors. From[17, p. 254] or [18, Theorem 3.1], we have, with
b = g1 + g2,

�(s,�∨
1 × �2,�) =

l1−1∏
i=0

l2−1∏
j=0

�(s, | |i+j−b�∨
1 × �2,�).

On the other hand,�(s, | |i+j−b�∨
1 × �2,�) equals

	(s, | |i+j−b�∨
1 × �2,�) · L(1 − s, | |−i−j+b�1 × �∨

2 )

L(s, | |i+j−b�∨
1 × �2)

.

Since

	(0, | |i+j−b�∨
1 × �2,�)

	(1, | |i+j−b�∨
1 × �2,�)

= qf (| |i+j−b�∨
1 ×�2) = qf (�

∨
1 ×�2) = qf (�

∨
1 ×�2),

it follows that

�(0,�∨
1 × �2,�)

�(1,�∨
1 × �2,�)

= ql1l2·f (�∨
1 ×�2) · L′, (10)

with

L′ =
l1−1∏
i=0

l2−1∏
j=0

L(1, | |−i−j+b�1 × �∨
2 )

L(0, | |i+j−b�∨
1 × �2)

· L(1, | |i+j−b�∨
1 × �2)

L(0, | |−i−j+b�1 × �∨
2 )
. (11)

Since�1 �= ��2, then �1 �= ��2 for any unramified quasi-character�, andL′ = 1.
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The multiplicative property of theL-factors [18, Theorem 8.2] implies thatL′′ = 1.
Therefore, by (8) we have

�(0,�∨
1 × �2,�)

�(1,�∨
1 × �2,�)

= qf (�
∨
1 ×�2) (12)

Then the results follow from the Langlands–Shahidi formula (7), and from (10)
and (12). �

Theorem 4.4. Let � be an irreducible unitary supercuspidal representation ofGL(m)
with torsion number r. Let �1, �2 be discrete series representations ofGL(n1), GL(n2),
with ni = lim, such that�i = St(�, li). Let �1, �2 be unramified characters. Let
�i (
) = �i , zi = �ri , i = 1,2. Then, as a function on the compact torusT2 with
co-ordinates(z1, z2), we have

�G|M(�1�1 ⊗ �2�2) = �(G|M)2 · ql1l2f (�∨×�) ·
∏ ∣∣∣∣∣ 1 − z2z

−1
1 qgr

1 − z2z
−1
1 q−(g+1)r

∣∣∣∣∣
2

,

where the product is over those g for which|g1 − g2|�g�g1 + g2. Note thatg1 − g2
and g1 + g2 can both be half integers.
We also have

f (�∨
1 × �2) = l1l2f (�∨ × �)+ r(l1l2 − min(l1, l2)).

Proof. Let �i = �i�. We have

L′ =
l1−1∏
i=0

l2−1∏
j=0

L(1 − i − j + b, �1 × �∨
2 )

L(i + j − b, �∨
1 × �2)

· L(i + j + 1 − b, �∨
1 × �2)

L(−i − j + b, �1 × �∨
2 )

,

whereL′ is defined by (11).
Now we delve into the combinatorics. To this end, we make a change of variable,

and a change of notation.
Let �(s) = L(s, �∨

1 × �2), �∗(s) = L(s, �1 × �∨
2 ). Note that, for alls ∈ R, �∗(s) is

the complex conjugate of�(s). Let now k = i + j − b. We have

L′ =
l1−1∏
i=0

l2−1∏
j=0

�∗(1 − k)
�(k)

· �(1 + k)
�∗(−k) .

We now define the function

a : {−b,−b + 1, . . . , b − 1, b} −→ {1,2,3, . . . ,min(l1, l2)}
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as follows:

a(k) = -{(i, j) : k = i + j − b,0� i� l1 − 1,0�j� l2 − 1}.

Note that the functiona is even:a(−k) = a(k). It first increases, then is constant with
its maximum value min(l1, l2), then decreases. Quite specifically, we have

• a(−b) = 1,
• −b�k < −|g1 − g2| ⇒ a(k + 1)− a(k) = 1,
• a(−|g1 − g2|) = min(l1, l2),
• −|g1 − g2|�k < |g1 − g2| ⇒ a(k + 1) = a(k),
• a(|g1 − g2|) = min(l1, l2),
• |g1 − g2|�k < b ⇒ a(k + 1)− a(k) = −1,
• a(b) = 1.

We have

L′ =
b∏

k=−b

�∗(1 − k)a(k)
�(k)a(k)

· �(1 + k)a(k)
�∗(−k)a(k)

=
b∏

k=−b

�∗(1 + k)a(k)
�(k)a(k)

· �(1 + k)a(k)
�∗(k)a(k)

=
b∏

k=−b

∣∣∣∣∣�(1 + k)a(k)
�(k)a(k)

∣∣∣∣∣
2

. (13)

We also have, settinga(1 + b) = 0,

b∏
k=−b

�(1 + k)a(k)
�(k)a(k)

= 1

�(−b) ·
b∏

k=−b

�(1 + k)a(k)
�(1 + k)a(1+k)

= 1

�(−b)
−|g1−g2|−1∏
k=−b

1

�(k + 1)
·

b∏
k=|g1−g2|

�(1 + k)

= �(1 + b)
�(−b) · · · �(1 + |g1 − g2|)

�(−|g1 − g2|)

=
g1+g2∏

g=|g1−g2|

�(1 + g)
�(−g) . (14)
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Note that�2 = ��1 where�(
) = �2�
−1
1 . Therefore�(
)−r = z1z

−1
2 . The first result

now follows immediately from Lemma4.1, since

�(g) = L(g, �∨
1 × �2) = L(g, �2 × �∨

1 ) = (1 − z1z
−1
2 q−gr )−1.

Note also that|1 − z2z
−1
1 q−gr | = |1 − z1z

−1
2 q−gr | since z2z

−1
1 , z1z

−1
2 are complex

conjugates.
In addition we have

|1 − z2z
−1
1 qgr |2 = |qgr − z2z

−1
1 |2 = q2gr |1 − z2z

−1
1 q−gr |2

and so we have

∣∣∣∣ �(g)
�(−g)

∣∣∣∣2

= q2gr .

The multiplicative property of theL-factors[18, Theorem 8.2] leads to the equation

L′′ =
g1+g2∏

g=|g1−g2|

∣∣∣∣�(1 + g)
�(g)

∣∣∣∣2

.

Therefore, we have

L′/L′′ =
g1+g2∏

g=|g1−g2|

∣∣∣∣ �(g)
�(−g)

∣∣∣∣2

=
g1+g2∏

g=|g1−g2|
q2rg

= qr(l1l2−min(l1,l2)) (15)

thanks to the identity

2|g1 − g2| + · · · + 2(g1 + g2) = l1l2 − min(l1, l2)

which follows from the classic identity

2|g1 − g2| + 1 + · · · + 2(g1 + g2)+ 1 = l1l2.
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Since

�(1,�∨
1 × �2,�F )

�(0,�∨
1 × �2,�F )

= qf (�
∨
1 ×�2) · L′′ = ql1l2f (�

∨×�) · L′

we have

qf (�
∨
1 ×�2) = ql1l2f (�

∨×�) · L′/L′′ = ql1l2f (�
∨×�)qr(l1l2−min(l1,l2))

and we conclude that

f (�∨
1 × �2) = l1l2f (�∨ × �)+ r(l1l2 − min(l1, l2)). �

The above formulas are invariant under the map(z1, z2) �→ (�z1, �z2) with � a
complex number of modulus 1, and under the map(z1, z2) �→ (z2, z1). In Section6 of
the paper we shall interpretqr as the cardinalityqK of the residue field of a canonical
extension fieldK/F .

