JOURNAL OF NUMBER THEORY | 卷:180 |
The values of cubic forms at prime arguments | |
Article | |
Ge, Wenxu1  Zhao, Feng1  | |
[1] North China Univ Water Resources & Elect Power, Sch Math & Informat Sci, Zhengzhou 450046, Henan, Peoples R China | |
关键词: Diophantine inequalities; Primes; Exceptional set; Cubic forms; | |
DOI : 10.1016/j.jnt.2017.05.014 | |
来源: Elsevier | |
【 摘 要 】
Let lambda(1), lambda(2), lambda(3), lambda(4), lambda(5) be non-zero real numbers, not all negative. Let nu be a well-spaced sequence, delta > 0. If lambda(1)/lambda(2) is irrational and algebraic, then we prove that E(nu, X, delta) << X17/18+2 delta+epsilon , where E(nu, X, delta) denotes the number of nu is an element of nu with nu <= X such that the inequality |lambda(1)p(1)(3) + lambda(2)p(2)(3) + lambda(3)p(3)(3) + lambda(4)p(4)(3) + lambda(5)p(5)(3) - nu| < upsilon(-delta) has no solution in primes p(1), p(2), p(3), p(4), p(5). Further, we assume that except for one, all other the ratios lambda(k)/lambda(l) (1 <= k < l <= 5) are irrational and algebraic, then 17/18 can be replaced by 11/12. These improve the earlier results. (C) 2017 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jnt_2017_05_014.pdf | 716KB | download |