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Conway and Smith proved that up to recombination of 
conjugate primes and migration of units, the only obstruction 
to unique factorization in the ring of Hurwitz integers in 
the quaternions is metacommutation of primes with distinct 
norm. We show that the Hurwitz primes form a discrete 
L∗-algebra, a quantum structure which provides a general 
explanation for metacommutation. L-algebras arise in the 
theory of Artin–Tits groups, quantum logic, and in connection 
with solutions of the quantum Yang–Baxter equation. It 
is proved that every discrete L∗-algebra admits a natural 
embedding into a right �-group, which yields a new class of 
Garside groups.

© 2018 Elsevier Inc. All rights reserved.

0. Introduction

Let H = R ⊕Ri ⊕Rj⊕Rk be the skew-field of quaternions. The reduced norm N(α) =
αα = t2+x2+y2+z2 of an element α = t +xi +yj+zk ∈ H gives a group homomorphism 
N : H× � R×, where α := t − xi − yj − zk denotes the conjugate quaternion. The 
subring H := Z� ⊕ Zi ⊕ Zj ⊕ Zk of Hurwitz quaternions, where � := 1

2 (1 + i + j + k), 
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was introduced in the 19th century by Hurwitz [19], who proved that H is a left and 
right principal ideal domain. Its unit group H× consists of the ε ∈ H with N(ε) = 1, 
and π ∈ H is a prime if and only if N(π) is a rational prime. Up to multiplication 
by units in H, every odd rational prime p divides exactly p + 1 Hurwitz primes which 
constitute a projective line P1(Fp). As H is non-commutative, unique factorization into 
primes cannot be expected, but Conway and Smith [8] proved that up to migration of 
units, the only obstructions are recombination ππ = σσ of primes π, σ ∈ H with the 
same norm, and another phenomenon which they called metacommutation. This means 
that up to migration of units, any product πσ of Hurwitz primes with distinct odd norms 
can be uniquely rewritten as

πσ = σ′π′

such that N(π′) = N(π) and N(σ′) = N(σ). Metacommutation was analysed recently by 
Cohn and Kumar [8] who proved that the sign of the permutation π �→ π′ is independent 
of σ and equal to the Legendre symbol 

(
q
p

)
, where p := N(π) and q := N(σ). Forsyth et 

al. [16] simplified the proof of this remarkable property.
In this paper, we explain metacommutation as a quantum phenomenon and exhibit 

a close relationship to a class of Garside groups [13,11,12]. More precisely, we show that 
metacommutation takes place in any L∗-algebra, that is, an L-algebra [29] with a special 
involution. Conversely, we show that up to multiplication with units, the Hurwitz primes 
form an L∗-algebra. Before we can make this precise and discuss the special rôle of the 
ramified prime at 2, we give a brief sketch of some pertinent properties of L∗-algebras.

Recall that an L-algebra is a set X with a binary operation → and an element 1 such 
that x → x = x → 1 = 1 and 1 → x = x, and

(x → y) → (x → z) = (y → x) → (y → z)

holds for x, y ∈ X. Moreover, it is assumed that x → y = 1 = y → x implies that x = y. 
The prototypical example of an L-algebra is the negative cone of a right �-group [32], 
a group G with a lattice order such that the right multiplications are lattice automor-
phisms. The negative cone G− := {a ∈ G | a � 1} is an L-algebra with a → b := ba−1∧1, 
and G with its lattice order can be recovered from the L-algebra G−.

Important examples of right �-groups are Artin–Tits groups [5,14], and other Garside 
groups [12] like the structure groups of non-degenerate unitary set-theoretic solutions of 
the quantum Yang–Baxter equation [15,22,6], right-ordered groups [9,35,4,25,26], struc-
ture groups of orthomodular lattices [34], and the various lattice-ordered groups arising 
in functional analysis [23,24] and elsewhere [1,10]. The quasi-centre of a right �-group G, 
a concept which extends the same-named notion for Artin–Tits groups [5,14], consists 
of the elements a ∈ G which are normal in the sense that aG−a−1 = G−. By [33], 
Proposition 5, the quasi-centre is a (two-sided) �-group.

Not every L-algebra comes from a group, but it can be shown that any L-algebra X
admits a universal map q : X → G(X) into a group, the structure group of X. Moreover, 
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any L-algebra X has a partial order x � y :⇐⇒ x → y = 1, and 1 is always the greatest 
element of X. If the elements x 	= 1 are pairwise incomparable, the L-algebra X is said 
to be discrete [32]. The map X �→ G(X) gives a one-to-one correspondence between 
finite discrete L-algebras X satisfying the stronger condition x → y = y → x ⇒ x = y

and modular Garside groups ([32], Theorem 5). The arrow notation is due to a logical 
interpretation of → as implication. Then � stands for the entailment relation.

The structure group of an L-algebra X is obtained in two steps (see [29] for details). 
Firstly, X embeds into a self-similar L-algebra S(X), equipped with a natural monoid 
structure (see Section 1). Secondly, S(X) has a group of left fractions, namely, G(X).

Now if X is a discrete L∗-algebra, the map q : X → G(X), which usually need not even 
be monotone, is an embedding so that S(X) maps isomorphically onto the negative cone 
of G(X), and the underlying lattice of G(X) is modular (Theorem 1). The negative cone 
S(X) is again an L∗-algebra, with a grading S(X) = 
n∈N Sn(X) such that S0(X) = {1}
and S1(X) = X � {1}. Moreover, Theorem 1 gives a quantum-theoretic explanation for 
the two phenomena encountered in the arithmetic of Hurwitz primes. In this analogy, 
the elements of S1(X) are the primes. The quasi-centre of G(X) is a free abelian group, 
the structure group of a self-adjoint L∗-algebra X0
{1}. If x0 < x with x0 ∈ X0 and x ∈
S1(X), then x0 = x∗x, and the same holds for any other prime y ∈ X “above” x0, so that 
x∗x = y∗y (“recombination”). For distinct primes x0, y0 ∈ X0 with x0 < x ∈ S1(X) and 
y0 < y ∈ S1(X), there are unique x′, y′ ∈ S1(X) with x0 < x′ and y0 < y′ such that xy =
y′x′ (“metacommutation”). Note that for an L∗-algebra, there is no trouble with units.