For example, letM = GL(1) × GL(2) ⊂ GL(3), �1 = 1, �2 = St(2) = St(1,2).
We havel1 = 1, l2 = 2, g1 = 0, g2 = 1/2, r = 1. This gives the following (rational)
function on the 2-torus:

�(�1 ⊗ �2 St(2)) = �(GL(3)|M)2 · q ·
∣∣∣∣∣1 − z2z

−1
1 q−1/2

1 − z2z
−1
1 q−3/2

∣∣∣∣∣
2

.

Theorem 4.5. Let G = GL(2m),M = GL(m) × GL(m) and let � be an irreducible
unitary supercuspidal representation ofGL(m) with torsion number r. Then we have

�G|M(�1� ⊗ �2�) = �(G|M)2 · qf (�∨×�) ·
∣∣∣∣∣ 1 − z2z

−1
1

1 − z2z
−1
1 q−r

∣∣∣∣∣
2

Proof. This follows from Theorem4.4 by taking l1 = l2 = 1, so thatg1 = g2 =
g = 0. �

5. The Bernstein decomposition of Plancherel measure

5.1. The one exponent case

Let X be a space on which the finite group� acts. The extended quotient associated
to this action is the quotient spacẽX/� where

X̃ = {(�, x) ∈ � ×X : �x = x}.
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The group action onX̃ is g.(�, x) = (g�g−1, gx). Let X� = {x ∈ X : �x = x} and let
Z(�) be the�-centralizer of�. Then the extended quotient is given by:

X̃/� =
⊔
�

X�/Z(�),

where one� is chosen in each�-conjugacy class. If� = 1 thenX�/Z(�) = X/� so
the extended quotient always contains the ordinary quotient:

X̃/� = X/� � · · · .

We shall need only the special case in whichX is the compact torusTn of dimension
n and � is the symmetric groupSn acting onTn by permuting co-ordinates.

Let � be a partition ofn, and let� have cycle type�. Each cycle provides us with
one circle, and cycles of equal length provide us with a symmetric product of circles.

For example, the extended quotient̃T5/S5 is the following disjoint union of compact
orbifolds (one for each partition of 5):

T � T2 � T2 � (T × Sym2T) � (T × Sym2T) � (T × Sym3T) � Sym5T,

where SymnT is then-fold symmetric product of the circleT. This extended quotient
is a model of the arithmetically unramified tempered dual of GL(5).

Let � ⊂ �(GL(n)) have one exponente. Then we havee|n and soem = n.
There exists an irreducible unitary supercuspidal representation� of GL(m) such

that the conjugacy class of the cuspidal pair(GL(m)× · · ·× GL(m),�⊗ · · ·⊗�) is an
element in�. We have��Syme C× as complex affine algebraic varieties. Consider
now a partitionp = (l1, . . . , lk) of e into k parts, and write 2g1+1 = l1, . . . ,2gk+1 =
lk. Let

�i = St(�, li)

as in Remark3.2. Then�1 ∈ E2(GL(ml1)), . . . ,�k ∈ E2(GL(mlk)). Note thatml1 +
· · · + mlk = n so that GL(ml1) × · · · × GL(mlk) is a standard Levi subgroupM of
GL(n). Now consider

� = �1�1 ⊗ · · · ⊗ �k�k

with �1, . . . , �k unramified (unitary) characters. Then� ∈ E2(M). We have

� = I
GL(n)
MN (� ⊗ 1) ∈ Irr t GL(n)
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and each element� ∈ Irr t GL(n) for which inf.ch.� ∈ � is accounted for in this way.
As explained in detail in[23], we have

X̃/��Irr t GL(n)�, (16)

whereX = Te, � = Se, i.e.,

⊔
�

X�/Z(�)�Irr t GL(n)�.

The partitionp = (l1, . . . , lk) of e determines a permutation� of the set{1,2, . . . , e}:
� is the product of the cycles(1, . . . , l1) · · · (1, . . . , lk). Then the fixed setX� is

{(z1, . . . , z1, . . . , zk, . . . , zk) ∈ Te : z1, . . . , zk ∈ T}

and soX��Tk.
Explicitly, we have

X� −→ Irr t GL(n)�,

(z1, . . . , zk) �→ I
GL(n)
MN (�1�1 ⊗ · · · ⊗ �k�k)

with �1(
) = �1, . . . , �k(
) = �k, z1 = �r1, . . . , zk = �rk exactly as in Remark 3.2. This
map is constant on eachZ(�)-orbit and descends to aninjectivemap

X�/Z(�) → Irr t GL(n)�.

Taking one� in each�-conjugacy class we have the bijective map

⊔
�

X�/Z(�)�Irr GL(n)�.

This bijection, by transport of structure, equips Irrt GL(n)� with the structure of
disjoint union of finitely many compact orbifolds.

We now describe the restriction�� of Plancherel density to the compact orbifold
X�/Z(�).

Theorem 5.1. Let � be an irreducible unitary supercuspidal representation ofGL(m)
with torsion number r. Fori = 1, . . . , k, let

�i = St(�, li),

let �i be an unramified character with�i (
) = �i , and let zi = �ri .
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Then, as a function on the compact torusTk with co-ordinates(z1, . . . , zk) we have

�(�1�1 ⊗ · · · ⊗ �k�k) = const.
∏ ∣∣∣∣∣ 1 − zj z−1

i q
gr

1 − zj z−1
i q

−(g+1)r

∣∣∣∣∣
2

,

where the product is taken over those i, j, g for which the following inequalities hold:
1� i < j�k, |gi − gj |�g�gi + gj , 2gi + 1 = li .

Proof. Apply Theorem 4.4 and the Harish-Chandra product formula, Theorem 2.2.
Note that the function

(z1, . . . , zk) �→ const.
∏ ∣∣∣∣∣ 1 − zj z−1

i q
gr

1 − zj z−1
i q

−(g+1)r

∣∣∣∣∣
2

is aZ(�)-invariant function on the�-fixed setX� = Tk, and descends to a nonnegative
function on the orbifoldX�/Z(�):

X�/Z(�) −→ R+. �

In the above theorem, the co-ordinatesz1, . . . , zk should be thought of asgeneralized
Satake parameters. The k-tuple t = (z1, . . . , zk) is a point in the standard maximal
torusT of the unitary groupU(k,C). In that case, the roots of the unitary group are
given by

�ij (t) = zi/zj .

The �-function may now be written in the more invariant form

�(�1�1 ⊗ · · · ⊗ �k�k) = const.
∏
(1 − �(t)qgr )(1 − �(t)q−(g+1)r )−1,

where the product is taken over all roots� = �ij of U(k,C) and all g for which the
following inequalities hold: 1� i�k,1�j�k, i �= j , |gi−gj |�g�gi+gj , 2gi+1 = li .

Theorem 5.2.We have the following numerical formula forconst.

const. = q1(�)f (�
∨×�) · �(G|M)2 · c(G|M)2,

where1(�) = ∑
1� i<j�k li lj .

