JOURNAL OF NUMBER THEORY | 卷:131 |
A note on the Mordell-Weil rank modulo n | |
Article | |
Dokchitser, Tim1  Dokchitser, Vladimir2  | |
[1] Univ Cambridge Robinson Coll, Cambridge CB3 9AN, England | |
[2] Univ Cambridge Emmanuel Coll, Cambridge CB2 3AP, England | |
关键词: Mordell-Weil rank; Elliptic curves; | |
DOI : 10.1016/j.jnt.2011.03.010 | |
来源: Elsevier | |
【 摘 要 】
Conjecturally, the parity of the Mordell-Weil rank of an elliptic curve over a number field K is determined by its root number. The root number is a product of local root numbers, so the rank modulo 2 is (conjecturally) the sum over all places of K of a function of elliptic curves over local fields. This note shows that there can be no analogue for the rank modulo 3, 4 or 5, or for the rank itself. In fact, standard conjectures for elliptic curves imply that there is no analogue modulo n for any n > 2, so this is purely a parity phenomenon. (C) 2011 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jnt_2011_03_010.pdf | 136KB | download |