For the ring H of Hurwitz quaternions, we show first that the primes with odd norm, 
normalized with respect to units and together with 1, form a discrete L∗-algebra X∗

H

which generates a subgroup G∗
H of H× isomorphic to the structure group G(X∗

H), a 
noetherian modular right �-group (Theorem 2). The quasi-centre and the centre are deter-
mined explicitly (Corollary 3). Then we extend the L∗-algebra X∗

H to the full L∗-algebra 
XH , with a pair of primes ζ, ζ∗ instead of the ramified Hurwitz prime over 2, which 
has to be taken as a “double point” (Theorem 3). This extends metacommutation to all 
Hurwitz primes, with the speciality that the structure group G(XH) no longer embeds 
into H×. For any integer n > 1, the Hurwitz prime divisors of n generate a Garside 
group.

In the last section, we give some examples and methods for explicit calculation. In 
particular, we give a simple combinatorial scheme to enumerate the p + 1 normalized 
Hurwitz primes over any rational prime p. The cycle structure of the metacommutation 
maps is determined. An example shows that the cycle structure of these permutations, 
in contrast to the sign 

(
q
p

)
, depends on the reduced trace of the acting prime.

1. L-algebras and their structure group

L-algebras were introduced in [29]. They are based on the cycloid equation [30]

(x → y) → (x → z) = (y → x) → (y → z) (1)
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which first occurred in algebraic logic [3,18,36]. It can also be found in the theory of 
Garside groups [11] and �-groups [29], in connection with certain solutions of the quan-
tum Yang–Baxter equation [28,31], and in the theory of von Neumann algebras and 
orthomodular lattices [34].

Let X be a set with a binary operation →. An element 1 ∈ X is said to be a logical 
unit [29] if

x → x = x → 1 = 1 ; 1 → x = x

holds for all x ∈ X. If X has a logical unit and satisfies Eq. (1) such that the implication

x → y = y → x = 1 =⇒ x = y (2)

is valid for x, y ∈ X, then X is said to be an L-algebra [29]. Any L-algebra X is equipped 
with a partial order

x � y ⇐⇒ x → y = 1. (3)

An L-algebra X is said to be self-similar [29] if the maps y �→ (x → y) are bijections from 
{y ∈ X | y � x} onto X. Thus, for a self-similar L-algebra X, any z ∈ X is of the form 
z = x → y for a unique element y � x. We write y = zx. By [29], Theorem 1, this multi-
plication makes X into a monoid, and the monoid structure determines the self-similar 
L-algebra. Precisely, a self-similar L-algebras is characterized by the equations

x = y → xy (4)

xy → z = x → (y → z) (5)

(x → y)x = (y → x)y. (6)

With respect to the partial order (3), X is a ∧-semilattice with meet given by Eq. (6):

x ∧ y = (x → y)x.

Every L-algebra X has a self-similar closure S(X), that is, an embedding X ↪→ S(X)
into a self-similar L-algebra S(X), generated by X as a monoid. By [29], Theorem 3, the 
self-similar closure is unique, up to isomorphism. Note that Eq. (6) implies the left Ore 
condition, while Eq. (4) shows that self-similar L-algebras are right cancellative. Thus 
S(X) has a left group of fractions G(X), with a natural map

q : X ↪→ S(X) −→ G(X).

We call G(X) the structure group of X. There are special cases where the monoid ho-
momorphism S(X) → G(X) is injective (see [29], Theorem 4; [32], Theorem 3; [34], 
Theorem 2). In the next section, we give another example where this happens.
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Definition 1. We define an L∗-algebra to be an L-algebra X with an involution x �→ x∗

such that 1∗ = 1 and the following are satisfied for x, y ∈ X:

x∗ � x → (y → x) (7)

y � x∗ → (x → y) (8)

Recall that an L-algebra X is said to be discrete [32] if the elements of S1(X) :=
X � {1} are pairwise incomparable. By [32], Proposition 18, discrete L-algebras are 
equivalent to geometric lattices with a certain labelling. In particular, S(X) is a lower 
semimodular lattice and has a grading

S(X) = 

n∈N

Sn(X)

with Sn(X) := {x1 · · ·xn | x1, . . . , xn ∈ S1(X)}. If X is a discrete L∗-algebra, the in-
equality (8) shows that for any x ∈ S1(X), the sets

C(x) := {y ∈ S1(X) | x∗ � x → y}, C ′(x) := {y ∈ S1(X) | y = x∗ → (x → y)}

form a partition S1(X) = C(x) 
 C ′(x) with x ∈ C(x).

Definition 2. Let X be a discrete L∗-algebra. We call a subset Y ⊂ S1(X) invariant if Y
is closed with respect to the involution y �→ y∗ and x → y ∈ Y ∪ {1} holds for all x ∈ X

and y ∈ Y .

Thus any invariant subset Y ⊂ S1(X) gives rise to an L∗-subalgebra Y ∪ {1} of X.

Proposition 1. Let X be a discrete L∗-algebra. The C(x) are invariant subsets of S1(X)
which satisfy

y ∈ C(x) =⇒ C(y) = C(x)

for all x, y ∈ S1(X). For any x ∈ S1(X), the map y �→ (x → y) is bijective on C ′(x).

Proof. Suppose that x∗ 	� x → x∗ holds for some x ∈ X. Then x 	= 1, and (7) implies 
that x = x∗ → (x → x∗). Hence (8) gives x∗ = x, contrary to our assumption. Thus

x∗ � x → x∗ (9)

for all x ∈ X. We show first that C(x∗) = C(x) holds for all x ∈ S1(X). So we have to 
verify

x∗ � x → y =⇒ x � x∗ → y
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for all x, y ∈ S1(X). By (9), we can assume that x, x∗, and y are distinct. Then x∗ �
x → y implies that x∗ = x → y, which yields 1 = x∗ → (x → x∗) = (x → y) → (x →
x∗) = (y → x) → (y → x∗). Hence y → x � y → x∗, and thus y → x = y → x∗. 
So we obtain (x∗ → y) → (x∗ → x) = (y → x∗) → (y → x) = 1, which implies that 
x = x∗ → x = x∗ → y.