Proof. The numerical constant is determined by Theorems4.4 and 2.2. Explicitly, for
i, j ∈ {1, . . . , k}, setting

�i,j := �(GL(ni + nj )|GL(ni)× GL(nj )),
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for the�-factor of the Levi subgroup GL(ni)×GL(nj ) of the maximal standard parabolic
subgroup in GL(ni + nj ),

const. = q
∑

1� i<j � k li lj f (�
∨×�) ·

∏
1� i<j�k

�2
i,j

= q1(�)f (�
∨×�) · �(G|M)2 · c(G|M)2. �

Corollary 5.3. We have

j (�) = q1(�)f (�
∨×�) ·

∏ ∣∣∣∣∣1 − zj z−1
i q

−(g+1)r

1 − zj z−1
i q

gr

∣∣∣∣∣
2

Proof. This follows immediately from Theorems5.1, 5.2 and the fact that

c(G|M)−2 �(G|M)−1 �G|M(�) = �(G|M) j (�)−1. �

Given G = GL(n) = GL(n, F ) choosee|n and letm = n/e. Let � be a Bernstein
component in�(GL(n)) with one exponente. The compact extended quotient attached
to � has finitely many components, each component is a compact orbifold. We now
have enough results to write down explicitly the component��. Let l1+· · ·+ lk = e be
a partition ofe, let � = (1, . . . , l1) · · · (1, . . . , lk) ∈ Se = �, g1 = (l1 − 1)/2, . . . , gk =
(lk − 1)/2. Then we have the fixed setX� = Tk. Let � be an irreducible unitary
supercuspidal representation of the group GL(m) and let the conjugacy class of the
cuspidal pair(GL(m)e,�⊗e) be a point in the Bernstein component�. Let r be the
torsion number of� and choose a fieldK such thatqK = qrF .

We have (16):

Irr t GL(n, F )��X̃/�.

This compact Hausdorff space admits the Harish-Chandracanonical measured�: on
each connected component in the extended quotientX̃/�, d� restricts to the quotient
by the centralizerZ(�) of the normalized Haar measure on the compact torusX�.

Let d� denote Plancherel measure on the tempered dual of GL(n, F ).

Theorem 5.4.On the componentX�/Z(�) of the extended quotient̃X/� we have:

d�(�) = q1(�)f (�
∨×�) · �(G|M) · d(�) ·

∏ ∣∣∣∣∣ 1 − zj z−1
i q

gr

1 − zj z−1
i q

−(g+1)r

∣∣∣∣∣
2

· d�.
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Proof. By 2.1, the Plancherel measure on Irrt GL(n, F )� is given by

d�(�) = c(G|M)−2 �(G|M)−1 �(�) d(�) d�.

Then, the result follows from Theorems5.1 and 5.2. �

Let T be the diagonal subgroup ofG and take for� the Bernstein component in
�(G) which contains the cuspidal pair(T ,1). Then � has the single exponentn and
parametrizes those irreducible smooth representations of GL(n, F ) which admit nonzero
Iwahori fixed vectors.

Now let l1 + · · · + lk be a partition ofn, and let

M = GL(l1, F )× · · · × GL(lk, F ) ⊂ GL(n, F ).

The formal degree of the Steinberg representation St(li) is given by

d(St(li)) = q(li−l2i )/2

li
· |GL(li , q)|
qli − 1

= 1

li
·
li−1∏
j=1

(qj − 1). (17)

We also have the inner product identity in pre-Hilbert space:

〈(�1 ⊗ · · · ⊗ �k)(g)�1 ⊗ · · · �k, �1 ⊗ · · · ⊗ �k〉 =
∏

〈�j (g)�j , �j 〉.

Let each�j ∈ Vj be a unit vector. With respect to the standard normalization of all
Haar measures we then have (cf.[11, (7.7.9)])

1/d�1⊗···⊗�k =
∏ ∫

| < �j (g)�j , �j > |2d�̇j =
∏

1/d�j

and so

d�1⊗···⊗�k =
∏
d�j . (18)

Using (18) and Theorem 3, we obtain the following result.

Corollary 5.5. On the orbifoldX�/Z(�) we have

d�(�) = �(G|M) · d(�) ·
∏ ∣∣∣∣∣ 1 − zj z−1

i q
g

1 − zj z−1
i q

−(g+1)

∣∣∣∣∣
2

· d�
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where

d(�) =
∏
d(St(li)).

So we have

d�(�) = �(G|M) ·
k∏
i=1

1

li

li−1∏
j=1

(qj − 1) ·
∏ ∣∣∣∣∣ 1 − zj z−1

i q
g

1 − zj z−1
i q

−(g+1)

∣∣∣∣∣
2

· d�

=
k∏
i=1

q
l2
i
−li
2 (q − 1)li

li (qli − 1)
· PSn(q−1) ·

∏ ∣∣∣∣∣ 1 − zj z−1
i q

g

1 − zj z−1
i q

−(g+1)

∣∣∣∣∣
2

· d�. (19)

Remark 5.6. Using [10, Theorem 3.3], we obtain that the Plancherel measure of the
(extended) affine Hecke algebraH(n, q) is given onX�/Z(�) by

�(I ) · �(G|M) · d(�) ·
∏ ∣∣∣∣∣ 1 − zj z−1

i q
g

1 − zj z−1
i q

−(g+1)

∣∣∣∣∣
2

· d�.

Concerning the volume�(I ): by Bushnell and Kutzko[11, 5.4.3] we have

�(GL(n, oF )) =
∑
w∈W0

�(IwI) =
∑
w∈W0

�(I ) · q1(w) = PSn(q) · �(I ).

The explicit formula is then (using (2)):

d�H(n,q)(�) =
k∏
i=1

q
l2
i
−li
2 (q − 1)li

li (qli − 1)
· q n−n

2
2 ·

∏ ∣∣∣∣∣ 1 − zj z−1
i q

g

1 − zj z−1
i q

−(g+1)

∣∣∣∣∣
2

· d�,

where the second product is taken over thosei, j, g for which the following inequalities
hold: 1� i < j�k, |gi − gj |�g�gi + gj , 2gi + 1 = li . Note that Plancherel measure
for Iwahori Hecke algebras has been already calculated by Opdam (see[22, 2.8.3]).

We will now consider a special case. Thep-adic gamma function attached to the local
field K (see [32, p. 51]) is the following meromorphic function of a single complex
variable:

�1(�) = 1 − q�
K/qK

1 − q−�
K

.
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We will change the variable vias = q
�
K and write

�K(s) = 1 − s/qK
1 − s−1

,

a rational function ofs. Let s ∈ iR so thats has modulus 1. Then we have

1/|�K(s)|2 =
∣∣∣∣∣ 1 − s

1 − q−1
K s

∣∣∣∣∣
2

.

Let T be the standard maximal torus in GL(n) and let T̂ denote the unitary dual of
T. Then T̂ has the structure of a compact torusTn (the space of Satake parameters)
and the unramified unitary principal series of GL(n) is parametrized by the quotient
Tn/Sn. Let now t = (z1, . . . , zn) ∈ Tn. Applying the above formulas the Plancherel
density�G|T is given by

�G|T = const. ·
∏
i<j

∣∣∣∣∣ 1 − zj z−1
i

1 − zj z−1
i /q

∣∣∣∣∣
2

, (20)

�G|T = const. ·
∏
0<�

∣∣∣∣ 1 − �(t)
1 − �(t)/q

∣∣∣∣2

, (21)

�G|T = const. ·
∏
�

1/�(�(t)), (22)

where� is a root of the Langlands dual group GL(n,C) so that�ij (t) = zi/zj .
For GL(n), one connected component in the tempered dual is the compact orbifold

Tn/Sn, the symmetric product ofn circles. On this component we have the Macdonald
formula [19]:

d�(��) = const. · d�/
∏
�

�(i�(�∨))

the product over all roots� where�∨ is the coroot. This formula is a very special case
of our formula for GL(n).

