期刊论文详细信息
JOURNAL OF NUMBER THEORY 卷:131
A note on the Mordell-Weil rank modulo n
Article
Dokchitser, Tim1  Dokchitser, Vladimir2 
[1] Univ Cambridge Robinson Coll, Cambridge CB3 9AN, England
[2] Univ Cambridge Emmanuel Coll, Cambridge CB2 3AP, England
关键词: Mordell-Weil rank;    Elliptic curves;   
DOI  :  10.1016/j.jnt.2011.03.010
来源: Elsevier
PDF
【 摘 要 】

Conjecturally, the parity of the Mordell-Weil rank of an elliptic curve over a number field K is determined by its root number. The root number is a product of local root numbers, so the rank modulo 2 is (conjecturally) the sum over all places of K of a function of elliptic curves over local fields. This note shows that there can be no analogue for the rank modulo 3, 4 or 5, or for the rank itself. In fact, standard conjectures for elliptic curves imply that there is no analogue modulo n for any n > 2, so this is purely a parity phenomenon. (C) 2011 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jnt_2011_03_010.pdf 136KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:1次