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1. Introduction

The Diophantine equation x2 + C = yn (x ≥ 1, y ≥ 1, n ≥ 3) has a rich history. 
Lebesgue proved that this equation has no solution when C = 1, and Cohn solved the 
equation for several values of 1 ≤ C ≤ 100. The remaining values of C in the above 
range were covered by Mignotte and de Weger, and finally by Bugeaud, Mignotte and 
Siksek. Barros in his PhD thesis considered the range −100 ≤ C ≤ −1. Also, several 
authors (Abu Muriefah, Arif, Dąbrowski, Le, Luca, Pink, Soydan, Togbé, Ulas,...) became 
interested in the case where only the prime factors of C are specified. Surveys of these 
and many other topics can be found in [1] and [5]. Some people studied the more general 
equation ax2 + C = 2iyn, a > 0 and i ≤ 2.

Given odd, coprime integers a, b (a > 0), we consider the Diophantine equation

ax2 + b2l = 4yn, x, y ∈ Z, l, n ∈ N, n odd prime, gcd(x, y) = 1. (1)

If a ≡ 1 (mod 4), then reducing modulo 4 we trivially obtain that the equation (1) has 
no solution.

It is known (due to Ljunggren [18]) that the Diophantine equation ax2 + 1 = 4yn, 
n ≥ 3, has no positive solution with y > 1 such that a ≡ 3(mod 4) and the class number 
of the quadratic field Q(

√
−a) is not divisible by n. When a = 3, then 3x2 + 1 = 4yn

has the only positive solution (x, y) = (1, 1).

As our first result, we completely solve the equation (1) for a ∈ {7, 11, 19, 43, 67, 163}, 
under the conditions 2n−1bl �≡ ±1(mod a) and gcd(n, b) = 1.

Theorem 1. Fix p ∈ {7, 11, 19, 43, 67, 163} and b = ±qr, with q an odd prime different 
from p and r ≥ 1.

(i) The Diophantine equation

px2 + b2l = 4yn, l ∈ N, gcd(x, y) = 1 (2)

has no solutions (p, x, y, b, l, n) with integers x, y and primes n > 3, satisfying the con-
ditions 2n−1bl �≡ ±1(mod p) and gcd(n, b) = 1.

(ii) If n = 3 and p �= 7, then the equation (2) has no solutions (p, x, y, b, l, 3) satisfying 
the conditions 4bl �≡ ±1(mod p) and gcd(3, b) = 1.

(iii) If n = 3 and p = 7, then the equation (2) leads to 6 infinite families of solutions, 
corresponding to solutions of Pell-type equations (4), (5), (6), (7), and satisfying the 
conditions 4bl �≡ ±1(mod 7) and gcd(3, b) = 1.

Remarks. (i) The Diophantine equation (2) has many solutions (infinitely many?) satis-
fying the conditions 2n−1bl ≡ ±1(mod p) and gcd(n, b) = 1. Examples include
(p, x, y, b, l, n) ∈ {(7, ±1, 2, ±11, 1, 5), (11, ±1, 3, ±31, 1, 5), (7, ±7, 2, ±13, 1, 7),
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(11, ±253, 3, ±67, 1, 11), (7, ±1, 2, ±181, 1, 13), (11, ±1801, 3, ±21929, 1, 17),
(7, ±457, 2, ±797, 1, 19), (7, ±967, 2, ±5197, 1, 23)}.

(ii) If b is divisible by at least two different odd primes, then the Diophantine equation 
(2) may have solutions satisfying the conditions 2n−1bl �≡ ±1(mod p). Examples include
(p, x, y, b, l, n) ∈ {(7, 103820535541, 4, 10341108537, 1, 37),
(7, 4865, 46, 1320267, 1, 7), (19, 315003, 49, 909715, 1, 7),
(19, 581072253, 49, 3037108805, 1, 11)}.

