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We construct a normal projective rigid analytic compactifica-
tion of an arbitrary Drinfeld modular variety whose bound-
ary is stratified by modular varieties of smaller dimensions. 
This generalizes work of Kapranov. Using an algebraic modu-
lar compactification that generalizes Pink and Schieder’s, we 
show that the analytic compactification is naturally isomor-
phic to the analytification of Pink’s normal algebraic com-
pactification. We interpret analytic Drinfeld modular forms 
as the global sections of natural ample invertible sheaves on 
the analytic compactification and deduce finiteness results for 
spaces of such modular forms.
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1. Introduction

Consider any global function field F of characteristic p > 0 and any place ∞ of F . 
Let A ⊂ F be the subring of elements that are regular outside of ∞. The basic example 
for A is the polynomial ring over a finite field. Denote by E the completion of F with 
respect to ∞. Let C be any non-Archimedean complete algebraically closed valued field 
containing E as a valued subfield.

For any module M over any ring R and any ring extension R ⊂ R′ let

MR′ := M ⊗R R′

denote the module over R′ obtained by extension of scalars.

Drinfeld modular varieties and modular forms
Drinfeld A-modules with level structure, introduced by Drinfeld [12] in 1974, are a 

function field analogue to elliptic curves with level structure.
Let d ≥ 1 be any positive integer. Consider any ring R over F and denote by ι : A → R

the structure morphism. Denote by R{τ} ⊂ R[T ], with τ := T p, the subgroup of additive 
polynomials and equip it with the ring structure for which multiplication is given by 
composition. A Drinfeld A-module of rank d over R is a ring homomorphism

ϕ : A → R{τ}, 0 �= a �→ ϕa =
∑

ϕa,iτ
i (1)
0≤i≤d·deg(a)
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with ϕa,0 = ι(a) and ϕa,d·deg(a) ∈ R×, where deg(a) := dimFp
(A/(a)). Consider any 

non-zero non-unital t ∈ A. Let V be a free (A/t)-module of rank d. A level (t) structure
for such a ϕ is a map λ : V → R with λ(V \ {0}) ⊂ R× and

ϕt(T ) = t · T
∏

0�=v∈V

(
1 − T

λ(v)

)

for which the induced map V → Ker(R ϕt−→ R) is an A-linear isomorphism.
Consider any ideal 0 �= I � A. More generally, one defines (see Section 7.1) Drinfeld 

A-modules with level I structures over arbitrary schemes S over F . The functor which 
associates to such an S the set of isomorphism classes of Drinfeld A-modules of rank d
over S with level I structure is then represented by an irreducible smooth affine variety 
Xd

I of dimension d − 1 over F (see [12, Section 5]). Consequently, Xd
I is non-compact if 

d ≥ 2.
Analytically, Drinfeld [12, Section 6] described Xd

I (C) as follows. Consider any non-
zero finite dimensional E-vector space V. Let P rig

V∗
C

be

(HomC(VC , C) \ {0})/C×

with its natural structure of projective rigid analytic variety over C (see Example 2.21). 
Drinfeld’s period domain is the PGL(V)-invariant subset

ΩV ⊂ P rig
V∗

C

of those C×-classes [l] of C-linear maps l : VC → C with Ker(l) ∩V = 0. For any non-zero 
finitely generated projective A-module Λ set ΩΛ := ΩΛE

. Let Λ be such an A-module 
and consider a congruence subgroup Γ ⊂ AutA(Λ), i.e., a subgroup that contains

Γ(J) := Ker(AutA(Λ) → AutA(Λ/JΛ))

for some ideal 0 �= J ⊂ A. Then the quotient

ΩΓ := Γ\ΩΛ

is a rigid analytic variety over C and, if rankA(Λ) = d and Γ = Γ(I), it is naturally 
isomorphic to an irreducible component of the rigid analytic variety associated with 
Xd

I (C). Conversely, any irreducible component arises in this way.
In Section 4 we provide comprehensive proofs of widely known or accepted facts about 

the rigid analytic structure of quotients of ΩV by discrete subgroups of PGL(V) which 
are fundamental for the construction of ΩΓ and its compactification.

In analogy to the classical weak modular forms on the complex upper half space, 
the quotient ΩΓ is naturally equipped with an invertible sheaf OΓ(k) of weak modular 
forms with respect to Γ of any integer weight k. By means of Fourier expansions of 
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weak modular forms at various cusps, i.e., at various irreducible components of modular 
varieties of codimension 1, modular forms may be distinguished. They form a C-subspace

MΓ(k) ⊂ OΓ(k)(ΩΓ).

