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1. Introduction

For any positive integer N , let X0(N) be Shimura’s canonical model over Q of the 
modular curve of level Γ0(N). Let J0(N) be the Jacobian variety of X0(N) over Q. In 
this article, we study the rational torsion subgroup of J0(N). This kind of investigation 
began with the work of Ogg (see [5] and [6]), who conjectured that, if N = p is a prime, 
then

J0(p)(Q)tor = 〈[0] − [∞]〉,

where [0] and [∞] are the only two cusps of X0(p). This conjecture of Ogg is proved by 
Mazur in [4]. The basic idea is to consider the Hecke module structure of J0(p)(Q)tor. 
The following is a brief explanation of the method of Mazur.

Let T0(p) ⊆ EndQ(J0(p)) be the Hecke algebra of level Γ0(p) generated over Z by 
all the Hecke operator T�’s, where � runs over all the primes. By the Eichler–Shimura 
theory, we have

T� = 1 + � on J0(p)(Q)tor

for any prime � �= p. On the other hand, since there is no old form in S2(Γ0(p), C), the 
newform theory implies that

Tp = ±1 on J0(p)(Q)tor.

In fact, it can be proved that Tp = 1 on J0(p)(Q)tor, so that J0(p)(Q)tor is a 
T0(p)/I0(p)-module with I0(p) := ({T� − (1 + �)}��=p, Tp − 1) being the Eisenstein ideal 
introduced by Mazur. It is easy to see that 〈[0] − [∞]〉 is also annihilated by I0(p). The 
above conjecture of Ogg then follows from ring theoretical properties of T0(p) at the 
Eisenstein ideal I0(p). For example, it can be shown that the index of I0(p) in T0(p) is
prime to 6(p − 1). Thus we find that, for any prime q not dividing 6(p − 1), the q-part of 
J0(p)(Q)tor must be zero, which is in agreement with the order of the group 〈[0] − [∞]〉.

The work of Mazur has later been generalized to some other modular Jacobian va-
rieties. For any positive integer N , let C0(N) be the subgroup of J0(N)(Q) generated 
by the cusps of X0(N). Let C0(N)(Q) be the Q-rational subgroup of C0(N). Then, if 
p ≥ 5 is a prime and r ∈ Z≥2, it is known that J0(pr)(Q)[q∞] = C0(pr)(Q)[q∞] for any 
prime q � 6p (see [3]). Secondly, if N is a square-free positive integer, then it is proved 
by Ohta that J0(N)(Q)[q∞] = C0(N)[q∞] for any prime q � 6 (see [7]). This square-free 
case has also been studied and improved by Yoo (see [10] for example). Note that when 
N is square-free, all the cusps of X0(N) are Q-rational and hence C0(N) = C0(N)(Q). 
After these pioneering work, one is naturally led to the following

Conjecture 1.1 (Generalized Ogg’s conjecture). For any positive integer N , we have that

J0(N)(Q)tor = C0(N)(Q),
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where C0(N) is the subgroup of J0(N)(Q) generated by the cusps of X0(N) and C0(N)(Q)
is the Q-rational subgroup of it.

In this article, we will provide, for any positive integer N , a “support” for those primes 
q such that the q-part of J0(N)(Q)tor is not zero. More precisely, our main result is the 
following

Theorem 1.2. For any positive integer N , we have that

J0(N)(Q)[q∞] = 0

for any prime q � 6 · N · �(N), where �(N) :=
∏

(p2 − 1) with p runs over all prime 
divisors of N .

The idea of the proof for the above theorem is similar to that of Mazur, except that 
we have to deal with the problem caused by old forms. To this end, we will first prove the 
same assertion as in the above theorem with J0(N) replaced by its new-subvariety, and 
then use an inductive argument to yield the desired result. Note that, for any prime p | N , 
the action of the p-th Hecke operator on the new-part of J0(N) is basically determined 
by whether p2 divides N or not. We are therefore led to first consider the situation when 
the level N is of the form DC, where D is a positive square-free integer and C | D a 
divisor of D. In the second section, we construct a collection of rational Eisenstein series 
of level Γ0(DC) which are all eigenforms. These Eisenstein series will provide us with 
the Eisenstein ideals to study the rational torsion subgroups later. The rest of the second 
section is devoted to the determination of the constant terms of these Eisenstein series. 
Then, we will use these results to control the indexes of the corresponding Eisenstein 
ideals and complete the proof of Theorem 1.2 in the third section.

Notations. We denote by B2(x) to be the second Bernoulli polynomial. For any positive 
integer N =

∏
p|N pvp(N), let �(N) :=

∏
p|N (p2−1), ψ(N) :=

∏
p|N (p +1), and ν(N) :=∑

p|N vp(N). Let q be the function z 	→ e2πiz on the upper half plane used in the Fourier 
expansions of modular forms. For any function g on the upper half plane and any γ =(
a b

c d

)
∈ GL+

2 (R), we denote by g|γ to be the function z 	→ det(γ) · g(γz) · (cz+ d)−2.