(iii) Write the equation (2) as px2 + b2l = 4y(y(n−1)/2)2 (compare [18, p.116]). Now 
using 4y = u2 + pv2, taking u = ±1, and multiplying the equation by p, we arrive at the 
equation

X2 − p(1 + pv2)Y 2 = −pb2l. (3)

If b = ±1, we obtain the equation (7’) in [18]. Ljunggren used an old result by Mahler to 
deduce that, if p > 3, then (3) has no solution with Y > 1 such that any prime divisor 
of Y divides p(1 + pv2) as well.

(iv) Question: may we extend Ljunggren’s idea to prove non-existence of solutions of 
our equation for some bl?

For a family of positive square-free integers a with h(−a) > 1 we can prove the 
following result (a variant of the results by Bugeaud [9] and Arif and Al-Ali [3] in a case 
of the equation ax2 + b2l+1 = 4yn). Let h(−a) denote the class number of the imaginary 
quadratic field Q(

√
−a).

Theorem 2. Fix a positive square-free integer a, different from 3, 7, 11, 19, 43, 67, 163, 
and b = ±qr, with q an odd prime not dividing a and r ≥ 1. Then the Diophantine equa-
tion (1) has no solutions (a, x, y, b, l, n), with integers x, y and primes n > 3 satisfying 
the conditions gcd(n, h(−a)) = 1, 2n−1bl �≡ ±1(mod a), and gcd(n, b) = 1.

Remarks. (i) There are a lot of positive square-free integers a with rad(h(−a))|6 (hypo-
thetically, infinitely many): 18 values of a with h(−a) = 2, 54 values of a with h(−a) = 4, 
31 values of a with h(−a) = 6, etc. Here rad(m) denotes the radical of a positive inte-
ger m, i.e. the product of all prime divisors of m.

(ii) For fixed a and b we can (in some cases) use MAGMA [8] to solve the Diophan-
tine equation ax2 + b2l = 4y3 (applying SIntegralPoints subroutine of MAGMA to 
associated families of elliptic curves). In a general case, one can try to prove a variant 
of Dahmen’s result [14] saying that the above equation has no solution for a positive 
proportion of l’s, not divisible by 3.

(iii) The following variant of a result by Laradji, Mignotte and Tzanakis (see [16, 
Theorem 2.3]) follows immediately from our Theorem 2 (note that always h(−p) < p). 
Let p, q be odd primes with p ≡ 3(mod 8) and p > 3. Then the Diophantine equa-
tion px2 + q2l = 4yp has no solution (x, y, l) with positive integers x, y, l satisfying 
gcd(x, y) = 1.
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(iv) Dieulefait and Urroz [15] used the method of Galois representations attached to 
Q-curves to solve the Diophantine equation 3x2 + y4 = zn. The authors suggest that 
their method can be applied to solve this type of equations with 3 replaced by other 
values of a. We expect that their method can be extended to the case ax2 + y4 = 4zn
with small a as well.

(v) We can solve the Diophantine ax2+b2l = 4yn for relatively small values of a > 0 (at 
least) in positive integers x, y, l, n, gcd(x, y) = 1, n ≥ 7 a prime dividing l, by using the 
Bennett-Skinner strategy [4]. We treat some examples in Section 3. Let us also mention 
that the smallest positive integer a with h(−a) = 7 is 71, and one needs to consider 
newforms of weight 2 and level 10082.

(vi) Pink [21] used estimates for linear forms in two logarithms in the complex and 
the p-adic case, to give an explicit bound for the number of solutions of the Dio-
phantine equation x2 + (pα1

1 · · · pαs
s )2 = 2yn in terms of s and max{p1, · · · , ps}. We 

can prove analogous result concerning the equations px2 + (pα1
1 · · · pαs

s )2 = 4yn, with 
p ∈ {7, 11, 19, 43, 67, 163}.