Fourier expansions were defined and studied by Gekeler [14] and Goss [17,18] mainly in 
the case of Drinfeld A-modules of rank 2, implicitly by Kapranov [25, Proof of Prop. 
1.19] when A is a polynomial ring and in general by Basson, Breuer and Pink [3–6].

We also provide everything required for the definition of Fourier expansions and believe 
to have taken rigorous care of the rigid analysis involved.

Analytic compactification
We construct the Satake compactification Ω∗

Γ of ΩΓ as a Grothendieck ringed space 
roughly as follows. Let Ω∗

Λ denote the disjoint union of the sets ΩL for all direct summands 
0 �= L ⊂ Λ and equip it with the left Γ-action for which any γ ∈ Γ maps any [l] ∈ ΩL

to [γl] ∈ Ωγ(L), where (γl)(v) := l(γ−1v) for all v ∈ γ(L)C . We endow Ω∗
Λ with a certain 

Grothendieck topology which induces the rigid analytic Grothendieck topology on any 
stratum ΩL and which contains ΩΛ as a dense admissible subset. We set

Ω∗
Γ := Γ\Ω∗

Λ

and endow this quotient with the quotient Grothendieck topology. For any orbit O of 
the action (γ, L) �→ γ(L) of Γ on the set of direct summands 0 �= L ⊂ Λ denote by

ΩO ⊂ Ω∗
Γ

the quotient by Γ of the union of the ΩL for all L ∈ O. We further define a sheaf of rings 
O∗

Γ on Ω∗
Γ and a sheaf of graded O∗

Γ-algebras

R∗
Γ =

∑
k≥0

O∗
Γ(k)

on Ω∗
Γ with O∗

Γ(0) = O∗
Γ and such that the O∗

Γ-module O∗
Γ(k) of the homogeneous sections 

of weight k extends the sheaf OΓ(k) of weak modular forms for any k ≥ 0.
If rankA(Λ) = d and Γ = Γ(I), the basic examples of modular forms with respect 

to Γ are the level I Eisenstein series of weight 1 indexed by (A/I)d \ {0}. In that case, 
we directly write down global sections Eα of O∗

Γ(1) for all α ∈ (I−1Λ/Λ) \ {0} which, 
by Theorem 1.1, iii), a posteriori uniquely restrict to these series up to an isomorphism 
I−1Λ/Λ ∼= (A/I)d.

The following results on Ω∗
Γ are in Theorem 9.8.

Theorem 1.1. (Analytic Satake compactification)

i) The Grothendieck ringed space (Ω∗
Γ, O∗

Γ) is an integral normal projective rigid ana-
lytic variety over C containing ΩΓ as a dense admissible subvariety.
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ii) If for some maximal ideal p ⊂ A the image of Γ in AutA(Λ/pΛ) is unipotent, O∗
Γ(k)

is ample invertible for any k ≥ 1.
iii) For any k ≥ 0 the restriction morphism O∗

Γ(k)(Ω∗
Γ) → OΓ(k)(ΩΓ) is injective and 

its image is the space of modular forms MΓ(k).
iv) The graded C-algebra MΓ :=

∑
k≥0 MΓ(k) is finitely generated with MΓ(0) = C

and Ω∗
Γ is the analytification of Proj(MΓ). Moreover, MΓ(k) is a finite dimensional 

vector space over C for any k ≥ 0.
v) Consider any Γ-orbit O = Γ · L �= {0}. With respect to the Zariski topology, the 

subset ΩO ⊂ Ω∗
Γ is irreducible, locally closed and its closure is the union of all ΩΓ·L′

for all direct summands 0 �= L′ ⊂ L.
vi) Consider any direct summand 0 �= L ⊂ Λ and set O := Γ · L and ΓL := {γ′ ∈

AutA(L) | ∃γ ∈ Γ: γ|L = γ′}. The composition of the canonical bijection ΓL\ΩL →
ΩO with the inclusion ΩO ⊂ Ω∗

Γ is a locally closed immersion (in the sense of 
Definition 2.25) of rigid analytic varieties.