5.2. General case

We now pass to the general case of a component� ⊂ �(GL(n)) with exponents
e1, . . . , et . We first note that each component� ⊂ �(GL(n)) yields up its fundamental
invariants:

• the cardinalityq of the residue field ofF;
• the sizesmi of the small general linear groups;
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• the exponentsei ;
• the torsion numbersri ;
• the formal degreesdi ;
• the conductorsfij = f (�∨

i × �j );

with 1� i� t .
We now construct the disjoint union

E = �(GL(∞)) =
{⊔

�(GL(n)) : n = 0,1,2,3, . . .
}

with the convention that�(GL(0)) = C.
We will say that two components�1,�2 ∈ E aredisjoint if none of the irreducible

supercuspidals which occur in�1 is equivalent (after unramified twist) to any of the
supercuspidals which occur in�2. We now define a law of composition ondisjoint
componentsin E. With the cuspidal pair(M1,�1) ∈ �1 and the cuspidal pair(M2,�2) ∈
�2 we define�1 × �2 as the unique component determined by

(M1 ×M2,�1 ⊗ �2).

The setE admits a law of compositionnot everywhere definedsuch thatE is unital,
commutative and associative. Rather surprisingly,E admits prime elements: the prime
elements are precisely the components with a single exponent. Each element inE
admits a unique factorization into prime elements:

� = �1 × · · · × �t .

Plancherel measure respects the unique factorization into prime elements, modulo
constants. Quite specifically, we have

Theorem 5.7. Let � have the unique factorization

� = �1 × · · · × �t

so that� has exponentse1, . . . , et and�1, . . . ,�t are pairwise disjoint prime elements
with the individual exponentse1, . . . , et . Let

� =
⊔

��

denote the Bernstein decomposition of Plancherel measure. Then we have

�� = const. ��1 · · · ��t ,
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where ��1, . . . , ��t are given by Theorem5.1 and the constant is given, in terms of
the fundamental invariants, by Theorem5.2.

Proof. In the Harish-Chandra product formula, all the cross-terms are constant, by
Theorem 4.3. �

6. Transfer-of-measure, conductor, and the formal degree formulas

6.1. Torsion number

The theory of types of [11] produces a canonical extensionK of F such thatqK =
qr . Indeed, let� be an irreducible supercuspidal representation of GL(m), and let
(J, �) be a maximal simple type occurring in it. LetA be the hereditaryoF -order in
A = M(m,F) and letE = F [�] be the field extension ofF attached to the stratum
(see [11, Definition 5.5.10 (iii)]). It is proved in [11, Lemma 6.2.5] that

r = m

e(E|F), (23)

wheree(E|F) denotes the ramification index ofE with respect toF. Let B denote the
centralizer ofE in A. We setB := A ∩ B. ThenB is a maximal hereditary order in
B, see[11, Theorem 6.2.1]. LetK be an unramified extension ofE which normalizes
B and is maximal with respect to that property, as in [11, Proposition 5.5.14]. Then
[K : F ] = m, and (23) gives thatr is equal to the residue indexf (K|F) of K with
respect toF. ThusQ = qr is equal to the orderqK of the residue field ofK.

Also the numberQ is the one which occurs for the Hecke algebraH(GL(m), �)
associated to(J, �), see [11, Theorem 5.6.6]. Indeed, since the order of the residue
field of E is equal toqf (E|F), that number is(qf (E|F))f , with

f = m

[E : F ] e(B) ,

wheree(B) denotes the period of a lattice chain attached toB as in [11, (1.1)]. Since
� is supercuspidal,e(B) = 1 (see [11, Corollary 6.2.3]). It follows that

f · f (E|F) = m · f (E|F)
[E : F ] = m

e(E|F) = r. (24)

6.2. Normalization of measures

We will relate our normalization of measures to the measures used in[11, (7.7)].
Bushnell and Kutzko work with a quotient measure�̇, the quotient of�G by �Z.

Let Z denote the centre of GL(n). The second isomorphism theorem in group theory
gives:

JZ/Z�J/J ∩ Z.
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We have

J ∩ Z = o×F .

One way to see this would be:J containsA×∩B, whereB is the centralizer inM(n, F )
of the extensionE. Now certainlyZ is contained inB. On the other hand,A is an
oF -order soA certainly containsoF . Thanks to Shaun Stevens for this remark.

Then we have

JZ/Z�J/o×F .

Now J is a principal o×F -bundle overJ/o×F . Each fibre over the baseJ/o×F has
volume 1. The quotient measure of the base space is then given by

�̇(JZ/Z) = �(J ). (25)

Similar normalizations are done withG0 = GL(e,K). We also need the correspond-
ing quotient measurë� (see[11, (7.7.8)]). We have

�̈(IK×/K×) = �G0
(I ).

Let M = ∏
GL(nj ). We haveZM = ∏

Zj , K = ∏ Kj , with Zj = ZGL(nj ,F ) and
Kj = GL(nj , oF ). With respect to the standard normalization of all Haar measures, we
have�M = ∏

�j (where�j denotes�GL(ni ,F )) and�ZM = ∏
�Zj . This then guarantees

that

�̇M =
∏

�̇j . (26)

6.3. Conductor formulas (the supercuspidal case)

We will first recall results from[9] in a suitable way for our purpose.
Let (J s, �s) be a simple type in GL(2m) with associated maximal simple type(J, �)

(in the terminology of [11, (7.2.18) (iii)]). When(J, �) is of positive level, we set
JP = (J s ∩ P)H 1(�,A) ⊂ J s (in notation [11, (3.1.4)]), whereP denotes the upper-
triangular parabolic subgroup of GL(2m) with Levi componentM = GL(m)× GL(m),
and unipotent radical denoted byN. Following [11, Theorem 7.2.17], we define�P
as the natural representation ofJP on the space of(J ∩ N)-fixed vectors in�s. The
representation�P is irreducible and�P ! c−IndJ

s

JP
(�s).

The pair(J × J, �⊗ �) is a type inM which occurs in�⊗�, and, as shown in [13,
Proposition 1.4],(JP , �P ) is a GL(2m)-cover of (J × J, � ⊗ �).

Theorem 6.1 (Conductor formulas[9] ). LetG0 = GL(2,K), let N0 denote the unipo-
tent radical of the standard Borel subgroup ofG0 and let I denote the standard Iwa-
hori subgroup ofG0. We will denote by�0 the Haar measure onG0 normalized as in
Section6.2.
Let (JGL(2m), �G) be anyGL(2m)-cover of (J × J, � ⊗ �).
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Then

�(JG ∩N) · �(JG ∩N)
�0(I ∩N0) · �0(I ∩N0)

= q−f (�∨×�) = j (� ⊗ �)
j0(1)

,

where j, j0 denote the j-functions for the group G, G0 respectively.

Proof. The first equality is[9, Theorem in §5.4], using the fact that�0(I ∩ N0) ·
�0(I ∩ N0) = q−1

K . The second equality is [9, Theorem in §5.4] (note that in [9] the
normalizations have been taken so that�(JG∩N)·�(JG∩N) = �0(I∩N0)·�0(I∩N0)).
It also follows directly from our Corollary 5.3. �

We will now extend the above theorem to the case ofM = GL(m)×e, with e arbitrary.