For x, y ∈ S1(X) with y ∈ C(x), we have x∗ � x → y. Hence x∗ � x → x∗ �
x → (x → y), which yields x → y ∈ C(x). On the other hand, y ∈ C ′(x) implies that 
x →

(
x∗ → (x → y)

)
= x → y, which yields x → y ∈ C ′(x∗). Since C(x∗) = C(x), we 

also have C ′(x∗) = C ′(x). Thus x → y ∈ C ′(x). The definition of C ′(x) = C ′(x∗) shows 
that the map y �→ (x → y) is bijective on C ′(x), with inverse y �→ (x∗ → y).

Now let x, y ∈ S1(X) with y ∈ C(x) � {x} be given. For any z ∈ C(x) � {y} this 
implies that 1 = x∗ → x∗ = (x → y) → x∗ � (x → y) → (x → z) = (y → x) → (y → z). 
Hence y → x � y → z, and thus

∀ z ∈ C(x) � {y} : y → x = y → z.

Suppose that x ∈ C ′(y). Then y → z = y → x ∈ C ′(y), which implies that z ∈ C ′(y). 
Hence x = z, and therefore, C(x) = {x, y}. Since C(x∗) = C(x), this gives x∗ 	= y. So 
we get x = x∗ = x → y. By (7), this yields y∗ � y → (x → y) = y → x. Hence y → x =
y∗ ∈ C(y), a contradiction. So we have x ∈ C(y). Consequently, y∗ � y → x = y → z

for all z ∈ C(x) � {y}, which proves that C(x) � {y} ⊂ C(y). Thus C(x) ⊂ C(y) for all 
y ∈ C(x). By symmetry, this shows that C(y) = C(x). Therefore, (7) and (9) imply that 
the C(x) are invariant. �
Remark. The preceding proof shows that (7) can almost be replaced by (9). Namely, if 
x, y ∈ S1(X) satisfy y ∈ C(x) and x /∈ C(y), then C(x) = {x, y} and x = x∗. If (7)
holds, we have seen that such a configuration is impossible.

Corollary. Let X be a discrete L∗-algebra. For x, y ∈ X,

x → y = y → x =⇒ x = y.

Proof. Suppose that x 	= y and x → y = y → x. Then x, y ∈ S1(X) and C(x) = C(y). 
Hence x∗ = x → y = y → x = y∗, contrary to x 	= y. �

By Proposition 1, the C(x) of a discrete L∗-algebra X give rise to L∗-subalgebras 
C̃(x) := C(x) 
{1}, the components of X. The reduced components C(x) form a partition

S1(X) = 

x∈Δ

C(x),

with a representative system Δ for the C(x). Being invariant under y �→ (z → y), the 
components act on each other, and any union of components is an L∗-subalgebra of X. 
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The whole structure of X is given by the mutual action of the components. This will 
give the abstract basis for metacommutation in the next section.

The structure of a single component is very simple. Such an L∗-algebra C̃(x) will be 
called irreducible. For x, y ∈ S1(X), we have

x → y =
{

1 for x = y

x∗ for x 	= y.
(10)

So all what matters is “metacommutation”, the mutual action between the components, 
and the coherence condition (1) for triples of components. The next result characterizes 
discrete L∗-algebras with two components.

Proposition 2. Let X be a set with a partition X = X1 
 X2 into non-empty subsets, 
invariant under an involution x �→ x∗ of X. Let → be a binary operation on X̃ := X
{1}
with logical unit 1 satisfying Eq. (10) for the Xi. Assume that xi → xj ∈ Xj holds for 
xi ∈ Xi, xj ∈ Xj, and i 	= j, with permutations xj �→ (xi → xj). Then X̃ is a discrete 
L∗-algebra with reduced components Xi if and only if for xi ∈ Xi and i 	= j,

xj = x∗
i → (xi → xj) (11)

(xi → xj)∗ = (xj → xi) → x∗
j . (12)

Proof. It is easily checked that Eq. (10) makes any component into an L∗-algebra. Unless 
the variables x, y, z in Eq. (1) are all distinct and 	= 1, Eq. (1) reduces to the properties 
of 1 as a logical unit. So we can assume that x, y, z are distinct and in X. Up to symmetry, 
there are just two possibilities for x, y, z. Either x, y ∈ X1 and z ∈ X2, or x ∈ X1 and 
y, z ∈ X2. The first case then states that the right-hand side of Eq. (11) does not depend 
on xi, while the second case gives Eq. (12). If X̃ is an L∗-algebra, Eq. (11) follows by (8). 
Conversely, (7) and (8) easily follow by Eqs. (10) and (11). �
Corollary 1. Let X be a discrete L∗-algebra. The map (x, y) �→

(
(x → y)∗, (y → x)∗

)
is 

an involution on X ×X outside the diagonal.

Proof. If x, y ∈ X belong to distinct components, Eq. (12) gives

(x → y)∗ → (y → x)∗ = x∗,

which proves the claim for this case. Thus, assume that x and y belong to the same 
component, and x 	= y. Then Eq. (10) shows that (x → y)∗ = x∗∗ = x. So the map is 
identical in this case. �
Corollary 2. The involution x �→ x∗ of a discrete L∗-algebra X admits a unique extension 
to an anti-automorphism of S(X) as a monoid.
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Proof. We show first that the implication

xy = zt =⇒ y∗x∗ = t∗z∗ (13)

holds for x, y, z, t ∈ S1(X). For y = t, we have x = z, and there is nothing to prove. So 
we assume that xy = zt and y 	= t. Then x = y → xy = y → zt � y → t. Since y 	= t, 
this yields x = y → t. Hence (t → y)t = (y → t)y = xy = zt, and thus t → y = z. 
If C(y) = C(t), we infer that x = y∗ and z = t∗, and (13) follows immediately. Thus, 
assume that C(y) 	= C(t). Then Eq. (12) gives x∗ = (y → t)∗ = (t → y) → t∗ = z → t∗. 
By Eq. (11), this implies that t∗ = z∗ → x∗. Similarly, y∗ = x∗ → z∗. Hence Eq. (6)
yields y∗x∗ = (x∗ → z∗)x∗ = (z∗ → x∗)z∗ = t∗z∗, which proves (13). Thus (xy)∗ can be 
defined unambiguously to be (xy)∗ := y∗x∗.