2. Rational Eisenstein series of level Γ0(DC)

In the following, let D be a positive square-free integer and C be a positive divisor 
of D. In this section, we will construct some Eisenstein series in E2(Γ0(DC), C) whose 
Fourier coefficients at [∞] are all rational numbers. We will show that these Eisenstein 
series are all eigenforms and then determine their constant terms at the cusps of X0(DC).
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2.1. The definition and Hecke action

Let N be a positive integer and M2(Γ0(N), C) be the space of weight two modular 
forms of level Γ0(N). Then

M2(Γ0(N),C) = S2(Γ0(N),C) ⊕ E2(Γ0(N),C),

where S2(Γ0(N), C) is the sub-space of cusp forms and E2(Γ0(N), C) is the sub-space 
of Eisenstein series. For any prime �, there is a Hecke operator T Γ0(N)

� acting on 
M2(Γ0(N), C) with respect to the above decomposition. Let T0(N) be the Z-algebra 
generated by the T Γ0(N)

� for all the primes �. Denote the restriction of T Γ0(N)
� to S2(Γ, C)

by TΓ0(N)
� . Then we define the Hecke algebra of level Γ0(N) to be the Z-algebra gener-

ated by the TΓ0(N)
� for all the primes � and is denoted as T0(N). Note that T0(N) is a 

quotient ring of T0(N). If E ∈ E2(Γ0(N), C), then we define the Eisenstein ideal of E as 
the image of AnnT0(N)(E) in T0(N), which is denoted by IΓ0(N)(E).

Before giving the definition of the above mentioned rational Eisenstein series, we 
will first introduce some operators on the C-vector space M2 of weight two holomorphic 
modular forms of all levels. Note that similar operators are also considered by Yoo in [10]. 
For any prime p, we denote by γp to be the operator on M2, which maps any g ∈ M2

to g| 
(
p 0
0 1

)
. Then we define the following two operators [p]± : M2 → M2 by

[p]+ := 1 − γp

[p]− := 1 − 1
p
γp

More precisely, for any g ∈ M2 and z ∈ H, we have

[p]+(g)(z) = g(z) − p · g(pz)

[p]−(g)(z) = g(z) − g(pz)

It is easy to see that if p1 and p2 are two primes, then the four operators [p1]+, [p1]−, [p2]+
and [p2]− are commutative with each other. This enables us to define, for any positive 
square-free integer M , two operators [M ]± on M2 as

[M ]± := [p1]± ◦ [p2]± ◦ ... ◦ [pk]±

with M = p1 · p2... · pk in any order.
To give the construction of our Eisenstein series, recall that there is a collection of 

functions φx on the upper half plane, indexed by all row vectors x ∈ (Q/Z)⊕2 with the 
following properties:
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For any x �= 0, φx is an Eisenstein series, and we have that

φx|γ = φx·γ (2.1)

for any γ ∈ SL2(Z), with SL2(Z) acts on the row vectors form the right in the usual way. 
Moreover, these functions satisfy the following distribution law

φx =
∑

y·α=x

φy|α (2.2)

For more details about these functions, especially their Fourier expansions and the action 
of Hecke operators, we refer the reader to §2.4 of [9].

Definition 2.1. For any two of positive divisors M and L of D such that M �= 1 and 
D | ML | DC, we define the following

EM,L := [L]− ◦ [M ]+(−1
2φ(0,0))

which is an Eisenstein series of level Γ0(DC). In the following, we will denote by H(DC)
to be the set of pairs M, L of positive divisors of D with M �= 1 and D | ML | DC.

Example 1. When D = p is a prime and C = 1, we have H(p) = {(p, 1)}. The Eisenstein 
series corresponding to (p, 1) is Ep,1 = [p]+(−1

2φ(0,0)) by definition, so it follows from 
the distribution law that

Ep,1 = −1
2φ(0,0) + 1

2
∑

y∈Z/pZ

φ(0, yp )

= 1
2

∑
y∈(Z/pZ)×

φ(0, yp ).

By §2.4 of [9], the Fourier expansion of Ep,1 at [∞] is given as

Ep,1 = 1
2

∑
y∈(Z/pZ)×

[
1
2B2(0) −

∞∑
k=1

ke2πim(kz+ y
p ) +

∞∑
k=1

ke2πim(kz− y
p )

]

= p− 1
24 −

∞∑
n=1

⎡
⎣ ∑

1≤d|n
d(

∑
y∈(Z/pZ)×

e2πin
d

y
p )

⎤
⎦ e2πinz

= p− 1
24 +

∞∑
n=1

σp(n) · qn,

where σp(n) :=
∑

1≤d|n,p�d d for any positive integer n.
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Proposition 2.2. For any (M, L) ∈ H(DC), we have a1(EM,L; [∞]) = 1. In other words, 
all these Eisenstein series are normalized.

