期刊论文详细信息
JOURNAL OF NUMBER THEORY 卷:232
On Drinfeld modular forms of higher rank IV: Modular forms with level
Article
Gekeler, Ernst-Ulrich1 
[1] Univ Saarland, Fachrichtung Math, Campus E2 4, D-66123 Saarbrucken, Germany
关键词: Drinfeld modular forms;    Eisenstein series;    Compactification of moduli schemes;   
DOI  :  10.1016/j.jnt.2019.04.019
来源: Elsevier
PDF
【 摘 要 】

We construct and study a natural compactification (M) over bar (r) (N) of the moduli scheme M-r (N) for rank-r Drinfeld F-q [T]-modules with a structure of level N is an element of F-q [T]. Namely, (M) over bar (r) (N) = Proj Eis(N), the projective variety associated with the graded ring Eis(N) generated by the Eisenstein series of rank r and level N. We use this to define the ring Mod(N) of all modular forms of rank r and level N. It equals the integral closure of Eis(N) in their common quotient field (F) over tilde (r) (N). Modular forms are characterized as those holomorphic functions on the Drinfeld space Omega(r) with the right transformation behavior under the congruence subgroup Gamma(N) of Gamma = GL(r, F-q[T]) (weak modular forms) which, along with all their conjugates under Gamma/Gamma(N), are bounded on the natural fundamental domain F for Gamma on Omega(r). (C) 2019 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jnt_2019_04_019.pdf 1783KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次