Now we extend (13) and the definition of (xy)∗ inductively to x, z ∈ Sn(X) for all 
n ∈ N. Assume that this has been done for n � m, and let a, b ∈ Sm(X) and x, y ∈ S1(X)
with ax = by be given. We have to verify x∗a∗ = y∗b∗.

Since a � x → by � x → y, we have ax =
(
a ∧ (x → y)

)
x =

(
(x → y) → a

)
(x → y)x. 

Similarly, by =
(
(y → x) → b

)
(y → x)y. Therefore, (x → y)x = (y → x)y implies that 

(x → y) → a = (y → x) → b =: c. Thus a = c(x → y) and b = c(y → x). The inductive 
hypothesis gives a∗ = (x → y)∗c∗ and b∗ = (y → x)∗c∗. Hence x∗a∗ = x∗(x → y)∗c∗ =
((x → y)x)∗c∗ = (x ∧y)∗c∗. By symmetry, this proves the claim. For x1, . . . , xn ∈ S1(X), 
we obtain (x1 · · ·xn)∗ = x∗

n · · ·x∗
1, which yields (ab)∗ = b∗a∗ for all a, b ∈ S(X). �

2. Metacommutation for discrete L∗-algebras

Recall that a group G with a lattice order is said to be a right �-group [32] if the right 
multiplications are lattice automorphisms, that is,

a � b =⇒ ac � bc

holds for all a, b, c ∈ G. Of course, this implies that (a ∨b)c = ac ∨bc and (a ∧b)c = ac ∧bc. 
The set

G− := {a ∈ G | a � 1}

is called the negative cone of G. By [32], Theorem 1, the negative cone of a right �-group 
G is a self-similar L-algebra with

a → b = ba−1 ∧ 1.

Theorem 1. Let X be a discrete L∗-algebra. Then G(X) is a right �-group, and S(X) is 
an L∗-algebra which can be identified with the negative cone of G(X). The underlying 
lattice of G(X) is modular.
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Proof. To show that S(X) is a modular lattice, we apply [32], Proposition 19. For 
x, y, u, v ∈ S1(X) with x 	= y and (x → y) → u = (y → x) → v we have to find 
an element z ∈ S(X) with x → z = u and y → z = v. (We use the opportunity to cor-
rect an inaccuracy: [32], Proposition 19, has z ∈ X instead of z ∈ S(X). Alternatively, 
one could replace (x → y) → u = (y → x) → v by (x → y) → u = (y → x) → v < 1.)

Case 1: C(x) = C(y). Then x∗ → u = y∗ → v. If x∗ = u, then y∗ = v, and z := x ∧ y

satisfies x → z = u and y → z = v. Thus, by symmetry, we can assume that x∗ 	= u

and y∗ 	= v. Suppose that C(x) = C(u). Then x = x∗ → u = y∗ → v, which yields 
v � y → (y∗ → v) = y → x = y∗, a contradiction. Thus C(u) 	= C(x) = C(y) 	= C(v). 
Then z := x∗ → u = y∗ → v meets the requirement.

Case 2: C(x) 	= C(y). Assume first that C(u) = C(y). If u = x → y, we obtain 
y → x = v, and we can choose z := x ∧y. So let us assume that u 	= x → y and v 	= y → x. 
By Proposition 2, we have (y → x) → y∗ = (x → y)∗ = (x → y) → u = (y → x) → v. 
If C(v) = C(x), then (x → y)∗ = (y → x)∗, which yields x = y by the corollary 
of Proposition 1. Thus C(v) 	= C(x), which yields y∗ = v by virtue of Proposition 2. 
Whence z := x∗ → u satisfies x → z = u and y → z = y → (x∗ → u) = y∗ = v.

Next assume that C(u) 	= C(y) and C(v) 	= C(x). Then

u = (x → y)∗ →
(
(y → x) → v

)
=

(
(y → x) → y∗

)
→

(
(y → x) → v

)
=

(
y∗ → (y → x)

)
→ (y∗ → v) = x → (y∗ → v).

So C(u) = C(v), and we can choose z := x∗ → u = y∗ → v. Thus S(X) is modular.
By the corollary of Proposition 1 and Corollary 1 of Proposition 2, X is non-degenerate 

in the sense of [32], Definition 11. Therefore, [32], Theorems 1 and 4 imply that S(X) is 
the negative cone of a modular right �-group G. So G ∼= G(X).

It remains to verify that S(X) is an L∗-algebra. For x, y ∈ S1(X) with C(x) 	= C(y), 
let y �→ xy be the inverse of the map y �→ (x → y). Furthermore, we set

xy := xy → y

for C(x) 	= C(y). The substitution x �→ xy in Eq. (6) then gives

xy = xy · xy. (14)

Furthermore, y→xy = (y → x)y → y = x → y. So Proposition 2 gives (y→x)∗(y→xy
)

=(
(y → x)∗

)x→y → (x → y) =
(
(x → y)∗ → (y → x)∗

)
→ (x → y) = x∗ → (x → y) = y. 

Thus

x∗(xy) = y.

For x, y ∈ S1(X) with C(x) = C(y), Eq. (6) gives

x∗x = y∗y. (15)
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Next we show that the elements x∗x with x ∈ S1(X) commute with all y ∈ S1(X). 
If C(x) = C(y), this follows by Eq. (15). So let us assume that C(x) 	= C(y). By 
Proposition 2 and Eqs. (14) and (15), we have

yx∗x = yx∗ · yx∗ · x = (yx
∗ → x∗) · (x → y)x =

(
(x → y) → x∗)(y → x)y

= (y → x)∗(y → x)y = x∗xy.