Corollary 6.2. Let M = GL(m)×e with n = em, and G0 = GL(e,K), let N0 denote
the unipotent radical of the standard Borel subgroup ofG0 and let I denote the standard
Iwahori subgroup ofG0.
Let (JG, �G) be a cover inG = GL(n) of (J×e, �⊗e) (the existence of which is

guaranteed by Bushnell and Kutzko[13]).
Then

�(JG ∩N) · �(JG ∩N)
�0(I ∩N0) · �0(I ∩N0)

= q− e(e−1)
2 f (�∨×�) = j (�⊗e)

j0(1)
.

Proof. Let M ′ be a Levi subgroup of a parabolic subgroup inG such thatP is a
maximal parabolic subgroup ofM ′. Then,M ′/M ! GL(2m)/GL(m)× GL(m) and

�(JG ∩M ′ ∩N) = �(JGL(2m) ∩ GL(2m) ∩N).

It follows from [12, Proposition 8.5 (ii)] that(JG ∩M ′, �G|JG ∩M ′) is anM ′-cover
of (J×e, �⊗e).

Because of the unipotency ofN, we have

�(JG ∩N) = (�(JGL(2m) ∩ GL(2m) ∩N)) e(e−1)
2 (27)

and similar equalities for the three others terms. Since GL(2m) ∩ N is the unipotent
radical of the parabolic subgroup of GL(2m) with Levi GL(m) × GL(m), the first
equality in the corollary follows from Theorem6.1.

The second equality follows from our Corollary 5.3. It is also a direct consequence
of Theorem 6.1, using the product formula forj and for j0 from [34, IV.3. (5)]. �
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6.4. Formal degree formulas

Using Corollary 6.2, we will deduce from [11, (7.7.11)] a formula relating the
formal degree of any discrete series of GL(n) and the formal degree of a supercuspidal
representation in its inertial support.

GivenG = GL(n) = GL(n, F ) choosee|n and letm = n/e. Let � be an irreducible
unitary supercuspidal representation of GL(m) and let (J, �) be a maximal simple
type occurring in it. Letg = (e − 1)/2. We consider the standard Levi subgroup
M = GL(m)×e of GL(n, F ) and the supercuspidal representation

�M = | det( )|−g� ⊗ · · · ⊗ | det( )|g�

of it. Then (JM, �M) = (J×e, �⊗e) is a type inM occurring in�M .
Let � = St(�, e) and let (J s, �s) be a simple type in GL(n) occurring in � (it has

associated maximal simple type(J, �)).
The following result is rather intricate, but note that only thefundamental invariants

m, e, r, d, f (�∨ × �) occur in it, in line with our general philosophy.

Theorem 6.3.We have

d(�)
d(�)e

= me−1

re−1e
· q e

2−e
2 (f (�∨×�)+r−2m2) · (q

r − 1)e

qer − 1
· |GL(em, q)|

|GL(m, q)|e .

Remark 6.4. The right-hand side in the above equality can be rewritten, by using (17),
as

r1−e · (q
em − 1)(qr − 1)e

(qm − 1)e(qer − 1)
· q e

2−e
2 (f (�∨×�)+r−m2) · deg(St(em))

(deg(St(m)))e
.

Proof. Let T denote the diagonal torus in GL(e,K) and let I denote the Iwahori
subgroup ofG0 = GL(e,K) attached to the Bernstein component in�(GL(e,K))
which contains the cuspidal pair(T ,1). Note thatI ∩ T = GL(1, oK)×e. From [11,
(7.7.11)], applied to the representations� and �, we have

d(�) = �0(I )

�(J s)
· dim(�s)

e(E|F) · d(�)0, (28)

whered(�)0 denotes the formal degree of� ∈ E2(G0), and

d(�) = �(GL(1, oK))

�(J )
· dim(�)
e(E|F) . (29)
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Using (28), (29) and (24), we obtain

d(�)
d(�)e

= me−1

re−1
· �0(I )

�(J s)
· �(J×e)

�(GL(1, oK)×e)
· dim(�s)

(dim(�))e
· d(�)0. (30)

We set JP = (J s ∩ P)H 1(�,A) ⊂ J s, where P is the upper-triangular parabolic
subgroup ofG with Levi componentM, and unipotent radicalN. We define�P as
the natural representation ofJP on the space of(J ∩ N)-fixed vectors in�s. The
representation�P is irreducible and�P ! c−IndJ

s

JP
(�s). Then (JP , �P ) is a G-cover of

(JM, �M). In the case where(J, �) is of zero level, we denote by(J s, �s) = (JP , �P )
an arbitraryG-cover of (JM, �M).

SinceJ s ∩M = J×e = JM = JP ∩M, and

dim(�)e = dim(�M) = dim(�P ) = [J s : JP ]−1 dim(�s),

(30) gives

d(�)
d(�)e

= me−1

re−1
· �0(I )

�(JP )
· �(JM)

�0(I ∩ T ) · d(�)0.

On the other hand, by applying formula[34, p. 241, l.7] to the groupJ, we obtain

�(G|M) = �(JP ∩N) · �(JP ∩M) · �(JP ∩N)
�(JP )

. (31)

Similarly, we have

�(G0|T ) = �0(I ∩N0) · �0(I ∩ T ) · �0(I ∩N0)

�0(I )
.

We then obtain

d(�)
d(�)e

= �(G|M)
�(G0|T ) · �0(I ∩N0) · �0(I ∩N0)

�(JP ∩N) · �(JP ∩N) · d(�)0.

Applying Corollary 6.2, we get

d(�)
d(�)e

= me−1

re−1
· q e(e−1)

2 f (�∨×�) · �(G|M)
�(G0|T ) · d(�)0.
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Since Haar measure on GL(e,K) has been normalized so that the volume of GL(e, oK)

is equal to one, the formal degree of the Steinberg representation of GL(e,K) is given
as in (17) by

d(�)0 = q
(e−e2)/2
K

e
· |GL(e, qK)|

qeK − 1
.

On the other hand, Theorem3.1 gives

�(G|M) = qmn−n2 · |GL(n, q)|
|GL(m, q)|e and �(G0|T ) = qe−e2 · |GL(e, qK)|

(qK − 1)e
.

The result follows. �

We will now recall the explicit formulas ford(�) and d(�) from [31], using also
[36]. We would like to thank Wilhelm Zink for explaining these works to us.

Let � be the Heisenberg representation ofJ 1(�,A) attached to a maximal simple
type (J (�,A), �) occurring in the supercuspidal representation� of GL(m) (see [11,
(5.1.1), (5.5.10)]). LetP denote the Jacobson radical ofA and letUi(A) = 1+Pi . Let

�1
� be the compactly induced representation c−IndU

1(A)

J 1(�,A)(�). Then�1
� is irreducible, see

[11, (5.2.3)]. More generally the restriction of� to J i(�,A) = J 1(�,A)∩(1+Pi ) is a
multiple of an irreducible representation�i which induces irreducibly to a representation
�i� of Ui(A) (see [36, 2.2]). LetE−i be any field such that

U1(A) · IGL(m)(�
i+1
� ) · U1(A) = U1(A) · GL(m/[E−i : F ], E−i ) · U1(A),

where IGL(m)(�
i+1
� ) denotes the intertwining of�i+1

� in GL(m, F ). In particular, we
haveE0 = E.

