期刊论文详细信息
JOURNAL OF NUMBER THEORY 卷:219
Satake compactification of analytic Drinfeld modular varieties
Article
Haberli, Simon1 
[1] Inst Res Fundamental Sci IPM, Sch Math, Tehran, Iran
关键词: Function field arithmetic;    Drinfeld modules;    Drinfeld moduli schemes;    Drinfeld upper half space;    Drinfeld modular forms;    Compactification;    Rigid analytic geometry;   
DOI  :  10.1016/j.jnt.2020.09.018
来源: Elsevier
PDF
【 摘 要 】

We construct a normal projective rigid analytic compactification of an arbitrary Drinfeld modular variety whose boundary is stratified by modular varieties of smaller dimensions. This generalizes work of Kapranov. Using an algebraic modular compactification that generalizes Pink and Schieder's, we show that the analytic compactification is naturally isomorphic to the analytification of Pink's normal algebraic compactification. We interpret analytic Drinfeld modular forms as the global sections of natural ample invertible sheaves on the analytic compactification and deduce finiteness results for spaces of such modular forms. (c) 2020 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jnt_2020_09_018.pdf 1276KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:0次