Thus x∗x commutes with every element of S(X). More generally,

a∗a · b = b · a∗a (16)

holds for all a, b ∈ S(X). Assume that this has been verified for some a ∈ S(X). For any 
x ∈ S1(X), this implies that (xa)∗(xa)b = a∗x∗xab = a∗abx∗x = ba∗ax∗x = ba∗x∗xa =
b(xa)∗(xa). By induction, this proves Eq. (16). Now (7) and (8) follow immediately for 
all a, b ∈ S(X). �

For a right �-group G, an element a ∈ G is said to be normal [32] if

b � c ⇐⇒ ab � ac

holds for all b, c ∈ G. The set N(G) of normal elements of G is called the quasi-centre
of G. The centre of G will be denoted by Z(G). By [33], Proposition 5, N(G) is an 
�-group.

Corollary 1. Let X be a discrete L∗-algebra. The quasi-centre of G(X) is a free abelian 
group, generated by the elements x∗x with x ∈ S1(X) and x 	� y → x for some y ∈ X, and 
the elements x ∈ S1(X) with x � y → x for all y ∈ X. In the latter case, C(x) = {x, x∗}
and xyx−1 = x → y for all y ∈ C ′(x).

Proof. By Eq. (16), a∗a ∈ Z(G(X)) for all a ∈ S(X). Since N(G(X)) is an �-group, 
Birkhoff’s theorem [2] implies that N(G(X)) is free abelian. Let a ∈ N(G(X)) be max-
imal with a < 1. Then a � x for some x ∈ S1(X). Assume first that x � y → x for all 
y ∈ X. Then C(x) = {x, x∗}, and Eq. (14) gives xy = xy · xy = (xy → y)x = (x → y)x
for all y ∈ C ′(x). Hence xyx−1 = x → y, and x−1yx = yx. So the negative cone of 
G(X) is invariant under conjugation with x, which shows that x is normal, and a = x. 
Otherwise, there is an element y ∈ X with x 	� y → x. Then ay � a � x implies that 
a � y → x. By Eq. (15), this yields a � x ∧ (y → x) = x∗x. Since x∗x is normal, 
a = x∗x. �
Remark. Corollary 1 shows that the structure group of a discrete L∗-algebra X can be 
regarded as a generalized Garside group [13,11,12] in the sense that instead of a single 
Garside element, there are enough normal elements, so that every element of G(X) is 
majorized by a normal element. By Corollary 1, we have the following
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Corollary 2. Let X be a discrete L∗-algebra. Then x ∈ S1(X) is central in G(X) if 
and only if x � y → x and y � x → y for all y ∈ X. The centre of G(X) is a 
free abelian group, generated by the x ∈ S1(X) ∩ Z(G(X)) and the elements x∗x with 
x ∈ S1(X) � Z(G(X)).

The next corollary shows that the operation → of an L∗-algebra generalizes meta-
commutation of Hurwitz primes:

Corollary 3. Let X be a discrete L∗-algebra. For any x, y ∈ S1(X) with C(x) 	= C(y), 
there is a unique pair of elements xy ∈ C(y) and xy ∈ C(x) with xy = xy · xy.

Proof. The existence follows by Eq. (14). To verify uniqueness, assume that xy = x′y′

holds for some x′ ∈ C(x) and y′ ∈ C(y). Then xy � y′, which gives x � y → y′. Since 
x 	� y∗, we obtain y � y′. Whence y = y′. �
Example 1. Let X̃ be the discrete L∗-algebra with two reduced components X1 = {x, x∗}
and X2 = {y, y∗}, such that the elements of X1 act non-trivially on X2, and y, y∗ act 
trivially on X1. By Proposition 2, it is readily checked that X̃ is an L∗-algebra. By 
Corollary 1, the quasi-centre of X̃ is generated by x, x∗, and y∗y, while Corollary 2
shows that the centre is generated by x∗x and y∗y.

Example 2. Recall that a bounded lattice X with an involutive anti-automorphism 
x �→ x′ is said to be orthomodular [21,17,20] if x ∧ x′ = 0 and

x � y =⇒ x ∨ (x′ ∧ y) = y

holds for all x, y ∈ X. By [34], Theorem 1, orthomodular lattices can be regarded as a 
special class of L-algebras, with the operation

x → y := (x ∧ y) ∨ x′.

By Definition 1, every orthomodular lattice X is an L∗-algebra with x∗ := x′.

The next example shows that Theorem 1 does not extend to non-discrete L∗-algebras.

Example 3. An L-algebra X which satisfies x � y → x for all x, y ∈ X is said to a 
KL-algebra [29]. By [29], Proposition 13, the structure group G(X) of a KL-algebra 
X is a partially ordered group, and the natural map q : X → G(X) is monotone. For 
example, every partially ordered set Ω with greatest element 1 is a KL-algebra with 
x → y := y for x 	� y in Ω. By [29], Theorem 4, the natural map q : Ω → G(Ω) is not 
injective unless S1(Ω) is an antichain.
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Let us call an L∗-algebra X self-adjoint if x∗ = x for all x ∈ X. By Definition 1, every 
KL-algebra is a self-adjoint L∗-algebra. So the map q : X → G(X) need not be injective 
for a non-discrete L∗-algebra X.

3. The L∗-algebra of Hurwitz primes

Now we apply the results of Section 2 to Hurwitz quaternions. Let H = R ⊕Ri ⊕Rj⊕Rk

be the skew-field of quaternions with its subring

H := Z�⊕ Zi⊕ Zj ⊕ Zk

of Hurwitz quaternions [19], where

� := 1
2(1 + i + j + k).

Thus H is a maximal order in QH (see [27]). The reduced norm [27] of an element 
α = t + xi + yj + zk ∈ H is given by

N(α) = αα = t2 + x2 + y2 + z2,

where α := t −xi −yj−zk. Hurwitz [19] proved that H is a left and right principal ideal 
domain, and he determined its unit group

H× = {±1,±i,±j,±k,
1
2(±1 ± i± j ± k)}

of order 24. An element ε ∈ H is a unit if and only if N(ε) = 1, and π ∈ H is prime if and 
only if N(π) is a rational prime. This prime number p := N(π) is a multiple of π, which 
is also expressed by saying that π is lying over p. Conway and Smith [8] have shown 
that factorization into primes in H is unique up to three phenomena. The first, obvious 
one, is migration of units between adjacent factors. Secondly, the primes over the same 
rational prime p come in conjugate pairs. If π and σ are lying over p, then ππ = σσ, 
and the passage from ππ to σσ is called recombination. The third phenomenon — meta-
commutation — is the most interesting one. It states that any pair of primes π, σ ∈ H, 
lying over distinct odd rational primes, satisfies πσ = σ′π′ for a unique pair of primes 
π′, σ′ ∈ H with N(π) = N(π′) and N(σ) = N(σ′), up to migration of units.