Proof. We first observe that, if f is any modular form of level Γ0(N) for some positive 
integer N with its Fourier expansion at [∞] being 

∑∞
n=1 an·qn, then the Fourier expansion 

of f |γp is 
∑∞

n=1(�an) · q�n for any prime �. In particular, we find that a1(f |γp; [∞]) = 0
and hence a1(f ; [∞]) = a1([�]±(f); [∞]).

For any (M, L) ∈ H(DC), we choose an arbitrary prime divisor p of M and find then 
by definition that

EM,L = [L]− ◦ [M
p

]+(Ep,1)

Since a1(Ep,1; [∞]) = 1 as we have seen in Example 1, it follows that EM,L is also 
normalized by the above observation. �
Lemma 2.3. For any prime p, we have that

T Γ0(p)
� (Ep,1) =

{
(1 + �) · Ep,1, if � �= p

Ep,1, if � = p

Proof. By Proposition 2.4.7 of [9], we have

T Γ1(p)
� (φ(0, yp )) =

⎧⎨
⎩
� · φ(0, yp ) + φ(0, �yp ), if � � p

� · φ(0, yp ) + φ(0, �yp ) −
∑�−1

k=0 φ(0, yp+ k
p ), if � = p

for any y. Since Ep,1 = 1
2
∑

y∈(Z/pZ)× φ(0, yp ), it follows that

T Γ0(p)
� (Ep,1) = T Γ0(p)

�

⎛
⎝1

2
∑

y∈(Z/pZ)×
φ(0, yp )

⎞
⎠

= 1
2

∑
y∈(Z/pZ)×

(
T Γ1(p)
� (φ(0, yp ))

)

= (1 + �) · Ep,1

for any prime � �= p. On the other hand, if � = p, then we have that

T Γ0(p)
p (Ep,1) = p · Ep,1 + (p− 1) · φ(0,0) −

∑
×

p−1∑
φ(0, yp+ k

p )

y∈(Z/pZ) k=0



JID:YJNTH AID:5985 /FLA [m1L; v1.235; Prn:26/03/2018; 12:31] P.7 (1-18)
Y. Ren / Journal of Number Theory ••• (••••) •••–••• 7
= p · Ep,1 − (p− 1) · Ep,1

= Ep,1,

which completes the proof of the lemma. �
Lemma 2.4. For any 1 �= M | D, we have that

T Γ0(D)
� (EM,D/M ) =

⎧⎪⎪⎨
⎪⎪⎩
EM,D/M , if � | M
� · EM,D/M , if � | D/M

(1 + �) · EM,D/M , if � � D

Proof. Let � be a prime not dividing D. Choose a prime p | M . Then we find by definition 
that

EM,D/M = [ D
M

]− ◦ [M
p

]+(Ep,1).

It follows that

T Γ0(D)
� (EM,D/M ) = [ D

M
]− ◦ [M

p
]+ ◦ T Γ0(p)

� (Ep,1)

= (1 + �) ·EM,D/M ,

which proves the third assertion.
If � is a prime divisor of M , then we have that

T Γ0(D)
� (EM,D/M ) = T Γ0(D)

�

(
[ D
M

]− ◦ [M
�

]+(E�,1)
)

= [ D
M

]− ◦ [M
�

]+ ◦ T Γ0(�)
� (E�,1)

= EM,D/M ,

which proves the first assertion.
Finally, if � is a prime divisor of D/M , then we have

EM,D/M = [�]−(EM,D/M�),

and hence

T Γ0(D)
� (EM,D/M ) = T Γ0(D

� )
� (EM, D

M�
) −EM, D

M�
|
(

� 0
0 1

)

− 1
�
EM, D

M�
|
(

� 0
0 1

)
�−1∑(

1 k

0 �

)

k=0
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= � ·EM, D
M�

−EM, D
M�

|
(

� 0
0 1

)

= � ·EM,D/M ,

which proves the second assertion and completes the proof. �
Proposition 2.5. For any (M, L) ∈ H(DC), we have that

T Γ0(DC)
� (EM,L) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(1 + �) · EM,L, if � � D
EM,L, if � | M

(M,L)

� · EM,L, if � | L
(M,L)

0, if � | (M,L)

In particular, the Eisenstein ideal IΓ0(DC)(EM,L) of T0(DC) associated to EM,L equals 
to ({T� − (1 + �)}��D, {T� − 1}�| M

(M,L)
, {T� − �}�| L

(M,L)
, {T�}�|(M,L)).