Observe that under the map L �→ LF , direct summands of Λ correspond bijec-
tively to vector subspaces of ΛF . The locally closed boundary strata in part v) are 
thus parametrized by the Γ-conjugacy classes of the maximal parabolic subgroups of 
AutF (ΛF ).

We briefly outline the proof of Theorem 1.1. If Γ = Γ(I) and I = (t) for some 
t ∈ A whose divisors in A generate A, parts i), ii) and v) follow by comparison with 
an algebraic compactification (see Theorem 1.6 below); underlying this comparison is a 
projective embedding defined by the Eα. In general, parts i), ii) and v) are then obtained 
by choosing t ∈ A as before small enough such that Γ′ := Γ((t)) ⊂ Γ and using that, by 
construction, Ω∗

Γ is the quotient of Ω∗
Γ′ by the finite group Γ/Γ′, that ΩΓ·L is the image 

under the quotient map of ΩΓ′·L for any 0 �= L ⊂ Λ and that O∗
Γ(k) is the subsheaf of 

O∗
Γ′(k) of (Γ/Γ′)-invariants. For part iii) we use that the restriction morphism factors 

through the restriction morphisms

O∗
Γ(k)(Ω∗

Γ) → O∗
Γ(k)(Ω<2

Γ ) → OΓ(k)(ΩΓ),

where Ω<2
Γ is the union of the ΩO for all Γ-orbits O of direct summands 0 �= L ⊂ Λ

of co-rank < 2; this is a Zariski open admissible subset of Ω∗
Γ whose complement has 

codimension 2. The first restriction morphism is thus bijective by Riemann’s extension 
theorem using that Ω∗

Γ is normal. Moreover, the theory of Fourier expansions shows 
that the second restriction morphism is injective with image MΓ(k). Part iv) follows by 
standard arguments from the previous parts. For part vi), it remains to show that the 
composition induces surjective maps on stalks. In fact, by means of explicit admissible 
neighborhoods in Ω∗

Γ of points in ΩO, we show that locally on the target the composition 
has a left-inverse.

The compactification of all of Xd
I (C) is constructed using adelic language such that 

any of its connected components is isomorphic to some Ω∗
Γ as above. Varying A, d, I
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suitably in fact yields morphisms between the compactifications of the varying modular 
varieties (see [20, Section 7.2]).

When A is the polynomial ring, the topology on Ω∗
Γ induced by the Grothendieck 

topology was already defined by Kapranov in [25], where he further carried out a projec-
tive embedding of Ω∗

Γ using Eisenstein series of high weight and then defined the Satake 
compactification of ΩΓ as the normalization of the image of Ω∗

Γ. Although he did not 
specify the Grothendieck topology itself nor the sheaves O∗

Γ(k), he already argued to-
wards parts iii) along with Goss [16]. In the polynomial case, Gekeler [15] has recently, 
and independently of the work presented here, improved on Kapranov’s approach by 
carrying out an embedding defined by the Eisenstein series of weight 1.

Algebraic compactifications
Using that A is finitely generated, let t ∈ A be such that its divisors

DivA(t) := {a ∈ A| t ∈ (a)}

generate A. Let V be a free A/(t)-module of rank d and set V̊ := V \ {0}.
We obtain a compactification of Xd

(t) which has a modular interpretation and whose 
boundary is stratified by modular varieties of smaller dimensions and whose normaliza-
tion is Pink’s normal compactification. When A is the polynomial ring Fq[t] over a finite 
field Fq, this modular compactification specializes to the one due to Pink and Schieder 
and, in general, it is inspired by their compactification.

Before discussing the modular compactification, we recall Pink’s normal compactifi-
cation. In [29], he introduced the notion of generalized Drinfeld A-module of rank ≤ d

over any scheme S over F . It generalizes the notion of Drinfeld A-module over S in that 
its fibers over the points of S – which are Drinfeld A-modules of the form (1) – are 
allowed to have rank ≤ d rather than only = d. A generalized Drinfeld A-module over S
is weakly separating if for any Drinfeld A-module ϕ over any field extension F ′ ⊃ F at 
most finitely many fibers of the generalized Drinfeld A-module over F ′-valued points of 
S are isomorphic to ϕ.

Theorem 1.2. (Pink [29]) Uniquely up to unique isomorphism, there exist an integral 
normal projective algebraic variety X

d

I over F together with an embedding of Xd
I and 

a weakly separating generalized Drinfeld module on X
d

I extending the universal family 
on Xd

I .