The equation πσ = σ′π′ can be interpreted as follows. It says that modulo p := N(π), 
right multiplication by σ maps the left ideal Hπ to Hπ′. Hurwitz [19] already proved

H/pH ∼= M2(Fp)

for odd p. So H/pH is a semisimple left H-module of length two. Since M2(Fp) is Morita 
equivalent to Fp, there are exactly p +1 left ideals Hπ with Hp � Hπ � H, according to 
the points of the projective line P1(Fp). Let Π(p) denote the set of these left ideals. As 



406 W. Rump / Journal of Number Theory 190 (2018) 394–413
right multiplication by σ is linear, it induces an automorphism ϕσ
p of P1(Fp) which gives 

rise to a permutation Φσ
p on Π(p). The following result is due to Cohn and Kumar [7].

Proposition 3. For distinct odd primes p, q ∈ Z and a prime σ ∈ H over q, the sign of 
the permutation Φσ

p is given by the Legendre symbol 
(
q
p

)
.

This follows by the commutative diagram

GL2(Fp)
det

sgn

F×
p(

p

)
C2 F×

p /(F×
p )2

since detϕσ
p = N(σ) = q (see [16] for a detailed argument).

To get rid of the unit factors of Hurwitz primes, we modify Hurwitz’ concept of 
primary quaternions. With ζ := i + j, we have ζ2 = −2. Hurwitz [19] proved that half 
of the units in H× can be embedded into H/2H = H/ζ2H. In modern language, he 
found that H/2H is a local algebra with radical ζH/2H and H/ζH ∼= F4. (Note that 
ζH = Hζ.)

Now consider the local ring H/ζ3H. Its unit group has |H/ζ3H| − |Rad(H/ζ3H)| =
64 − 16 = 48 elements. We show that

(H/ζ3H)× ∼= H× × 〈i + j + k〉, (17)

where 〈i +j+k〉 is of order 2 in (H/ζ3H)× since (i +j+k)2 = −3 = 1 −ζ4. Furthermore, 
H× embeds into H/ζ3H, and i +j+k = 2� −1 commutes with �, i, j, k modulo ζ3. Indeed, 
i(i + j + k) − (i + j + k)i = 2(k − j) = ζ3(� − 1 − i). By symmetry, this proves (17).

Definition 3. We call α ∈ H �Hζ monic if α− (i + j + k)s ∈ ζ3H for some s ∈ {0, 1}.

With 1 + 2� instead of i + j + k, Hurwitz calls such elements α ∈ H “primary”. Our 
terminology is motivated by the concept of monic polynomial, representing a polynomial 
up to units. Note that for monic α := a + bi + cj + dk ∈ H, the coefficients a, b, c, d
belong to Z. By Definition 3, the set S∗

H of monic elements α ∈ H �Hζ is a submonoid 
of H � {0}. The ramified prime ζ plays a particular part. A simple calculation gives

ζ(a + bi + cj + dk)ζ−1 = a + ci + bj − dk.

Hence ζ(i + j + k)ζ−1 = −(i + j + k) − ζ3. Let us write X∗
H for the set of monic primes 

in H �Hζ. Note that S∗
H is not closed under conjugation α �→ α. Define

α∗ :=
{
α for α ∈ S∗

H

−α for α /∈ S∗
(18)
H
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for α ∈ S∗
H , and ζ∗ := −ζ. Thus α �→ α∗ is an involution of S∗

H which satisfies

(αβ)∗ = β∗α∗.

The ramified prime ζ comes as a pair ±ζ of associated primes, a “double point” in the 
full set XH := X∗

H ∪ {±ζ} of Hurwitz primes. For monic primes of H, the sign in (18)
can be determined explicitly:

Proposition 4. For π ∈ XH with p := N(π), we have π∗ =
(−1

p

)
π. If p is odd, π−1 ∈ ζ3H

if and only if 
(−1

p

)
= 1.

Proof. We can assume that p is odd. If π − 1 ∈ ζ3H, then π ∈ X∗
H and π − 1 ∈ ζ3H, 

which yields p − 1 = ππ − 1 ∈ ζ3H ∩ Z = 4Z. Otherwise, π − (i + j + k) ∈ ζ3H, which 
implies that π /∈ XH and p − 3 ∈ ζ3H ∩ Z = 4Z. So the sign in (18) with α = π is given 
by the Legendre symbol 

(−1
p

)
. �

In particular, if p is an odd rational prime, p∗ :=
(−1

p

)
p ∈ S∗

H . Thus, for an odd 
integer n > 0, either n ∈ S∗

H or −n ∈ S∗
H . Let G∗

H be the subgroup of H× generated 
by S∗

H . Then any element of G∗
H is of the form 1

nα with α ∈ S∗
H and n ∈ S∗

H ∩ Z. We 
endow G∗

H with the partial order

α � β :⇐⇒ ∃ γ ∈ S∗
H : α = γβ ⇐⇒ Hα ⊂ Hβ. (19)

To state our second main theorem, we adjoin a greatest element 1 to XH to obtain the 
subsets

X̃H := XH ∪ {1}, X̃∗
H := X∗

H ∪ {1} (20)

of H, where 1 stands for the “infinite Hurwitz prime”.

Theorem 2. The subset X̃∗
H of S∗

H is a discrete L∗-algebra with structure group G∗
H such 

that S∗
H = (G∗

H)−.