Theorem 6.5 (Explicit formal degrees formulas[31,36]). The formal degrees of� and
� are, respectively, given by

d(�) = r · q
m − 1

qr − 1
· q(r−m+�)/2 · deg(St(m)),

d(�) = r · q
em − 1

qer − 1
· q(er−em+e2�)/2 · deg(St(em)),

where

� = rm ·
∑
i�0

(1 − [E−i : F ]−1).
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Proof. It follows directly from [31, Theorem 1.1] and [36, Corollary 6.7], using the
fact that r = f (K|F) andm/e(E|F) = r. �

As immediate consequences, we obtain the following results.

Corollary 6.6.

d(�)

d(�)e2 = r1−e2 · (q
em − 1)(qr − 1)e

2

(qer − 1)(qm − 1)e2 · q(e2−e)(m−r)/2 · deg(St(em))

(deg(St(m)))e2 .

Remark 6.7. We observe that the above formula extends to the general case the formula
obtained in[14, Theorem 4.6] in the case where(n, p) = 1 andF has characteristic
zero. The existence of such a formula was expected in [14, Remark 4.7]. Our formula
also extends [33, Theorem VII.3.2].

Corollary 6.8.

d(�)
d(�)e

= r1−e · (q
em − 1)(qr − 1)e

(qer − 1)(qm − 1)e
· q(e2−e)�/2 · deg(St(em))

(deg(St(m)))e
.

The comparison of Corollary6.8 with Remark 6.4 gives the following expression
for the conductor for pairsf (�∨ × �).

Theorem 6.9.We have

f (�∨ × �) = � +m2 − r.

Remark 6.10. In [10, §6.4] (see also [10, 6.13]) is introduced a certain discrimi-
nant functionC(�) and an integerc(�) such thatC(�) = qc(�). It follows from our
Theorem 5.1 and [10, Theorem 6.5 (i)] that

c(�) = [E : F ]2

m2
· �.

6.5. Conductor formulas (the discrete series case)

Let � be an irreducible supercuspidal representation of GL(m), and let (J, �) be a
maximal simple type occurring in it. Lete|n, and let l1 + · · · + lk = e be a partition
of e. It determines the standard Levi subgroup

M = GL(l1m)× · · · × GL(lkm) ⊂ GL(n, F ). (32)

Let g1 = (l1 − 1)/2, . . . , gk = (lk − 1)/2, and let �1, . . . ,�k be discrete series
representations of GL(l1m), . . . ,GL(lkm) such that�i = St(�, li). Let � = �1 ⊗
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· · · ⊗ �k be the corresponding discrete series representation ofM. For each i ∈
{1, . . . , k}, we fix a GL(lim)-cover(JGL(lim), �GL(lim)) of (J×li , �⊗li ) (as in the proof of
Theorem6.3). Then

(JM, �M) = (JGL(l1m) × · · · × JGL(lkm), �GL(l1m) ⊗ · · · ⊗ �GL(lkm)) (33)

is an M-cover of (J×e, �⊗e). Then let (JG, �G) denote aG-cover of (JM, �M) (the
existence of which is guaranteed by Bushnell and Kutzko [13, Main Theorem (second
version)]).

At the same time the partition(l1, . . . , lk) determines the standard Levi subgroup

M0 = GL(l1)× · · · × GL(lk) ⊂ GL(e,K) = G0. (34)

Let P (resp.P0) be the upper-triangular parabolic subgroup ofG (resp.G0) with
Levi componentM (resp.M0), and unipotent radical denoted byN (resp.N0). Let I
denote the standard Iwahori subgroup ofG0.

Theorem 6.11.We have

�(JG ∩N) · �(JG ∩N)
�0(I ∩N0) · �0(I ∩N0)

= q−1(�)f (�∨×�) = j (�⊗e)
j0(1)

.

Proof. The second equality follows from our Corollary5.3.
We will prove the first equality. LetU denote the unipotent radical of the upper-

triangular parabolic subgroup ofG with Levi component GL(m)×e, and, for i =
1, . . . , k, let Ui denote the unipotent radical of the upper-triangular parabolic subgroup
of GL(lim) with Levi component GL(m)×li . We observe that

U = N × (U ∩M) = N ×
k∏
i=1

Ui.

Similarly, let U0 be the unipotent radical of the standard Borel subgroup ofG0, and,
for i = 1, . . . , k, let U0,i be the unipotent radical of the standard Borel subgroup of
GL(li , K). We have

U0 = N0 × (U0 ∩M0) = N0 ×
k∏
i=1

U0,i .

It follows from [12, Proposition 8.5 (i)] that(JG, �G) is also aG-cover of (J×e, �⊗e).
Applying Corollary 6.2 to (JG,U) and to (JGL(lim), Ui) for each i ∈ {1, . . . , k},
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we obtain

�(JG ∩ U) · �(JG ∩ U)
�0(I ∩ U0) · �0(I ∩ U0)

= q− e(e−1)
2 f (�∨×�)

�(JGL(lim) ∩ Ui) · �(JGL(lim) ∩ Ui)
�0(I ∩ U0,i ) · �0(I ∩ U0,i )

= q− li (li−1)
2 f (�∨×�).

SinceJG∩M = JM (by definition of covers), it follows from (33) thatJG∩GL(lim) =
JGL(lim). Then using the fact that

�(JG ∩N) = �(JG ∩ U) ×
k∏
i=1

�(JGL(lim) ∩ Ui)

and the analogous equalities for the others terms, we obtain

�(JG ∩N) · �(JG ∩N)
�0(I ∩N0) · �0(I ∩N0)

= q(−
e(e−1)

2 +∑k
i=1

li (li−1)
2 )f (�∨×�), (35)

�(JG ∩N) · �(JG ∩N)
�0(I ∩N0) · �0(I ∩N0)

= q−1(�)f (�∨×�). � (36)

6.6. Transfer-of-measure

The following result reduces the case of an arbitrary component� to the one (studied
in Corollary 5.5) of a component (of a possibly different groupG0) which contains the
cuspidal pair(T ,1). We give a direct proof which is based on our previous calculations.
It is worth noting that it is also a direct application of [10, Theorem 4.1].

Let � = �e be a Bernstein component in�(GL(n)) with single exponente. Let T
be the diagonal subgroup ofG0 = GL(e,K), and let�0 be the Bernstein component
in �(GL(e,K)) which contains the cuspidal pair(T ,1). The components�, �0 each
have the single exponente, and we have a homeomorphism of compact Hausdorff
spaces

Irr t GL(n, F )��Irr t GL(e,K)�0. (37)

This homeomorphism is determined by the map

k⊗
i=1

�valF ◦detF
i ⊗ �i �→

k⊗
i=1

(�ri )
valK◦detK ⊗ St(li).
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This formula precisely allows for the fact that�i has torsion numberr and that St(li)
has torsion number 1. Note that when� is replaced by��, where� is an rth root of
unity, each term remains unaltered.

The equationr = f (K|F) and the standard formula

valK(y) = f (K|F)−1 valF (NK|F (y))

lead to the more invariant formula:

k⊗
i=1

(�i ◦ detF )⊗ �i �→
k⊗
i=1

(�i ◦NK|F ◦ detK)⊗ St(li),

where�i is an unramified character ofF×.
Let (JG, �G) be defined as in the previous subsection. It is a type inG attached to

�. Recall thatI denotes the standard Iwahori subgroup ofG0.