2. Proofs of Theorems 1 and 2

Proof of Theorem 1. Below in the proof, b is a power of an odd prime q �= p.
As the class number of Q(

√−p) with p ∈ {7, 11, 19, 43, 67, 163} is 1, we have the 
following factorization

bl + x
√−p

2 · b
l − x

√−p

2 = yn.

Now we have

bl + x
√−p

2 =
(
u + v

√−p

2

)n

,

where u, v are odd rational integers. Note that necessarily gcd(u, v) = 1. Equating real 
parts we get

2n−1bl = u

(n−1)/2∑
r=0

(
n

2r

)
un−2r−1(−p)rv2r.

As u is odd, its possible values are among divisors of bl. Here, we assume that 2n−1bl �≡
±1(mod p).

(i) If u = ±1, then 2n−1bl =
∑(n−1)/2

r=0
(
n
2r
)
(−p)rv2r, and in particular 2n−1bl ≡

±1(mod p), a contradiction.
(ii) If u �= ±1, ±bl, then q divides pvn. Since gcd(u, v) = gcd(p, b) = 1, then q divides n, 

a contradiction.
(iii) Assume u = ±bl. Put α = v

√
p+bli

2 . Then (α+α)2 = v2p, αα = 1
4 (v2p + b2l), and 

α/α is not a root of unity. Hence (α, α) is a Lehmer pair. Note that α
n−αn

= ±1. On 
α−α
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the other hand, using [7] we obtain that α
n−αn

α−α has primitive divisors for n = 11 and all 
primes n > 13, and hence our equation has no solution for n = 11 and for primes n > 13. 
Let us consider the cases n ∈ {3, 5, 7, 13} separately. Let us stress that the data in [7]
are given for equivalence classes of n-detective Lehmer pairs: two Lehmer pairs (α1, β1), 
(α2, β2) are equivalent (we write (α1, β1) ∼ (α2, β2)) if α1/α2 = β1/β2 ∈ {±1, ±i}.

n = 3. According to [7], we have two possibilities: (a) v
√
p+ui

2 ∼
√

1+λ+
√

1−3λ
2 , λ �= 1, 

or (b) v
√
p+ui

2 ∼
√

3k+λ+
√

3k−3λ
2 , k > 0, 3 � λ.

In the case (a) we have four subcases: (i) 1 + λ = v2p and 1 − 3λ = −u2 or (ii) 
1 + λ = −v2p and 1 − 3λ = u2 or (iii) 1 + λ = −u2 and 1 − 3λ = v2p or (iv) 1 + λ = u2

and 1 − 3λ = −v2p.
In the subcase (i) we obtain a contradiction reducing the second equation modulo 3.
In the subcase (ii) we obtain relation u2 = 3pv2 + 4. If p �= 7, then reducing this 

equation modulo 8, we obtain 1 ≡ 5(mod 8), a contradiction. Now the case p = 7 leads 
to Pell-type equation

u2 − 21v2 = 4. (4)

Using the assumption u and v are odd for our equation, any solution to (4) is given by

ut + vt
√

21
2 =

(
u0 + v0

√
21

2

)t

,

where (u0, v0) = (5, 1) is minimal solution and 3 � t. Thus an infinite family of solutions 
of equation (1) is given by

(xt, yt, b
l
t, n) =

(
3u2

t vt − 7v3
t

4 ,
7v2

t + u2
t

4 ,
u3
t − 21utv

2
t

4 , 3
)

(see [12, Proposition 6.3.16] for the details about the equation (4)).
In the subcase (iii), note that 4 + 3u2 = v2p, and hence 7 ≡ 3(mod 8) if p �= 7, 

a contradiction. If p = 7, then we need to consider the Diophantine equation

7v2 − 3u2 = 4. (5)

