期刊论文详细信息
JOURNAL OF NUMBER THEORY | 卷:190 |
Rational torsion subgroups of modular Jacobian varieties | |
Article | |
Ren, Yuan1  | |
[1] Sichuan Normal Univ, Sch Math Sci, Chengdu, Sichuan, Peoples R China | |
关键词: Modular curve; Generalized Ogg's conjecture; Eisenstein ideal; | |
DOI : 10.1016/j.jnt.2018.02.009 | |
来源: Elsevier | |
【 摘 要 】
In this article, we study the Q-rational torsion subgroups of the Jacobian varieties of modular curves. The main result is that, for any positive integer N, J(0)(N)(Q)(tor)[q(infinity)] = 0 if q is a prime not dividing 6 . N . Pi(p)(vertical bar N)(p(2) - 1). To prove the result, we explicitly construct a collection of Eisenstein series with rational Fourier expansions, and then determine their constant terms to control the size of the rational torsion subgroups. (C) 2018 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jnt_2018_02_009.pdf | 792KB | download |