期刊论文详细信息
JOURNAL OF NUMBER THEORY | 卷:187 |
Congruences modulo powers of 5 for k-colored partitions | |
Article | |
Tang, Dazhao1  | |
[1] Chongqing Univ, Coll Math & Stat, Huxi Campus LD206, Chongqing 401331, Peoples R China | |
关键词: Partition; Congruences; k-Colored partitions; | |
DOI : 10.1016/j.jnt.2017.10.027 | |
来源: Elsevier | |
【 摘 要 】
Let (p-k)(n) enumerate the number of k-colored partitions of n. In this paper, we establish some infinite families of congruences modulo 25 for k-colored partitions. Furthermore, we prove some infinite families of Ramanujan-type congruences modulo powers of 5 for (p-k)(n) with k = 2, 6, and 7. For example, for all integers n >= 0 and alpha >= 1, we prove that p-2 (5(2 alpha-1)n + 7 x 5(2 alpha-1) + 1/12) equivalent to 0 (mod 5(alpha)) and p-2 (5(2 alpha)n + 11 x 5(2 alpha) + 1/12) equivalent to 0 (mod 5(alpha+1)). (C) 2017 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jnt_2017_10_027.pdf | 718KB | download |