Such an equation has 3 infinite families of solutions (v, u) ∈ {(s +3r, s +7r), (−s +3r, s −
7r), (4s + 18r, 6s + 28r)}, where s2 − 21r2 = 1. But since u and v are odd, one gets 2
infinite families of solutions (v, u) ∈ {(s + 3r, s + 7r), (−s + 3r, s − 7r)} for the equation 
(5). Any solution to the equation s2 − 21r2 = 1 is given by

st + rt
√

21 = (s0 + r0
√

21)t

where (s0, r0) = (55, 12) is minimal solution. Thus 2 infinite families of solutions of 
equation (1) are given by
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xt = −3rts2
t + 63r3

t + 21str2
t − s3

t

yt = 2s2
t + 14strt + 28r2

t

blt = −5s3
t − 63s3

t rt − 231str2
t − 245r3

t

or

xt = −3s2
t rt + s3

t − 21str2
t + 63r3

t

yt = 2s2
t − 14strt + 28r2

t

blt = −5s3
t + 63s2

t rt − 231str2
t + 245r3

t

with n = 3 (see [2, Theorems 4.5.1, 4.5.2] for details about the equation (5)).
In the subcase (iv) note that 4 + v2p = 3u2, and hence 7 ≡ 3(mod 8) if p �= 7, 

a contradiction. If p = 7, then reducing 4 + 7v2 = 3u2 modulo 7 we obtain � = −�, 
a contradiction.

In the case (b) we have four subcases: (i) 3k + λ = v2p and 3k − 3λ = −u2 or 
(ii) 3k + λ = −v2p and 3k − 3λ = u2 or (iii) 3k + λ = −u2 and 3k − 3λ = v2p or 
(iv) 3k + λ = u2 and 3k − 3λ = −v2p.

In the subcase (i) note that 3v2p = u2 + 4 · 3k, hence necessarily k = 1 (otherwise 
3| gcd(u, v)). Therefore v2p = 3t2 +4, where u = 3t. If p �= 7, then reducing this equation 
modulo 8, we obtain 3 ≡ 7(mod 8), a contradiction. If p = 7, then we need to consider 
the Diophantine equation

7v2 − 3t2 = 4. (6)

As in subcase (iii) of part (a) Such an equation has 3 infinite families of solutions (v, u) ∈
{(s +3r, 3(s +7r)), (−s +3r, 3(s −7r)), (4s +18r, 3(6s +28r))}, where s2−21r2 = 1. But 
since u and v are odd, one obtains 2 infinite families of solutions (v, u) ∈ {(s + 3r, 3(s +
7r)), (−s +3r, 3(s −7r)) for the equation (6). Any solution to the equation s2−21r2 = 1
is given by

st + rt
√

21 = (s0 + r0
√

21)t

where (s0, r0) = (55, 12) is minimal solution. Thus 2 infinite families of solutions of 
equation (1) are given by

xt = 567str2
t + 99rts2

t + 5s3
t + 945r3

t

yt = 4s2
t + 42strt + 126r2

t

blt = −9s3
t − 63s2

t rt + 189str2
t + 1323r3

t

or
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xt = −567str2
t + 99rts2

t − 5s3
t + 945r3

t

yt = 4s2
t − 42strt + 126r2

t

blt = −9s3
t + 63s2

t rt + 189str2
t − 1323r3

t

with n = 3.
In the subcase (ii) note that 4 · 3k + 3pv2 = u2, hence necessarily k = 1 (otherwise 

3| gcd(u, v)). Therefore 4 = 3t2−pv2, where u = 3t. If p �= 7, then reducing this equation 
modulo 8, we obtain 4 ≡ 0(mod 8), a contradiction. Now reducing 4 = 3t2−7v2 modulo 7, 
we obtain � = −�, a contradiction again.

In the subcase (iii) note that 3t2p = u2 + 4, where v = 3t. Now reducing modulo 3, 
we obtain a contradiction.

