期刊论文详细信息
JOURNAL OF NUMBER THEORY | 卷:139 |
Moments of products of automorphic L-functions | |
Article | |
Milinovich, Micah B.1  Turnage-Butterbaugh, Caroline L.1  | |
[1] Univ Mississippi, Dept Math, University, MS 38677 USA | |
关键词: Automorphic L-function; Dedekind zeta-function; Mean-values; Moments; | |
DOI : 10.1016/j.jnt.2013.12.012 | |
来源: Elsevier | |
【 摘 要 】
Assuming the generalized Riemann hypothesis, we prove upper bounds for moments of arbitrary products of automorphic L-functions and for Dedekind zeta-functions of Galois number fields on the critical line. As an application, we use these bounds to estimate the variance of the coefficients of these zeta- and L-functions in short intervals. We also prove upper bounds for moments of products of central values of automorphic L-functions twisted by quadratic Dirichlet characters and averaged over fundamental discriminants. (C) 2014 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jnt_2013_12_012.pdf | 420KB | download |