JOURNAL OF NUMBER THEORY | 卷:215 |
On a class of Lebesgue-Ljunggren-Nagell type equations | |
Article | |
Dabrowski, Andrzej1  Gunhan, Nursena2  Soydan, Gokhan2  | |
[1] Univ Szczecin, Inst Math, PL-70451 Szczecin, Poland | |
[2] Bursa Uludag Univ, Dept Math, TR-16059 Bursa, Turkey | |
关键词: Diophantine equation; Lehmer number; Fibonacci number; Class number; Modular form; Elliptic curve; | |
DOI : 10.1016/j.jnt.2019.12.020 | |
来源: Elsevier | |
【 摘 要 】
Text. Given odd, coprime integers a, b (a > 0), we consider the Diophantine equation ax(2) + b(2l) = 4y(n), x, y is an element of Z, l is an element of N, n odd prime, gcd(x, y) = 1. We completely solve the above Diophantine equation for a is an element of {7, 11, 19, 43, 67, 163}, and b a power of an odd prime, under the conditions 2(n-1)b(l) not equivalent to +/- 1(mod a) and gcd (n, b) = 1. For other square-free integers a > 3 and b a power of an odd prime, we prove that the above Diophantine equation has no solutions for all integers x, y with (gcd(x, y) = 1), l is an element of N and all odd primes n > 3, satisfying 2(n-1)b(l) not equivalent to +/- 1(mod a), gcd(n, b) = 1, and gcd(n, h(-a)) = 1, where h(-a) denotes the class number of the imaginary quadratic field Q(root-a). Video. For a video summary of this paper, please visit https://youtu.be/Q0peJ2GmqeM. (C) 2020 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jnt_2019_12_020.pdf | 616KB | download |