In the subcase (iv) note that u2 = 3pt2 +4, where v = 3t. If p �= 7, then reducing this 
equation modulo 8, we obtain 1 ≡ 5(mod 8), a contradiction. Now the case p = 7 leads 
to Pell-type equation

u2 − 21t2 = 4. (7)

Since u and v are odd, one gets that t is odd for the equation (7). So, any solution to 
(7) is given by

um + tm
√

21
2 =

(
u0 + t0

√
21

2

)m

,

where (u0, t0) = (5, 1) is minimal solution and 3 � m. Thus an infinite family of solutions 
of equation (1) is given by

(xm, ym, blm, n) =
(

3u2
mvm − 7v3

m

4 ,
7v2

m + u2
m

4 ,
u3
m − 21umv2

m

4 , 3
)
,

with vm = 3tm.

n = 5. According to [7], we have two possibilities to consider: (a) v
√
p+ui

2 ∼√
Fk−2ε+

√
Fk−2ε−4Fk

2 , k ≥ 3, ε = ±1, or (b) v
√
p+ui

2 ∼
√

Lk−2ε+
√

Lk−2ε−4Fk

2 , k �= 1, ε = ±1. 
Here Fm and Lm denote m-th Fibonacci and Lucas number respectively.

In the case (a) we have four subcases: (i) v2p = Fk−2ε − 4Fk and −u2 = Fk−2ε or (ii) 
−v2p = Fk−2ε − 4Fk and u2 = Fk−2ε or (iii) v2p = Fk−2ε and −u2 = Fk−2ε − 4Fk or (iv) 
−v2p = Fk−2ε and u2 = Fk−2ε − 4Fk.

In the subcase (i) we obtain Fk−2ε = −u2 < 0, a contradiction.
In the subcase (ii), due to the fundamental work by Ljunggren [17] [19] (see also 

[11, Section 2]) we can find all solutions to the equation u2 = Fk−2ε (k ≥ 3, ε = ±1). 
Ljunggren has proved that the only squares in the Fibonacci sequence are F0 = 0, 
F1 = F2 = 1, and F12 = 144.
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The case k − 2ε = 1 gives k = 3, ε = 1, u2 = 1, hence using the first equation from 
(ii) we obtain −v2p = −7, i.e. p = 7, v2 = 1. This case gives the solution (p, x, y, bl, n) =
(7, ±1, 2, ±11, 5) which contradicts with 2n−1bl �≡ ±(mod p).

The case k − 2ε = 2, gives k = 4, ε = 1, u2 = 1, hence using the first equation 
from (ii) we obtain −v2p = −11, i.e. p = 11, v2 = 1. This case gives the solution 
(p, x, y, bl, n) = (11, ±1, 3, ±31, 5), which is impossible since 2n−1bl ≡ ±1 (mod p).

The case k − 2ε = 12, gives k = 14, ε = 1, u2 = 144 or k = 10, ε = −1, u2 = 144. 
The first possibility gives −v2p = −22 · 11 · 31, i.e. p = 11 · 31, v2 = 4. The second 
possibility gives −v2p = −22 · 19, i.e. p = 19, v2 = 4. This case gives no solution 
satisfying gcd(x, b) = 1 (note that both u and v are even).

In the subcase (iii), let us note that u2 = −(Fk−2ε − 4Fk) = Fk + Fk+2ε. Now a 
short look at the paper by Luca and Patel (see [20, Theorem 1], and their calculations 
in Section 5) shows that k = 4, ε = −1 is the only possibility. But then F6 = 8 = v2p, 
a contradiction.

In the subcase (iv) we obtain Fk−2ε = −v2p < 0, a contradiction.
In the case (b) we have four subcases: (i) v2p = Lk−2ε − 4Lk and −u2 = Lk−2ε or (ii) 

−v2p = Lk−2ε − 4Lk and u2 = Lk−2ε or (iii) v2p = Lk−2ε and −u2 = Lk−2ε − 4Lk or 
(iv) −v2p = Lk−2ε and u2 = Lk−2ε − 4Lk.