The notion of level structure does not directly generalize to generalized Drinfeld mod-
ules in a satisfying way so as to turn X

d

I in a fine moduli space. For A = Fq[t] and I = (t)
and thus V ∼= Fd

q , Pink and Schieder [31] instead introduced and studied the notion of a 
reciprocal map. Over any ring R over Fq, the injective reciprocal maps are precisely the 
ones that arise from the injective Fq-linear morphisms λ : V → R with λ(V̊ ) ⊂ R× by 
the rule
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ρλ : V̊ → R×, v �→ 1
λ(v) .

The maps ρλ thus obtained are the injective maps ρ : V̊ → R× such that

• ∀α ∈ F×
q , v ∈ V̊ : ρ(α · v) = α−1 · ρ(v),

• ∀v, v′ ∈ V̊ : [v + v′ ∈ V̊ ⇒ ρ(v) · ρ(v′) = ρ(v + v′) · (ρ(v) + ρ(v′))].

A general reciprocal map over R is then defined to be any map ρ : V̊ → R satisfying these 
polynomial conditions. Globally, reciprocal maps are defined more generally as certain 
maps from V̊ to the set of global sections Γ(S, L) of invertible sheaves L on schemes S
over Fq.

Theorem 1.3. (Pink, Schieder [31, Theorems 1.7 and 7.10]) Consider the functor that 
associates with any scheme S over Fq the set of isomorphism classes of reciprocal maps 
V̊ → Γ(S, L) whose induced morphism V̊ → L ⊗OS

k(s) is non-zero for every point s ∈ S. 
It is represented by a normal projective scheme QV over Fq.

Using that a Drinfeld Fq[t]-module over a scheme over F is uniquely determined by a 
level (t) structure, Pink deduced from Theorem 1.3:

Theorem 1.4. ([29, Section 7]) If A = Fq[t], then X
d

(t) equals the pullback of QV to 

Spec(F ) and is stratified by copies of Xd′

(t) for all 1 ≤ d′ ≤ d indexed by the non-zero 
Fq-subspaces of V .

In fact, Pink proved Theorem 1.2 by reduction to the case A = Fq[t] and I = (t)
which he proved jointly with Theorem 1.4 using Theorem 1.3.

However, as long as DivA(t) generates A, it remains true for general A that a Drinfeld 
A-module over any ring R over F with level (t) structure λ is uniquely determined by λ
and hence by its reciprocal map

ρ : V̊ → R×, v �→ 1
λ(v) .

We find a set of necessary and sufficient polynomial conditions for an injective map 
ρ : V̊ → R× to arise from such a λ and define an A-reciprocal map over R to be any map 
ρ : V̊ → R satisfying these conditions. Globally, A-reciprocal maps will be defined (see 
Definition 7.14) more generally to be certain maps V̊ → Γ(S, L) for invertible sheaves L
on schemes S over Spec(A).

Theorem 1.5. (See Theorem 7.16 and Corollary 7.25) Suppose that DivA(t) generates A. 
Consider the functor which assigns to a scheme S over Spec(A) the set of isomorphism 
classes of A-reciprocal maps V̊ → Γ(S, L) whose induced morphism V → L ⊗OS

k(s) is 
non-zero for every s ∈ S. Then the following hold:
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i) This functor is represented by QV = Proj(R), where R is the quotient of the poly-
nomial ring A[{Yv}v∈V̊ ] over A in the variables Yv by a certain graded ideal. The 
invertible sheaf on QV underlying the universal family is the ample invertible sheaf 
OQV

(1).
ii) The pullback QV,F of QV to Spec(F ) contains Xd

(t) as an open subscheme and is 
stratified by locally closed subschemes ΩW for all free A/(t)-submodules 0 �= W ⊂ V

each of which is isomorphic to Xd′

(t), where d′ := rankA/(t)(W ).
iii) X

d

(t) is the normalization of QV,F and the universal family on QV,F induces a gen-
eralized Drinfeld module on QV,F whose pullback to X

d

(t) is the weakly separating 
generalized Drinfeld module from Theorem 1.2.

After the work presented here was done, Pink [30] modified the notion of A-reciprocal 
maps by using defining conditions [30, Def. 2.3.1] that are homogeneous equations solely 
of weight 1. His conditions are stronger (see [30, Prop. 1.3.4 (b) and 2.4.4]) and more 
explicit than the ones here and enabled him to generalize computations from his and 
Schieder’s article [31]. However, the reduced scheme underlying the modular compactifi-
cation that he obtains coincides with the one underlying QV and this is the scheme that 
we use in the comparison with the analytic compactification.