Proof. Since H is a left principal ideal domain, the partial order (19) makes G∗
H into 

a modular lattice. Thus G∗
H is a right �-group with S∗

H = (G∗
H)−, and X∗

H consists of 
the coatoms of S∗

H . By [32], Theorem 1, the negative cone S∗
H is a self-similar L-algebra 

with

α → β := βα−1 ∧ 1 (21)

such that α � β ⇐⇒ α → β = 1. By [32], Proposition 5, the modularity of the lattice G∗
H

implies that X∗
H is closed with respect to the operation (21). Hence X̃∗

H is an L-algebra 
with self-similar closure S∗

H , and G∗
H is the structure group of X̃∗

H . Since π∗π is central 
for all π ∈ X∗

H , the inequalities (7) and (8) hold in X̃∗
H . Thus X̃∗

H is an L∗-algebra. �
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By Corollary 3 of Theorem 1, we infer that metacommutation of Hurwitz primes is a 
quantum phenomenon which can be explained by the L∗-algebra structure of X̃∗

H :

Corollary 1. For any pair π, σ ∈ X∗
H with N(π) 	= N(σ) there are unique primes πσ and 

πσ in X∗
H with N(πσ) = N(π) and N(πσ) = N(σ) such that

π · σ = πσ · πσ. (22)

Corollary 2. The operation in the L∗-algebra X̃∗
H is given by

π → σ :=

⎧⎪⎪⎨⎪⎪⎩
1 for π = σ

π∗ for N(π) = N(σ) and π 	= σ

σπ∗ for N(π) 	= N(σ).

This follows immediately by Proposition 2. Theorem 1 with its Corollary 1 give

Corollary 3. The structure group G∗
H is a noetherian modular right �-group. The quasi-

centre of G∗
H satisfies N(G∗

H) = G∗
H ∩Q = Z(G∗

H).

Now we show the L∗-algebra structure of X∗
H naturally extends to XH to cover the 

“double point” ±ζ ∈ XH which cannot be handled appropriately within H×. For π ∈ X∗
H

with N(π) = p we define ζ → ζ∗ := ζ∗ and ζ∗ → ζ := ζ, and

ζ → π :=
(−1

p

)
ζπζ−1, π → ζ :=

(−1
p

)
ζ. (23)

Hence ζ∗ → π =
(−1

p

)
ζ−1πζ = ζ → π and π → ζ∗ =

(−1
p

)
ζ∗. Let Q∗ denote the 

subgroup of Q× generated by 2 and all p∗ for odd rational primes p. Thus Q∗ is of 
index 2 in Q×.

Theorem 3. With Eqs. (23), XH is a discrete L∗-algebra with quasi-centre N(G(XH)) =
Z(G(XH)) ∼= Q∗.

Proof. Let π, σ ∈ X∗
H be given. Up to sign, conjugation with ζ is a lattice automorphism 

of S∗
H . So we have (ζ → π) ∧ (ζ → σ) = ±ζ(π ∧ σ)ζ−1. Hence(
(ζ → π) → (ζ → σ)

)
(ζ → π) = ±ζ(π → σ)ζ−1 · ζπζ−1 =

(
ζ → (π → σ)

)
(ζ → π).

Multiplying from the right with (ζ → π)−1 gives

(ζ → π) → (ζ → σ) = (π → ζ) → (π → σ).

The same holds if ζ is replaced by ζ∗. For π, σ ∈ X∗
H with N(π) = p and N(σ) = q, we 

have (π → σ) → (π → ζ) =
(−1)(−1)ζ = (σ → π) → (σ → ζ), and
p q
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(ζ∗ → π) → (ζ∗ → ζ) =
(−1

p

)
ζ = π → ζ = (π → ζ∗) → (π → ζ).

Furthermore, (ζ → ζ∗) → (ζ → π) = ζ∗ → (ζ → π) = π = (ζ∗ → ζ) → (ζ∗ → π), 
which proves that XH is an L-algebra. As (7) and (8) trivially hold, XH is a discrete 
L∗-algebra. The rest follows by Corollary 1 of Theorem 1. �
Remarks. 1. With the substitution π �→ (σ → π), the metacommutation equation (22)
becomes

(σ → π)σ = (π → σ)π,

which coincides with Eq. (6). Note that in contrast to Eq. (22), this equation holds for 
all π, σ ∈ X∗

H , without restriction on the norm.
2. In particular, Theorem 3 shows that for any integer n ∈ Q∗, the primes in XH

which divide n generate a Garside subgroup of G(XH).

4. The cycles of the metacommutation maps

Let p be an odd rational prime. Choose a, b ∈ Z with

a2 + b2 ≡ −1 (mod p). (24)

The matrices

i =
(

0 1
−1 0

)
, j =

(
a b
b −a

)
, k =

(
b −a
−a −b

)
satisfy i2 = j2 = k2 = ijk = −1. They give a representation

�p : H � Hp := M2(Fp) (25)

with Ker �p = Hp. The monic Hurwitz primes π0, . . . , πp over p correspond to the non-
zero proper left ideals Hp�p(πi) of Hp. For each i, the rows of the matrices in Hp�p(πi)
generate a one-dimensional subspace of F2

p, that is, a point in P1(Fp). Now if σ is a 
monic Hurwitz prime over an odd rational prime q 	= p, then πiσ = πiσ · πσ

i implies that 
Hπi · σ = Hπσ

i + Hp. Therefore, the metacommutation map πi �→ πσ
i is given by the 

standard action of �p(σ) on P1(Fq).
For p = 3, the representation (25) induces an isomorphism between the unit group 

H× and the binary tetrahedral group SL2(F3). The representing matrix of an arbitrary 
Hurwitz quaternion is

�p(t + xi + yj + zk) =
(

t + ya + zb x + yb− za
−x + yb− za t− ya− zb

)
.
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As is well known and easily checked, �p maps the reduced trace 2t of t + xi + yj + zk to 
the trace of the matrix, and the reduced norm to the determinant.

To determine the p + 1 primes π = t + xi + yj + zk lying over p, we have to collect 
the solutions of the equation

p = t2 + x2 + y2 + z2. (26)

To study the metacommutation action of π on some P1(Fq), it is enough to know ±π. 
Thus, besides Eq. (26), it suffices to make sure that π ≡ 1 (mod 2). This can be checked 
easily, the only non-obvious element in 2H being 2� = 1 + i + j + k. Thus 1 ≡ i + j + k

and 1 + i ≡ j + k modulo 2. For example, p = 17 gives the positive solutions

(t, x, y, z) = (1, 4, 0, 0), (1, 0, 4, 0), (1, 0, 0, 4), (3, 2, 2, 0), (3, 2, 0, 2), (3, 0, 0, 2).