Proof. It remains to prove this theorem for those EM,L with (M, L) �= 1. By the def-
inition, we have that EM,L = [(M, L)]−(EM,D/M ), so if � is a prime not dividing D, 
then

T Γ0(DC)
� (EM,L) = T Γ0(DC)

� ◦ [(M,L)]−(EM,D/M )

= [(M,L)]− ◦ T Γ0( DC
(M,L) )

� (EM,D/M )

= (1 + �) · EM,L,

where the last equality holds because T Γ0( DC
(M,L) )

� and T Γ0( D
(M,L) )

� are given by the same for-

mula and we have already seen in Lemma 2.4 that T Γ0( D
(M,L) )

� (EM,D/M ) = (1 +�) ·EM,D/M

for any prime � � D. By similar arguments as above, we can prove that T Γ0(DC)
� (EM,L) =

EM,L for any prime � | M
(M,L) and T Γ0(DC)

� (EM,L) = � · EM,L for any prime � | L
(M,L) .

Finally, if � is a prime divisor of (M, L), then �2 | ML | DC and we find that

T Γ0(DC)
� (EM,L) = T Γ0(DC)

� ◦ [(M,L)/�]− ◦ [�]−(EM,D/M )

= [(M,L)/�]− ◦ T Γ0(D�)
� ◦ [�]−(EM,D/M )

= [(M,L)/�]−
[(

EM,D/M − 1
�
·EM,D/M |

(
� 0
0 1

))
|
�−1∑
k=0

(
1 k

0 �

)]

= [(M,L)/�]−
(
T Γ0(D)
� (EM,D/M ) − EM,D/M

)
= 0,

which completes the proof of the theorem. �
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2.2. The constant terms

Now we turn to the calculation of the constant terms of EM,L. Note that similar 
results have been obtained by Banerjee in the prime square case (see [1]). Firstly, we 
give some convenient representatives for the cusps of X0(DC).

Lemma 2.6. If we take r to be a positive divisor of D
C , s, t two positive divisors of C

satisfying (s, t) = 1 and let x runs over a set of representative of (Z/tZ)× which are 
prime to D, then {[ rs2txDC ]} is a full set of representative for the cusps of X0(DC).

Proof. It is clear that any divisor of DC = D
C ·C2 is of the form rs2t with some r, s, t as 

above, and we have (rs2t, DC
rs2t ) = t for any such a divisor, so the above set has at most ∑

1≤d|DC ϕ(d, DC
d ) elements. Thus, it is enough to prove that the above are all different 

cusps, since we know that the number of cusps of S0(DC) is also 
∑

1≤d|DC ϕ(d, DC
d ).

Suppose, to the contrary that we have [ r1s
2
1t1x1
DC ] = [ r2s

2
2t2x2
DC ], then there exists some 

γ =
(

α β

DCδ ω

)
∈ Γ0(DC) such that γ( r1s

2
1t1x1
DC ) = r2s

2
2t2x2
DC . It follows that we have

r2s
2
2t2x2 = r1s

2
1t1x1 ·

αx1 + β DC
r1s21t1

δr1s2
1t1x1 + ω

.

But as δr1s2
1t1x1 + ω is a unit at every prime dividing r1s1t1, we find that r1, s1, t1

divides r2, s2, t2 respectively, and hence r1 = r2, s1 = s2 and t1 = t2 by symmetry. If we 

choose some ui, vi (i = 1, 2) such that 
(

xi ui

DC
rs2t vi

)
∈ SL2(Z), then

γ ·
(

x1 u1
DC
rs2t v1

)
(∞) =

(
x2 u2
DC
rs2t v2

)
(∞),

so that there exists some integer n such that

±γ ·
(

x1 u1
DC
rs2t v1

)
=

(
x2 u2
DC
rs2t v2

)(
1 n

0 1

)
,

which implies, after a straight forward calculation, that

DC

rs2t
v1 −

DC

rs2t
v2 ≡ n · DC

rs2t
· DC

rs2t
(mod DC).

Since t2 | DC, it follows that

v1 ≡ v2 (mod t) ⇒ x1 ≡ x2 (mod t),

and hence completes the proof of the lemma. �
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By a similar argument, we can prove the following

Lemma 2.7. Let p be a prime divisor of D and [ rs
2tx

DC ] be a cusp of X0(DC), then we 
have that:

(1) If p | r, then [ rs
2tx

DC ] = [ (r/p)s
2tx

DC/p ] in X0(DC/p);

(2) If p | s, then [ rs
2tx

DC ] = [ r(s/p)
2tx

DC/p2 ] in X0(DC/p2);

(3) If p | t, then [ rs
2tx

DC ] = [ rs
2(t/p)·(px)
DC/p2 ] in X0(DC/p2);

(4) If p | D
Cr , then [ rs

2tx
DC ] = [ rs

2t·(px)
DC/p ] in X0(DC/p);

(5) If p | C
st , then [ rs

2tx
DC ] = [ rs

2t·(p2x)
DC/p2 ] in X0(DC/p2).