In the subcase (i) we obtain Lk−2ε = −u2 < 0, a contradiction.
In the subcase (ii) we can find all solutions to the equation u2 = Lk−2ε, (k �= 1, 

ε = ±1). By the work by Cohn [13] we know all solutions: L1 = 12 and L3 = 22.
The case k − 2ε = 1, gives k = 3, ε = 1, u2 = 1, hence using the first equation from 

(ii) we obtain −v2p = −13, i.e. p = 13, v2 = 1. The case k − 2ε = 3, gives k = 5, ε = 1, 
u2 = 4, hence using the first equation from (ii) we obtain −v2p = −40, i.e. p = 10, 
v2 = 4. None of these two cases lead to solution of our Diophantine equation (13 is 
congruent to 1 modulo 4, while 10 is even).

In the subcase (iii), let us note that Lk + Lk−2ε = 5Fk−ε. Therefore we need to 
determine all k such that 5Fk−ε is a square. Again, the paper by Bugeaud, Mignotte 
and Siksek [10] shows that the only possibility is 5F5 = 52. But then v2p = L4 = 7 in 
case ε = 1 or v2p = L6 = 18 in case ε = −1. In the first case we obtain p = 7, but then 
u2 = 65, a contradiction. The second case gives a contradiction by trivial observation.

In the subcase (iv) we obtain Lk−2ε = −v2p < 0, a contradiction.

n = 7. According to [7] we have six equivalence classes of 7-defective Lehmer pairs. 
Two of them, (1−

√
−7

2 , 1+
√
−7

2 ) and (1−
√
−19

2 , 1+
√
−19

2 ), come from our Lehmer pairs, 
giving (p, x, y, bl, n) ∈ {(7, ±7, 2, ±13, 7), (19, ±1, 5, ±559, 7)}, which are impossible since 
2n−1bl ≡ ±1 (mod p).

n = 13. The unique 13-detective equivalence class (1−
√
−7

2 , 1+
√
−7

2 ) leads to the solu-
tion (p, x, y, bl, n) = (7, ±1, 2, ±181, 13), which contradicts with 2n−1bl �≡ ±1(mod p).

Proof of Theorem 2. In this case, thanks to [6, Lemma 1], we can follow the same lines 
as in the proof of Theorem 1 for n > 3.
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3. Method via Galois representations and modular forms

We will consider the Diophantine equation ax2 + b2k = 4yn, for a ∈ {3, 7, 11, 15}
in positive integers x, y, k, n, gcd(x, y) = 1, n ≥ 7 a prime dividing k. We will apply 
the Bennett-Skinner strategy [4], in particular we will use the results we need from [4]. 
We can compute systems of Hecke eigenvalues for conjugacy classes of newforms using 
MAGMA (or use Stein’s Modular Forms Database provided the level is ≤ 7248).

Remarks. (a) If a ≡ 3 mod 8, then y is necessarily odd: if y is even, then reducing modulo 
8 we obtain that the left hand side is congruent to 4 modulo 8, while the right hand side 
is congruent to 0 modulo 8, a contradiction.

(b) If a ≡ 7 mod 8, then y is necessarily even.

(i) The Diophantine equation 3x2 + b2k = 4yn has no solution (x, y, k, n), xy �= 1, 
n ≥ 7 prime dividing k.

We will consider a more general Diophantine equation Xn + 4Y n = 3Z2 (n ≥ 7 a 
prime) and use [4]. We are in case (iii) of [4, p.26], hence α ∈ {1, 2}. From Lemma 3.2 it 
follows, that we need to consider the newforms of weight 2 and levels N ∈ {36, 72}.

a) There is only one newform of weight 2 and level 36, corresponding to an elliptic 
curve E of conductor 36 with complex multiplication by Q(

√
−3). Here we will apply 

[4, Subsection 4.4], to prove that ab = ±1. Assume (a.a) that ab �= ±1. Then (using 
Prop. 4.6 (b)) holds, hence if n = 7 or 13, n splits in K = Q(

