期刊论文详细信息
JOURNAL OF NUMBER THEORY 卷:190
The L-algebra of Hurwitz primes
Article
Rump, Wolfgang1 
[1] Univ Stuttgart, Inst Algebra & Number Theory, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
关键词: Hurwitz prime;    Metacommutation;    L-algebra;    Right l-group;    Garside group;   
DOI  :  10.1016/j.jnt.2018.03.004
来源: Elsevier
PDF
【 摘 要 】

Conway and Smith proved that up to recombination of conjugate primes and migration of units, the only obstruction to unique factorization in the ring of Hurwitz integers in the quaternions is metacommutation of primes with distinct norm. We show that the Hurwitz primes form a discrete L*-algebra, a quantum structure which provides a general explanation for metacommutation. L-algebras arise in the theory of Artin-Tits groups, quantum logic, and in connection with solutions of the quantum Yang-Baxter equation. It is proved that every discrete L*-algebra admits a natural embedding into a right l-group, which yields a new class of Garside groups. (C) 2018 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jnt_2018_03_004.pdf 443KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次