Proof. The first two assertions are obvious. Since the proofs of last three assertions are 
similar, we will in the following only give that of (3). If [ rs

2tx
DC ] = [ r

′s′ 2t′x′

DC/p2 ] in X0(DC/p2), 

then there exists some γ =
(

α β
DC
p2 δ ω

)
∈ Γ0(DC

p2 ) sending the former point to the latter 

one, and we find thus

r′s′ 2t′x′ = rs2(t/p) ·
xα + β DC

rs2t

δrs2(t/p)x + ωp
.

Since δrs2(t/p)x + ωp is a unit for any prime dividing rs2(t/p), it follows that r, s, t/p
divides r′, s′, t′ respectively. We find thus

r′

r
· s

′ 2

s2 · t′

t/p
· x′ =

xα + β DC
rs2t

δrs2(t/p)x + ωp
.

If there is some prime q | r′s′t′ (so that q �= p as p � t′) but not dividing rst, then 
xα + β DC

rs2t will be a q-adic unit. But this contradicts to the above equation, so we have 
proved the assertion. �

To determine the constant terms of EM,L, we still need to know how the operators 
[p]± effect on the constant terms of a modular forms. Let [ac ] be a cusp represented by 

two integers a, c with (a, c) = 1, and we choose some γ =
(
a b

c d

)
∈ SL2(Z) so that 

γ([∞]) = [ac ]. Let N ∈ Z≥1 and f ∈ M2(Γ0(N), C). For any prime p, we have that

γp · γ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
a pb

c/p d

)(
p 0
0 1

)
, if p | c

(
ap b

c d/p

)(
1 0
0 p

)
, if p � c,
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where we may and will always assume p | d if p � c. We find then by definition that

a0([p]+(f); [a
c
]) =

{
a0(f ; [ac ]) − p · a0(f ; [apc ]), if p | c
a0(f ; [ac ]) − p−1 · a0(f ; [apc ]), if p � c,

and

a0([p]−(f); [a
c
]) =

⎧⎨
⎩
a0(f ; [ac ]) − a0(f ; [apc ]), if p | c

a0(f ; [ac ]) − p−2 · a0(f ; [apc ]), if p � c.

It follows by an easy inductive argument that, if K is a positive square-free integer, then

a0([K]+(f); [a
c
]) =

⎧⎨
⎩
∑

1≤α|K(−1)ν(α) · α · a0(f ; [αac ]), if K | c∑
1≤α|K(−1)ν(α) · α−1 · a0(f ; [αac ]), if (K, c) = 1,

(2.3)

and

a0([K]−(f); [a
c
]) =

⎧⎨
⎩
∑

1≤α|K(−1)ν(α) · a0(f ; [αac ]), if K | c∑
1≤α|K(−1)ν(α) · α−2 · a0(f ; [αac ]), if (K, c) = 1.

(2.4)

Lemma 2.8. The constant terms of ED,1 are given by

a0(ED,1; [
rs2tx

DC
]) = (−1)ν( D

rs )−1ϕ(D)
24rs .

In particular, we find that the constant terms of ED,1 are independent of t and x.

Proof. By applying the second formula of (2.3) to the cusp [ rs
2tx

DC ] with K = rs, we find 
that

a0(ED,1; [
rs2tx

DC
]) =

∑
1≤α|rs

(−1)ν(α) · α−1 · a0(ED/rs,1; [
rs2t(αx)

DC
]).

Since ED/rs,1 is of level Γ0(D/rs), it follows from (1) and (2) of Lemma 2.7 that

a0(ED,1; [
rs2tx

DC
]) =

∑
1≤α|rs

(−1)ν(α) · α−1 · a0(ED/rs,1; [
t(αx)

D/rs · C/s
])

=

⎛
⎝ ∑

1≤α|rs
(−1)ν(α) · α−1

⎞
⎠ · a0(ED/rs,1; [∞])

= ϕ(rs)
rs

· a0(ED/rs,1; [∞]).
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Thus we only need to prove the lemma for the cusp [∞]. However, if p be an arbitrary 
prime divisor of D, then the first formula of (2.3) shows that

a0(ED,1; [∞]) =

⎛
⎝ ∑

1≤α|D/p

(−1)ν(α) · α

⎞
⎠ · a0(Ep,1; [∞])

= (−1)ν(D
p )ϕ(D/p) · p− 1

24

= (−1)ν(D)−1ϕ(D)
24

and our assertion follows. �
Lemma 2.9. The constant terms of EM,D/M are given as

a0(EM,D/M ; [rs
2tx

DC
]) =

⎧⎪⎨
⎪⎩

(−1)ν( D
rs

)−1ϕ(D)·ψ( D
M )

24rs D
M

, if D
M | rs

0, if D
M � rs.