√
−3) and E(K) is 

infinite for all elliptic curves of conductor 2n. One checks that both primes 7 and 13 split 
in K. Now using Cremona’s online tables we check, that all elliptic curves of conductor 
126 = 2 × 7 × 32 have rank zero, and all elliptic curves of conductor 234 = 2 × 13 × 32, 
which are quadratic twists by 3 of quadratic curves of conductor 26, have rank zero too.

b) There is only one newform of weight 2 and level 72, corresponding to isogeny class 
of elliptic curves of conductor 72, with j-invariant u/3v, with v > 0 and u some non-zero 
integer prime to 3. To eliminate such an elliptic curve we use [4, Prop. 4.4].

(ii) The Diophantine equation 7x2+b2k = 4yn has no solution (x, y, k, n), n ≥ 7 prime 
dividing k.

We need to consider the newforms of weight 2 and level N = 98.
There are two Galois conjugacy classes of forms of weight 2 and level 98. We will 

use numbering as in Stein’s tables: we have a3(f2) = ±
√

2 and we can use [4, Prop. 
4.3] to eliminate f2. On the other hand, the form f1 corresponds to an elliptic curve of 
conductor 98, with j-invariant u/7v, with v > 0 and u some non-zero integer prime to 7. 
To eliminate such elliptic curves we use [4, Prop. 4.4].

(iii) The Diophantine equation 11x2 + b2k = 4yn has no solution (x, y, k, n), n ≥ 7, 
n �= 11, 13 prime dividing k.

We need to consider the newforms of weight 2 and levels N ∈ {484, 968}.
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a) There are five Galois conjugacy classes of forms of weight 2 and level 484. We have 
a3(f1) = 1, a3(f4) = 1±

√
33

2 , and we can use [4, Prop. 4.3] to eliminate f1 and f4. To 
eliminate f2 and f3 we need to consider coefficients a3 and a5: we have a3(f2) = a3(f3) =
−3±

√
5

2 and a5(f2) = a5(f3) = −1±
√

5
2 (we cannot avoid n = 29 when considering only a3). 

Finally, a7(f5) = ±2
√

3, and we can use [4, Prop. 4.3] to eliminate f5 when n ≥ 7 and 
n �= 13.

b) There are fourteen Galois conjugacy classes of forms of weight 2 and level 968. We 
have a3(f1) = −3, a5(f2) = a5(f3) = 3, a3(f4) = a3(f5) = 1, a3(f6) = a3(f7) = ±2

√
5, 

a3(f10) = 1±
√

17
2 , and we can easily use [4, Prop. 4.3] to eliminate f1, ..., f7, and f10. Now 

considering a3 and a13 for both newforms f8, f9, and a3 and a5 for both newforms f13, 
f14, and using [4, Prop. 4.3], we can eliminate these four forms when n ≥ 7 and n �= 11.

(iv) The Diophantine equation 15x2 + b2k = 4yn has no solution (x, y, k, n), n ≥ 7
prime dividing k.

We need to consider the newforms of weight 2 and level N = 450.
There are seven Galois conjugacy classes of forms of weight 2 and level 450. We have 

a11(f3) = a11(f7) = 3, and we can use [4, Prop. 4.3] to eliminate f3 and f7. The forms 
f2 and f6 correspond to elliptic curves of conductor 450 (named C and A respectively 
in Cremona’s tables), with j-invariants u/3v, with v > 0 and u some non-zero integer 
prime to 3; the forms f1 and f5 correspond to elliptic curves of conductor 450 (named F
and E respectively in Cremona’s tables), with j-invariants u/5v, with v > 0 and u some 
non-zero integer prime to 5; the form f4 corresponds to elliptic curve G of conductor 
450, with j-invariant u/(3v5w), with v, w > 0 and u some non-zero integer prime to 15. 
To eliminate all these elliptic curves we use [4, Prop. 4.4].
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