If t is assumed to be positive in all cases, 4 can be taken as ±4 in the first three 
solutions, while the two 2’s in the second triple can be replaced by ±2. So there are 
3 · 2 + 3 · 4 = 17 + 1 monic primes over p = 17. For small primes, the positive solutions 
π ≡ 1 (mod 2) of Eq. (26) are

p positive solutions
3 0111
5 1200, 1020, 1002
7 2111
11 0113, 0131, 0311
13 3200, 3020, 3002, 1222
17 1400, 1040, 1004, 3220, 3202, 3002
19 4111, 0133, 0313, 0331
23 2331, 2313, 2133
29 5200, 5020, 5002, 3420, 3402, 3240, 3042, 3204, 3024
31 2511, 2151, 2115, 2333
37 1600, 1060, 1006, 5222, 1442, 1424, 1244

So p = 37 allows three solutions up to symmetry, 7 positive solutions, the first three with 
multiplicity 2, the others with multiplicity 8. For p = 7, the monic primes are

π1 = 2 − i− j − k π2 = 2 − i + j + k π3 = 2 + i− j + k π4 = 2 + i + j − k

π∗
1 = −2 − i− j − k π∗

2 = −2 − i + j + k π∗
3 = −2 + i− j + k π∗

4 = −2 + i + j − k

With a = −5 and b = 3, the corresponding matrices are

π1 =
( 4 −9
−7 0

)
π2 =

(0 7
9 4

)
π3 =

(10 3
1 −6

)
π4 =

(−6 −1
−3 10

)
π∗ =

( 0 −9) π∗ =
(−4 7) π∗ =

(6 3 )
π∗ =

(−10 −1) (27)

1 −7 −4 2 9 0 3 1 −10 4 −3 6
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For demonstration purposes, we have chosen a and b to satisfy Eq. (24) modulo 5 · 7, so 
that they can be used simultaneously for p = 5 and p = 7. If we abbreviate (1 : c) with 
c ∈ F7 by c, and (0 : 1) by ∞, the points in P1(F7) associated with the matrices (27) are

0 1 2 3 4 5 6 ∞
π∗

2 π3 π2 π1 π∗
3 π∗

4 π4 π∗
1

To let the primes over 7 act on the primes over 5, the matrices (27) can be reduced 
modulo 5, and the action coincides with the right action on P1(F5). An easy calculation 
shows that the cycles of the action on P1(F5) are as follows (the π∗

i give the inverse 
cycles):

3 1

4

0∞

2

�

�

�
��

�
��

�
��

�
�	

π1

3 4

1

∞0

2

�

�

�
��

�
��

�
��

�
�	

π2

3 2

1

4∞

0

�

�

�
��

�
��

�
��

�
�	

π3

3 2

4

10

∞

�

�

�
��

�
��

�
��

�
�	

π4

Here the arrow m → n in the first hexagon means that π1 → m = n in the L∗-algebra 
structure of P1(F5).

In general, there may be fixed points. Forsyth et al. [16] have shown that except fixed 
points, all cycles in a metacommutation permutation have the same length. So it remains 
to determine the size of the circles to get the complete cycle structure. (In the preceding 
example, the cycles have maximal length, so that for each πi there is just one cycle.)

Assume that p and q are distinct odd primes. For Hurwitz primes π, σ over p and q, 
respectively, we consider the L∗-algebra action σ �→ (π → σ). If t denotes the half-trace 
of π, the characteristic polynomial of �q(π) is λ2 − 2tλ + p = 0. So the eigenvalues are

λ = t±
√

t2 − p.

With respect to the discriminant d := t2 − p there are three cases:

0.) �q(π) elliptic (no fixed points): 
(
d
q

)
= −1.

1.) �q(π) parabolic (1 fixed point): q|d.
2.) �q(π) hyperbolic (2 fixed points): 

(
d
q

)
= 1.

The three cases are closely related to the structure of PGL2(Fq). Recall that the order 
of PGL2(Fq) is (q + 1)q(q − 1). Let m be the size of the cycles in the permutation given 
by π acting on P1(Fq), and let n be the number of cycles.

Case 0: The eigenvalues of �q(π) form a pair of conjugate elements λ, λ ∈ Fq2 . So the 

order of π in PGL2(Fq) coincides with the order of the matrix 
(
λ 0
0 λ

)
. Now 

(
λ 0
0 λ

)n

is 
a scalar matrix if and only if λn = λ

n. So the size of the cycles is
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m = order of λ in F×
q2/F

×
q ,

and mn = q + 1. The sign of the permutation π is 
(
p
q

)
= (−1)n.

Case 1: The eigenvalue λ = t of �q(π) has multiplicity 2 and gives the single fixed 
point. Hence mn = q, and m > 1 implies that m = q. So there is one cycle of order q. 
The sign of the permutation π is 

(
p
q

)
= 1.

Case 2: As there are two fixed points, mn = q− 1. There are two distinct eigenvalues 
λ1, λ2 ∈ Fq. So the size of the cycles is given by

m = order of λ1
λ2

in F×
q .

Here we also have 
(
p
q

)
= (−1)n.

Although this sign is the same for all π with N(π) = p, the cycle structure depends 
on the trace, as the following example shows.

Example 4. For p = 13, the half-trace t may be 1 or 3. Take q = 37. Then both cases 
are hyperbolic. For t = 1, the eigenvalues are λ = 1 ±

√
−12 = 1 ± 5 (modulo 37). So 

we have λ1
λ2

= −6
4 = 17 (modulo 37). The order of 17 modulo 37 is 36. So there are two 

fixed points and one cycle of order 36.
For t = 3, the eigenvalues are λ = 3 ±

√
−4 = 3 ± 12. Thus λ1

λ2
= 15

−9 = 23. Now the 
order of 23 modulo 37 is 12. So there are three cycles of order 12. The parity of n is the 
same in both cases, namely, 

( 13
37
)

= −1.
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