期刊论文详细信息
JOURNAL OF NUMBER THEORY 卷:171
On x(ax+1) + y(by+1) + z(cz+1) and x(ax plus b) plus y(ay plus c) plus z(az plus d)
Article
Sun, Zhi-Wei1 
[1] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
关键词: Representations of integers;    Universal sums;    Quadratic polynomials;   
DOI  :  10.1016/j.jnt.2016.07.024
来源: Elsevier
PDF
【 摘 要 】

In this paper we first investigate for what positive integers a, b, c every nonnegative integer n can be written as x(ax + 1) + y(by + 1) + z(cz + 1) with x, y, z integers. We show that (a, b, c) can be either of the following seven triples (1, 2, 3), (1, 2, 4), (1, 2, 5), (2, 2, 4), (2, 2, 5), (2, 3, 3), (2, 3, 4), and conjecture that any triple (a, b, c) among (2, 2, 6), (2, 3, 5), (2, 3, 7), (2, 3, 8), (2, 3, 9), (2, 3,10) also has the desired property. For integers 0 <= b <= c <= d <= a with a > 2, we prove that any nonnegative integer can be written as x(ax+b)+y(ay+c)+z(az+d) with x, y, z integers, if and only if the quadruple (a, b, c, d) is among (3, 0, 1, 2), (3, 1, 1, 2), (3,1, 2, 2), (3,1, 2, 3), (4,1, 2, 3). (C) 2016 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jnt_2016_07_024.pdf 225KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次