Comparison of the analytic and algebraic compactifications
As before, let t ∈ A be such that DivA(t) generates A. Set V := t−1Λ/Λ and V̊ :=

V \ {0}. Suppose that Γ is the kernel of AutA(Λ) → AutA(Λ/tΛ).
Consider the reduced rigid analytic variety QV (C) over C whose underlying set are 

the C-valued points of QV ; it is the rigid analytification of QV ×Spec(A) Spec(C). Let 
OQV (C)(1) be the analytification of the pullback of OQV

(1) under Spec(C) → Spec(A). 
Evaluating the weight 1 Eisenstein series (Eα)α∈V̊ at any point in Ω∗

Γ yields an isomor-
phism class of an A-reciprocal map V̊ → C and thus a map E : Ω∗

Γ → QV (C).

Theorem 1.6. (See Theorem 8.1 and Corollary 9.4) The map E is an injective morphism 
of Grothendieck ringed spaces onto an irreducible component X of QV (C). In fact, it 
is the normalization morphism of X in the sense of Conrad [10]. Moreover, O∗

Γ(k) is 
isomorphic to the pullback under E of OQV (C)(1)⊗k for any k ≥ 0.

We finally outline our proof of Theorem 1.6. Consider any free A/(t)-submodule 0 �=
W ⊂ V and the restriction E−1(ΩW (C)) → ΩW (C) of E via Theorem 1.5, ii). Via 
the isomorphism ΩW

∼= Xd′

(t), where d′ = rankA/(t)(W ), this restriction is Drinfeld’s 
isomorphism from the analytically defined modular variety to ΩW (C) if W � V . If 
W = V , it is the restriction of this isomorphism to the irreducible component ΩΓ. Using 
these isomorphisms and elementary inequalities of Drinfeld’s exponential functions, we 
prove the following result as a step towards Theorem 1.6:
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Proposition 1.7. (See Proposition 8.7 and Corollary 8.11) The morphism between 
Grothendieck topological spaces underlying E is an isomorphism onto an irreducible com-
ponent X of QV (C). Moreover, X ∩ ΩV (C) is an irreducible component of ΩV (C) and

X = (X ∩ ΩV (C)) ∪ (QV (C) \ ΩV (C)).

We further define a sheaf of rings ÕX on X in terms of the stratification by the ΩW (C)
provided by Theorem 1.5, ii) for which the following holds:

Proposition 1.8. (See Corollary 8.13) The isomorphism between Grothendieck topological 
spaces underlying E induces an isomorphism of Grothendieck ringed spaces

(Ω∗
Γ,O∗

Γ)−̃→(X, ÕX). (2)

The stratification of X may be described in terms of vanishing and non-vanishing 
loci of subsets of some finite set of global sections of the first twisting sheaf on X. 
More generally, with any finite set of global sections of an invertible sheaf on a rigid 
analytic variety Z may be associated (see Section 3) a stratification of Z by locally 
closed subvarieties and a natural sheaf of rings ÕZ in terms of the stratification together 
with a morphism of Grothendieck ringed spaces nZ : (Z, ÕZ) → (Z, OZ). In Section 3.2
we specify conditions under which nZ is the normalization morphism. We show these 
conditions in the case Z = X using the isomorphism in (2). The hardest condition to show 
is that any point in Ω∗

Γ admits a fundamental set of neighborhoods whose intersections 
with ΩΓ are irreducible; this is essentially done in Section 4.3. Via Proposition 1.8, this 
will yield Theorem 1.6.

Analogy with the classical Satake-Baily-Borel compactification
The Drinfeld modular variety Xd

I is a function field analogue of Shimura varieties. For 
instance, the analytification of Xd