Theorem 6.12.Let d�, d�0, respectively, denote Plancherel measure onIrr t GL(n, F )�,
Irr t GL(e,K)�0. We have

�(JG)

dim(�G)
· d�(�) = �0(I ) · d�0(�0),

where

� = �1�1 ⊗ · · · ⊗ �k�k

and

�0 = (�1 ◦NK|F )St(l1)⊗ · · · ⊗ (�k ◦NK|F )St(lk).

Proof. We first have to elucidate the canonical measures d�,d�0. First, let M =
GL(n), and let� have torsion numberr. Then the map ImX(M) → O is the r-fold
covering map:T → T, z �→ zr . The map ImX(M) → ImX(AM) sends the map
T �→ zval(det(T )) to the mapx �→ zval(det(xIn)) = (zn)val(det(x)) and so induces then-fold
covering mapT → T. The canonical measure d� on the orbitO is the Haar measure
of total massn/r. If M = GL(l1)× · · · × GL(lk) and �j has torsion numberrj then
the canonical measure d� on the orbitO of �1 ⊗ · · · ⊗ �k is the Haar measure of
total massl1 · · · lk/r1 · · · rk. For the canonical measures d�, d�0 we therefore have

d� = (ml1 · · ·mlk/rk) · d� = l1 · · · lk · (mk/rk) · d�,

d�0 = l1 · · · lk · d�,
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where d� is the Haar measure onTk of total mass 1. So, we have

d� = (mk/rk) · d�0. (38)

By Theorem5.4,

d�(�) = q1(�)f (�
∨×�) · �(G|M) · d(�) ·

∏ ∣∣∣∣∣ 1 − zj z−1
i q

gr

1 − zj z−1
i q

−(g+1)r

∣∣∣∣∣
2

· d�

and

d�0(�0) = �(G0|M0) · d(�0) ·
∏ ∣∣∣∣∣ 1 − zj z−1

i q
gr

1 − zj z−1
i q

−(g+1)r

∣∣∣∣∣
2

· d�0.

Hence

d�(�)
d�0(�0)

= q1(�)f (�
∨×�) · �(G|M)

�(G0|M0)
· d(�)
d(�0)

· d�
d�0

. (39)

We keep the notation of Section6.5. It follows from (26), (25) that

�(JM) = �(JGL(l1m))× · · · × �(JGL(lkm)), (40)

sinceJM = JGL(l1m) × · · · × JGL(lkm). In the same way, we have

�0(I ∩M0) = �0(I ∩ GL(l1m))× · · · × �0(I ∩ GL(lkm)), (41)

On the other hand, formula[11, (7.7.11)] gives

�(JGL(lim)) · d(�i ) = �0(I ∩ GL(li , K)) · dim(�GL(lim))

e(E|F) · d(St(li)).

Then (40), (41), (33), and (18) imply

�(JM) · d(�) = �0(I ∩M0) · dim(�M)
e(E|F)k · d(�0). (42)

Applying (31) to both�(G|M) and �(G0|M0), we obtain

�(G|M)
�(G0|M0)

= �(JG ∩N)�(JG ∩N)
�0(I ∩N0)�0(I ∩N0)

· �0(I )

�(JG)
· �(JM)

�0(I ∩M0)
. (43)



60 A.-M. Aubert, R. Plymen / Journal of Number Theory 112 (2005) 26–66

It then follows from (39), (42) and (43) that

d�(�)
d�0(�0)

= q1(�)f (�
∨×�) · �(JG ∩N)�(JG ∩N)

�0(I ∩N0)�0(I ∩N0)
· �0(I )

�(JG)
· dim(�M)
e(E|F)k

d�
d�0

.

Noting that dim(�G) = dim(�M), and using Eq. (24) and Theorem 6.11, we have

d�(�)
d�0(�0)

= �0(I )

�(JG)
· dim(�G) · r

k

mk
· d�

d�0
= �0(I )

�(JG)
· dim(�G),

using (38). �

7. The central simple algebras case

Let D be a central division algebra of indexd over F and ring of integersoD, and
let A = A(n′) denote the algebra ofn′ × n′ matrices with coefficients inD. ThenA
is a central simple algebra with centreF of reduced degreen = dn′ and the group
of units of A is the groupG′ = GL(n′,D). In Theorem 7.2 we will prove a transfer
of Plancherel measure formula forG′: this will be deduced from properties of the
Jacquet–Langlands correspondence. In order to do this, we will adapt the proof of
[1, (2.5), p. 88] to the case whenF is of positive characteristic by using results of
Badulescu.

We use thestandardnormalization of Haar measures, in particular�G′ is normalized
so that the volume ofK′ = GL(n′, oD) is 1.

7.1. A transfer-of-measure formula

The aim of this subsection is to prove the transfer-of-measure formula stated in
Theorem 7.2.

An element x′ in G′ will be called semisimple(resp. regular semisimple) if its
orbit OG′(x′) = {

yx′y−1 : y ∈ G′} is a closed subset ofG′ (resp. if its characteristic
polynomial admits only simple roots in an algebraic closure ofF). Let G′

rs denote the
set of regular semisimple elements inG′.

Let G′
x′ denote the centralizer inG′ of x′. Then the groupG′

x′ is unimodular, and the
choice of Haar measures onG′ andG′

x′ induces an invariant measure dx on G′/G′
x′ .

The orbital integral off ′ ∈ Cc(G′) at x′ is defined as

�(f ′, x′) =
∫
G′/G′

x′
f ′(y−1x′y)dy. (44)

Since the orbitOG′(x′) is closed inG′, the integral is absolutely convergent. Indeed, it
is a finite sum, since the restriction off ′ to OG′(x′) is locally constant with compact
support. Note that, ifx′ ∈ G′

rs, thenG′
x′ is a maximal torus inG′.
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Orbital integrals have a local expansion, due to Shalika[28], which we will now
recall. If O ′ is a unipotent orbit inG′, let �O ′ denote the distribution given by in-
tegration over the orbitO ′. There exist functions�G

′
O ′ :G′

rs → R (the Shalika germs)
indexed by unipotent orbits ofG′ with the following property:

�(f ′, x′) =
∑
O ′

�G
′

O ′(x′) · �O ′(f ′), (45)

for x′ ∈ G′
rs sufficiently close to the identity. Observe that�1 = f ′(1).

Harish-Chandra proved that the germ�G
′

1 associated to the trivial unipotent orbit is
constant, and Rogawski[24] has determined its value assuming the characteristic ofF
to be zero:

�G
′

1 = (−1)n−n′

d(StG′)
. (46)

Equality (46) is still valid in the case whenF is of positive characteristic. Indeed, letF
be of positive characteristic and letE be a field of zero characteristic sufficiently close
to F, that is, such that there exists a ring isomorphism fromoF /
loF to oE/
loE ,
for some sufficiently big integerl�1. Let DE be a central division algebra overE
with the same indexd. Then by Badulescu [4, Lemma 3.8] the liftsf ′

E of f ′ to
G′
E = GL(m,DE) (resp.fE of f to GE = GL(n,E)) also satisfyfE ↔ (−1)n−n′

f ′
E .

On the other hand,f ′
E(1) = f ′(1), independently ofm: since the way to liftf ′ to f ′

E

consists in cutting the groupG′ into compact open subsets on whichf ′ is constant,
in associating to these subsets compact open subsets inG′

E , and assigning tothese
subsets the same constants in order to definef ′

E ; but the compact open subset ofG′
containing 1 corresponds to the compact open subset inG′

E containing 1.
If � is a smooth representation ofG or G′ with finite length, we will denote by��

its character.