In particular, we find that the constant terms of EM,D/M are independent of t and x.

Proof. If [ rs
2tx

DC ] is a cusp such that DM | rs, then ( D
M , DC

rs2t ) = 1 and we find by the second 
formula of (2.4) and (1), (2) of Lemma 2.7 that

a0(EM,D/M ; [rs
2tx

DC
]) =

∑
1≤α| D

M

(−1)ν(α) · α−2 · a0(EM,1; [
αrs2tx

DC
])

=
∑

1≤α| D
M

(−1)ν(α) · α−2 · a0(EM,1; [
r′(s′)2t(αx)
M · (M,C) ])

with r′s′ · D
M = rs. By Lemma 2.8, it then follows that

a0(EM,D/M ; [rs
2tx

DC
]) =

⎛
⎝ ∑

1≤α| D
M

(−1)ν(α) · α−2

⎞
⎠ · (−1)ν( M

r′s′ )−1ϕ(M)
24r′s′

=
(−1)ν( D

rs )−1ϕ(D) · ψ( D
M )

24rs D
M

.

However, if D
M � rs, then K := ( D

M , DC
rs2t ) �= 1 and we find by the first formula of (2.4) 

that
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a0(EM,D/M ; [rs
2tx

DC
]) =

∑
1≤α|K

(−1)ν(α) · a0(EM, D
MK

; [αrs
2tx

DC
])

=
∑

1≤α|K
(−1)ν(α) · a0(EM, D

MK
; [
rs2( t

(t,α) )x
D
α · C

(C,α)
]).

But as (K, rs) = 1, Lemma 2.7 implies that [ rs
2( t

(t,α) )x
D
α · C

(C,α)
] = [ rs2t′x′

D
K · C

(C,K)
] as a cusp of X0(D

K ·
C

(C,K) ) for some t′ and x′, so that all these a0(EM, D
MK

; [ rs
2( t

(t,α) )x
D
α · C

(C,α)
]) are the same by the 

above result. It follows that a0(EM,D/M ; [ rs
2tx

DC ]) = 0 which completes the proof. �
Proposition 2.10. For any pair of integers M and L as before, the constant terms of 
EM,L are given as

a0(EM,L; [rs
2tx

DC
]) =

⎧⎨
⎩
∏

p|(M,L,s)(1 − 1
p ) (−1)ν( D

rs
)−1ϕ(D)·ψ(L)
24rsL , if D

M | rs and (M,L) | st

0, otherwise.

Proof. We have already proved the above assertions when (M, L) = 1 in Lemma 2.8 and 
Lemma 2.9, so we assume in the following that K := (M, L) �= 1. Note that we must have 
K | C. Now, if [ rs

2tx
DC ] is a cusp such that K | st, then we can decompose K = Ks ·Kt

with Ks := (K, s) and Kt := (K, t). It then follows from the second formula of (2.4) that

a0(EM,L; [rs
2tx

DC
]) =

∑
1≤αs|Ks

(−1)ν(αs) · α−2
s · a0(EM,Kt

D
M

; [rs
2t(αsx)
DC

]).

Since [ rs
2t(αsx)
DC ] = [ rs

2t(αsx+ s
αs

· DC
rs2t

)
DC ] with xs := αsx + s

αs
· DC
rs2t prime to D, we find that

a0(EM,L; [rs
2tx

DC
]) =

∑
1≤αs|Ks

(−1)ν(αs) · α−2
s · a0(EM,Kt

D
M

; [rs
2txs

DC
])

=
∑

1≤αs|Ks

∑
1≤αt|Kt

(−1)ν(αsαt) · α−2
s · a0(EM,Kt

D
M

; [r(sαt)2(t/αt)xs

DC
]),

and hence get the assertion by a straightforward calculation using previous results. How-
ever, if H := (M,L)

(M,L,st) �= 1, then H | DC
rs2t and we find by the first formula of (2.4) that

a0(EM,L; [rs
2tx

DC
]) =

∑
1≤α|H

(−1)ν(α) · a0(EM,L/H ; [rs
2t(αx)
DC

]).

But it is easy to see from the above result that all these a0(EM,L/H ; [ rs
2t(αx)
DC ]) are the 

same, so it follows that a0(EM,L; [ rs
2tx

DC ]) = 0. We have thus completed the proof of the 
proposition. �
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3. Proof of the main theorem

3.1. Algebraic modular forms

Here, we briefly review the algebraic theory of modular forms. For more details, the 
reader is referred to [7].