I (C) may be described as double coset space

GLd(F )\
(
ΩV × (GLd(Af

F )/K)
)
,

where dimE(V) = d and Af
F is the ring of adeles of F outside ∞ and K ⊂ GLd(Af

F ) is 
some compact open subgroup (see for instance [20, Remark 7.14 and Theorem 9.1]). In 
fact, ΩV is an analogue of Siegel’s upper half space Hg of genus g ≥ 1; quotients of Hg by 
arithmetic subgroups of the symplectic group Sp2g(R) parametrize abelian varieties over 
C of dimension g with extra structures. However, Hg is a hermitian symmetric space 
isomorphic to Sp2g(R)/K, where K ⊂ Sp2g(R) is a maximal compact subgroup, while 
GLd has no hermitian symmetric space nor a Shimura variety when d > 2. On the other 
hand, ΩV has no such interpretation as coset space, but may be viewed (see for instance 
[20, Sections 4 and 5]) as a rigid analytic neighborhood of the Bruhat-Tits building for 
PGL(V) whose set of vertices is PGL(V)/K for some maximal compact subgroup K, 
whereas neither this coset space nor the building have a rigid analytic structure.
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The quotient ΩΓ = Γ\ΩΛ is an irreducible component of a Drinfeld modular variety. 
The construction of its compactification Ω∗

Γ is largely analogous to Satake’s [33] con-
struction of his normal projective compactification X∗

g,N of the quotient Xg,N of Hg by 
the Siegel modular group of some level N . As a set X∗

g,N is the disjoint union of Xg,N and 
finitely many copies of Xg′,N for all 0 ≤ g′ < g, where X0,N contains exactly one point 
∞. If N = 1, there appears exactly one copy for every 0 ≤ g′ ≤ g. For instance, X1,1
is the quotient of the complex upper half space H by SL2(Z) and X∗

1,1 is the compact 
Riemann surface containing both X1,1 and

Un := {∞} ∪ SL2(Z)\
⋃

γ∈SL2(Z)

γ({τ ∈ H : Im(τ) > n})

for any n > 1 as open subspaces, where the structure of Riemann surface on Un is such 
that mapping τ ∈ H to exp(2πiτ) and ∞ to 0 induces an open embedding Un → C.

If rankA(Λ) = 2, the construction and behavior of Ω∗
Γ are analogous to the ones of 

X∗
1,N except that Ω∗

Γ needs to be endowed with a suitable Grothendieck topology rather 
than just a topology in order to become a rigid analytic variety. If g > 1, formally the 
construction of X∗

g,N is still largely analogous to the one of Ω∗
Γ; however, in this case, 

the boundary of X∗
g,N has codimension g > 1 so that by normality all – a priori – 

weak Siegel modular forms on Xg,N extend to global sections of X∗
g,N , i.e., so that the 

Köcher principle holds. By contrast, as long as rankA(Λ) > 1, the boundary of Ω∗
Γ has 

codimension 1 and not all weak modular forms on ΩΓ extend to global sections.
The boundary strata of Ω∗

Γ, resp. X∗
g,N , are parametrized by conjugacy-classes of 

maximal F -rational, resp. Q-rational, parabolic subgroups of GLd, resp. Sp2g, where 
conjugation is by Γ, resp. by the Siegel modular group of level N . Each boundary stratum 
is the quotient of a Drinfeld upper half space, resp. of a hermitian symmetric space, 
by an arithmetic subgroup of a factor of the Levi subgroup of a representing maximal 
parabolic subgroup. In the case of Ω∗

Γ, any boundary stratum is the quotient of Drinfeld’s 
upper half space of dimension d′ − 1 by an arithmetic subgroup of GLd′(F ) for some 
0 < d′ < d; the corresponding Levi subgroup is isomorphic to GLd′ × GLd−d′ . On the 
other hand, the Levi subgroup of any maximal parabolic subgroup of Sp2g is isomorphic 
to Sp2g′ × GLg−g′ for some 0 ≤ g′ < g, where Sp2g′ is the hermitian factor and, if g′ = 0, 
is the trivial group; if g′ > 0, this factor contributes an arithmetical quotient of Hg′ to 
the boundary, and if g′ = 0, it contributes a point.

Baily and Borel [1] later generalized Satake’s work by constructing a normal projec-
tive compactification X∗ of any arithmetic quotient X of the bounded symmetric domain 
G(R)/K, where G is any connected semi-simple algebraic group over Q. The strata of 
the boundary of X∗ are smaller dimensional arithmetical quotients of bounded symmet-
ric domains and are parametrized by conjugacy-classes of maximal rational parabolic 
subgroups of G. Compactness of the topological space underlying X∗ follows rather di-
rectly using that bounded symmetric domains admit fundamental sets with respect to 
arithmetic groups. Using their analyticity criterion, which requires local compactness, 
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Baily and Borel then prove their constructed ringed space X∗ to be an irreducible nor-
mal analytic space. They further show that any two points in X∗ may be separated by 
Poincaré-Eisenstein series. By compactness, then there exist finitely many such series 
which yield a projective embedding of X∗. Finally, they deduce that X∗ is the normal-
ization of the image of such an embedding.

