JOURNAL OF NUMBER THEORY | 卷:200 |
Extreme values for Sn(σ, t) near the critical line | |
Article | |
Chirre, Andres1  | |
[1] IMPA Inst Nacl Matemat Pura & Aplicada, Estr Dona Castorina 110, BR-22460320 Rio De Janeiro, RJ, Brazil | |
关键词: Riemann zeta function; Riemann hypothesis; Argument; | |
DOI : 10.1016/j.jnt.2018.12.009 | |
来源: Elsevier | |
【 摘 要 】
Let S(sigma, t) = 1/pi arg zeta(sigma + it) be the argument of the Riemann zeta function at the point sigma + it of the critical strip. For n >= 1 and t > 0 we define S-n (sigma ,t) = integral(t)(0) Sn-1 (sigma, tau) d tau + delta(n,sigma), where delta(n,sigma) is a specific constant depending on sigma and n. Let 0 <= beta < 1 be a fixed real number. Assuming the Riemann hypothesis, we show lower bounds for the maximum of the function S-n (sigma, t) on the interval T-beta <= t <= T and near to the critical line, when n equivalent to 1 mod 4. Similar estimates are obtained for vertical bar S-n (sigma, t)vertical bar when n not equivalent to 1 mod 4. This extends the results of Bondarenko and Seip [7] for a region near the critical line. In particular we obtain some omega results for these functions on the critical line. (C) 2019 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jnt_2018_12_009.pdf | 972KB | download |