The algebraic modular forms that we will mainly use in the following are those in the 
sense of Serre and Swinnerton-Dyer. For any positive integer N , let

M2(Γ0(N),Z) := {f ∈ M2(Γ0(N),C)|f(q) ∈ Z[[q]]},

S2(Γ0(N),Z) := {f ∈ S2(Γ0(N),C)|f(q) ∈ Z[[q]]}.

Then we define, for any ring R, that

M2(Γ0(N), R) := M2(Γ0(N),Z) ⊗Z R,

S2(Γ0(N), R) := S2(Γ0(N),Z) ⊗Z R.

These are the spaces of algebraic modular forms that are denoted as MB
2 and SB

2 re-
spectively in [7]. On the other hand, we have also the following spaces of modular forms 
in the sense of Deligne–Rapoport and Katz (see Definition 1.2.5 of [7])

MA
2 (Γ0(N), R) ⊇ SA

2 (Γ0(N), R),

which are defined from the view of moduli. If R is any Z[1/N ]-algebra, then there are 
q-expansion preserved injections ([7], lemma 1.3.5)

M2(Γ0(N), R) ↪→ MA
2 (Γ0(N), R), S2(Γ0(N), R) ↪→ SA

2 (Γ0(N), R)

between these two kinds of modular forms. Moreover, if R is flat over Z[1/N ], then the 
above injections are in fact isomorphisms ([7] (1.3.4)).

For any prime �, there is a Hecke operator T (�) acting on MA
2 (Γ0(N), R). If f ∈

MA
2 (Γ0(N), R) has its Fourier expansion as 

∑∞
n=0 anq

n, then (see (1.5.1) of [7])

T (�)(f) =

⎧⎨
⎩
∑∞

n=0 an�q
n + � ·

∑∞
n=0 anq

n�, if � � N∑∞
n=0 an�q

n, if � | N.

Note that T (�) is denoted as U(�) in the paper of Ohta. When R = Z[1/N ], these opera-
tors coincide with the classical Hecke operators TΓ0(N)

� ’s. It follows that these operators 
preserves the sub-spaces M2(Γ0(N), R) and S2(Γ0(N), R) for any Z[1/N ]-algebra R. We 
will denote TΓ0(N)

� as T� for simplicity in the following and refer to them as either the 
classical operators or the algebraical operators if there is no risk of confusion.
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3.2. New-part of modular Jacobian varieties

Let N be a positive integer. For any positive divisors n | N and m | N
n , we have the 

following homomorphism

S2(Γ0(n),C) → S2(Γ0(N),C),

which maps f(z) to f(mz). These maps then induce the following homomorphism
∏

n|N,n �=N and m|Nd

S2(Γ0(n),C) → S2(Γ0(N),C),

whose cokernel is isomorphic to the subspace of new forms of level Γ0(N). The above 
homomorphism induces the following morphism between abelian varieties over Q

ιN : J0(N) →
∏

n|N,n �=N,m|Nn

J0(n).

The new-part of J0(N) is then defined to be the kernel of the above morphism, so we 
have the following Cartesian diagram

Jnew
0 (N) 0

J0(N) Jold
0 (N)

where Jold
0 (N) is defined to be the image of ιN which is a sub-abelian variety of ∏

n|N,n �=N,m|Nn
J0(n).

3.3. The proof of Theorem 1.2

For any positive integer N , we can uniquely write it as

N = D · C · C1 · · · Ck,

where D, C, C1, ..., Ck are all square-free positive integers such that 1 < Ck | · · · | C1 |
C | D. Thus, for any pair of integers M and L in H(DC), we find that the Eisenstein series 
EM,L ∈ E2(Γ0(DC), C) and hence also in E2(Γ0(N), C), so we have the corresponding 
Eisenstein ideal IΓ0(N)(EM,L) of T0(N).

Lemma 3.1. For any pair of two integers M, L in H(DC), there is a natural isomorphism

T0(N)/IΓ0(N)(EM,L) � Z/mZ
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for some non-zero integer m. Moreover, if (M, L) �= 1, then q � m for any prime q �

6 ·N ·�(N).

Proof. We first prove that the above quotient ring is finite. Since it is obvious that the 
natural homomorphism Z → T0(N)/IΓ0(N)(EM,L) is surjective, we only need to prove 
that the kernel of this homomorphism is non-zero. However, if the kernel is zero so that 
Z � T0(N)/IΓ0(N)(EM,L), then the ring homomorphism T → T0(N)/IΓ0(N)(EM,L) �
Z ↪→ C will give rise to a normalized cusp form whose eigenvalue is 1 + � for any � � D
which this contradicts the Ramanujan bound. This proves the first statement.