Theorem 7.1 (The Jacquet–Langlands correspondence[3,15]). There exists a bijection

JL:E2(G
′) → E2(G)

such that for each�′ ∈ E2(G
′):

��′(x′) = (−1)n−n′
�JL(�′)(x), (47)

for any (x, x′) ∈ G×G′ such thatx ↔ x′.

Recall thatA = A(n′) denotes the algebra ofn′ ×n′ matrices with coefficients inD.
Let NrdA|F :A → F denote the reduced norm ofA over F as defined in [7, §12.3, p.
142]. We shall view the reduced norm NrdA|F as a homomorphism fromG′ to F×.
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If � is a quasi-character ofF× then we will write

��′ = (� ◦ NrdA|F )⊗ �′.

If � is an unramified quasi-character then we will refer to��′ as anunramified twist
of �′.

Each representation�′ of G′ has atorsion number: the order of the cyclic group of
all those unramified characters� of F× for which

��′��′.

The Jacquet–Langlands correspondence has the property that

�(JL(�′)) = JL(��′), (48)

for any square integrable representation�′ of G′ and any (unitary) character� of F×
(see[15, (4), p. 35]). It follows that the torsion number of�′ is equal to that of JL(�′).

For each Levi subgroupM = GL(n1, F ) × · · · × GL(nk, F ) of G such thatd does
not divide ni for somei ∈ {1, . . . , k}, we have

�G�(f ) = 0, for any � ∈ E2(M)

(see the beginning of[4, §3] and the proof of [4, Lemma 3.3]).
We consider now a Levi subgroupM of the form M = GL(dn′

1, F ) × · · · ×
GL(dn′

k, F ), and defineM ′ = GL(n′
1,D)× · · · × GL(n′

k,D) (a Levi subgroup ofG′):
M is the transfer of M ′. The Jacquet–Langlands correspondence induces a bijection
JL:E2(M

′) → E2(M), by setting

JL(�′
1 ⊗ · · · ⊗ �′

k) = JL(�′
1)⊗ · · · ⊗ JL(�′

k).

For any� ∈ E2(M), there exists�′ ∈ E2(M
′) such that� = JL(�′).

Let �t(G′), �t(G) denote the Harish-Chandra parameter space ofG′,G. Each point
in �t(G′) is aG′-conjugacy class of discrete-series pairs(M ′,�′) with �′ ∈ E2(M

′).
The topology on�t(G′) is determined by the unramified unitary twists: then�t(G′)
is a locally compact Hausdorff space. The map

(M ′,�′) �→ (M, JL(�′)),

whereM is the transfer ofM ′, secures aninjectivemap

JL:�t(G′) → �t(G).
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We will write Y = JL(�t(G′)). Since the JL-map respects unramified unitary twists,
we obtain a homeomorphism of�t(G′) onto its image:

JL : �t(G′)�Y ⊂ �t(G).

Theorem 7.2 (Transfer of Plancherel measure). Let G′ = GL(n′,D),G = GL(n, F )
with n = dn′. Let �′, � denote the Plancherel measure forG′,G, each with the standard
normalization of Haar measure onG′,G. Then we have

d�′(�′) = �(D/F) · d�(JL(�′)),

where

�(D/F) =
∏
(qm − 1)−1

the product taken over all m such that1�m�n− 1,m �= 0 modd.

Proof. If x ∈ G and x′ ∈ G′, we will write x ↔ x′ if x, x′ are regular semisimple
and have the same characteristic polynomial. Ifx ∈ G, we will say thatx can be
transferredif there existsx′ ∈ G′ such thatx ↔ x′.

Let f ′ ∈ Cc(G′). Then, by[4, Theorem 3.2.], there existsf ∈ Cc(G) such that

�(f, x) =
{
(−1)n−n′ · �(f ′, x′) for eachx′ ∈ G′ such thatx ↔ x′,
0 if x cannot be transferred,

for any x ∈ Grs.
It then follows from the germ expansion (45) that

f ′(1) · �G
′

1 = (−1)n−n′ · f (1) · �G1 ,

that is, using (46),

f ′(1)
d(StG′)

= f (1)

d(StG)
. (49)

We recall that�G�(f ) = 0 on the complement ofY in �t(G). Next, we use Eq. (49),
and apply twice the Harish-Chandra Plancherel theorem, first forG′, then forG. We
obtain ∫

�G
′

�′ (f ′)d�′(�′) = f ′(1)

= d(StG′) · d(StG)
−1 · f (1)
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= d(StG′) · d(StG)
−1 ·

∫
�G�(f )d�(�)

= d(StG′) · d(StG)
−1 ·

∫
�G�(f )d�|Y (�) (50)

for all f ′ ∈ Cc(G′).
We recall that the parameter space�t(G′) is the domain of the Plancherel

measure�′.
By the refinement of the trace Paley–Wiener theorem due to Badulescu [4,

Lemma 3.4] we have

{�′ �→ �G
′

�′ (f ′∨) : f ′ ∈ Cc(G′),�′ ∈ �t(G′)} = L(�t(G′)),

whereL(�t(G′)) is the space of compactly supported functions on�t(G′) which, upon
restriction to each connected component (a quotient of a compact torusT′k by a product
of symmetric groups), are Laurent polynomials in the co-ordinates(z1, z2, . . . , zk).

Now L(�t(G′)) is a dense subspace ofC0(�
t(G′)), the continuous complex-valued

functions on �t(G′) which vanish at infinity. On the other hand, it follows from
[4, Proposition 3.6] that

�G
′

�′ (f ′) = �GJL(�′)(f ) for any �′ ∈ E2(M
′). (51)

Eq. (50) therefore provides us with two Radon measures (continuous linear func-
tionals) which agree on adense subspaceof C0(�

t(G′)). Therefore the measures are
equal:

d�′(�′) = d(StG′) · d(StG)
−1 · d�|Y (�). (52)

At this point, we have to elucidate a normalization issue. LetK ′ = GL(n′, oD).
The groupAG′ by definition is theF-split component of the centre ofG′ and can be
identified with F×. As in Section 6.2, we haveF×K ′/F× = K ′/K ′ ∩ F× = K ′/o×F .
But the Haar measure onAG′ has, as in[34, p. 240], the standard normalization
mes(K ′ ∩AG′) = 1, i.e., mes(o×F ) = 1. Since mes(K ′) = 1, we have mes(F×K ′/F×) =
1. It follows (see for instance [31, 3.7]) that the formal degree of the Steinberg repre-
sentation StG′ is given by

d(StG′) = 1

n

n′−1∏
j=1

(qdj − 1).

We then have

d�′(�′) = �(D/F) · d�(�), (53)
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where

�(D/F) = (qd − 1)(q2d − 1) · · · (q(n′−1)d − 1)(q − 1)−1(q2 − 1)−1 · · · (qn−1 − 1)−1,

so that

�(D/F) =
∏
(qm − 1)−1 (54)

the product taken over allm such that 1�m�n− 1, m �= 0 modd. �

This result may be expressed as follows:

Theorem 7.3. Let (�tG′,B′, �′) be the measure space determined by the Plancherel
measure�′, let (Y,B, �(D/F)·�|Y ) be the measure space determined by the restriction of
�(D/F) ·� to Y = JL(�t(G′) ⊂ �t(G). Then these two measure spaces are isomorphic:

(�tG′,B′, �′)�(Y,B, �(D/F) · �|Y ).
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