Now we turn to the second assertion of the lemma. Suppose that q � 6 · N ·�(N) is 
a prime divisor of the above index m of IΓ0(N)(EM,L) in T0(N). Recall that there is a 
perfect pairing of Z-modules (see [8])

T0(N) × S2(Γ0(N),Z) → Z, (T, f) 	→ a1(f |T ; [∞]).

Then, by base change from Z to Z/qZ, it follows that there is also a perfect pairing

T0(N)/qT0(N) × S2(Γ0(N),Z/qZ) → Z/qZ.

Since T0(N)/(q, IΓ0(N)(EM,L)) is a quotient of T0(n)/qT0(N), we get thus the following 
perfect pairing

T0(N)/(q, IΓ0(N)(EM,L)) × S2(Γ0(N),Z/qZ)[IΓ0(N)(EM,L)] → Z/qZ

of Z/qZ-modules, which induces a canonical isomorphism

S2(Γ0(N),Z/qZ)[IΓ0(N)(EM,L)] � Z/qZ.

Since a0(EM,L; [∞]) = 0 when (M, L) �= 1, it follows that S2(Γ0(N), Z/qZ)[IΓ0(N)(EM,L)]
is expanded by EM,L (mod q). So there exists some g ∈ M2(Γ0(N), Z) such that 
EM,L + q · g ∈ S2(Γ0(N), Z). Note that, as we have mentioned before, M2(Γ0(N), Z) ⊆
M2(Γ0(N), Z[1/nZ]) is naturally embedded in MA

2 (Γ0(N), Z[1/nZ]), g can be naturally 
viewed as a modular form in the sense of Katz with coefficients in Z[1/nZ]. Now since 
X0(N) is connected, it follows from Corollary 1.6.2 of [2] that the constant terms of g
at the various cusps of X0(N) are all in Z[ 1

6N , μN ], so that

a0(EM,L; [c]) ∈ q · Z[ 1
6N ,μN ]

⋂
Q = q · Z[ 1

6N ]

for any cusp c in X0(N), which contradicts to Proposition 2.10. This completes the proof 
of the lemma. �
Lemma 3.2. For any positive integer N , we have Jnew

0 (N)(Q)[q∞] = 0 for any q � 6 ·N ·
�(N).
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Proof. Suppose to the contrary that there is a prime q � 6 · N · �(N) such that 
Jnew

0 (N)(Q)[q∞] �= 0. There exists a non-zero point P ∈ Jnew
0 (N)(Q)[q] ⊆ J0(N)(Q)[q]. 

By Eichler–Shimura theory, we have

T�(P ) = (1 + �)P

for any � � N . On the other hand, by the newform theory, we have

T�(P ) =
{
δ� · P, if � | D

C

0, if � | C,

where δ� ∈ {±}, so that

q | [T0(N) : IP ],

where IP is the ideal

IP := ({T� − (1 + �)}��N , {T�}�|C , {T� − δ�}�|DC ).

Then, by the same argument as that in Lemma 3.1, we find that S2(Γ0(N), Z/qZ)[IP ] �= 0
and is generated by a unique normalized fP .

Let FP ∈ S2(Γ0(N), Z) such that FP ≡ fP (mod q). For any � | D
C , we have FP− δ�

� ·FP

belongs to S2(Γ0(N�), Z[1/N ]). Moreover, simple manipulation on Fourier expansions 
shows that

T�(FP − δ�
�
· FP ) = T�(FP ) − δ� · FP

≡ δ� · fP − δ · fP = 0 (mod q).

Thus, by raising the levels in such a way, we will finally get a normalized Θ ∈
S2(Γ0(ND/C),Z[1/N ]), and hence, by reduction, a normalized θ ∈ S2(Γ0(ND/C), Z/qZ)
which spans

S2(Γ0(ND/C),Z/qZ)[IΓ0(ND/C)(ED,D)].

It then follows that q | [T0(ND/C) : IΓ0(ND/C)(ED,D)], which contradicts to Lemma 3.1
and hence completes the proof. �
Proof of Theorem 1.2. We prove the theorem by induction on ν(N). When ν(N) = 1 so 
that N is a prime, the claim follows from the theorems of Ogg and Mazur. In general, 
if q is a prime such that q | 6 · N · �(N), then we also have q � 6 · n · �(n) for any 
n | N . Thus, by the induction hypothesis, a point P ∈ J0(N)(Q)[q∞] must be mapped 
by ιN to zero of Jold

0 (N), because ν(n) < ν(N) for any n | N and n �= N . It follows that 
P ∈ Jnew

0 (N)(Q)[q∞] and is hence zero by Lemma 3.2. This completes the proof of our 
theorem. �
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