Our approach to show that Ω∗
Γ is a normal projective rigid analytic variety differs from 

Baily and Borel’s approach as follows: First, we may not deduce any suitable variant of 
compactness (or even local compactness) of Ω∗

Γ directly from the construction. Although 
Ω∗

Γ admits Poincaré-Eisenstein series which separate points (see [20, Section 6.5]), we 
may thus not directly conclude a projective embedding by finitely many of those series. 
We may neither directly show that Ω∗

Γ is a rigid analytic variety. Instead, we define the 
explicit injective map E from Ω∗

Γ onto an irreducible component of the projective variety 
QV (C) (see before Theorem 1.6) and show in one that E is the normalization morphism 
of its image, and hence that Ω∗

Γ is rigid analytic, projective and normal. However, we still 
use an analogue (see Theorem 3.7) of Baily and Borel’s analyticity criterion in order to 
provide a description, not involving E, of the normalization of any irreducible component 
of QV (C).

Outline
Section 2. In Section 2.1 we recall the notion of Grothendieck ringed space.
In Section 2.2 we define rigid analytic varieties over C as did Bosch, Güntzer and 

Remmert [8] and recall some repeatedly used facts about them.
In Section 2.3 we determine necessary conditions for the quotient of a rigid analytic 

variety by a group to be again a rigid analytic variety.
In Section 2.4 we recall some basic facts about A-lattices in C.
Section 3. Let S be a finite set of global sections of an invertible sheaf on a rigid 

analytic variety Z over C. For any T ⊂ S denote by Ω(T ) ⊂ Z the intersection of the 
non-vanishing locus of T with the vanishing locus of S\T . These Ω(T ) for all T ⊂ S form 
a stratification of Z, i.e., a covering of Z by pairwise disjoint, locally closed subvarieties. 
This section will be applied in the proof of Theorem 1.6 to the case where S consists of 
global sections of the analytification of the pullback of OQV

(1) to QV (C).
In Section 3.1 we characterize the Grothendieck topology on Z in terms of this strat-

ification. In Section 3.2 we describe, under some conditions, the normalization (in the 
sense of Conrad’s [10]) of Z in terms of the stratification. The criterion obtained is anal-
ogous to a special case of [1, Theorem 9.2] by Baily and Borel in the complex analytic 
setting.

Section 4. In Sections 4.1 and 4.2 we provide a proof of Drinfeld’s results [12, Prop. 6.1, 
6.2] that ΩV ⊂ P rig

V∗
C

is admissible and that the quotient of ΩV by any discrete subgroup 
of PGL(V) is a normal rigid analytic variety.

In Section 4.3 we prove, inspired by van der Put’s [38], a result on the connectedness 
of certain subsets of ΩV . It implies that ΩV itself and hence its quotient by any discrete 
subgroup of PGL(V) is irreducible. It further provides for any point in Ω∗

Γ a fundamental 
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set of irreducible admissible neighborhoods. When A is the polynomial ring, Kapranov 
[25, Proof of Prop. 1.18] already claimed the irreducibility of similar neighborhoods.

In Section 4.4 we suppose that dimE(V) > 1 and consider a natural action on ΩV
by any discrete subgroup of any codimension 1 subspace W ⊂ V. We prove that a 
certain map, defined using exponential functions, from its quotient to ΩW × C is an 
open embedding of rigid analytic varieties.

Section 5. In Section 5.1 we endow Ω∗
Λ with a Grothendieck topology.

In Section 5.2 we study the induced Grothendieck topology on Ω∗
Γ and define the 

sheaves O∗
Γ and R∗

Γ.
In Section 5.3 we define Eisenstein series as global sections of O∗

Γ(k).
In Section 5.4, we provide, building on Section 4.4, a comprehensive proof that any 

weak modular form has a Fourier expansion at any cusp.
In Section 6 we construct the Satake compactification of any full analytic modular 

variety.
Section 7. In Section 7.1 we recall the notion of (generalized) Drinfeld module and 

Pink’s compactifications of the algebraic moduli spaces.
In Section 7.2 we define A-reciprocal maps and prove Theorem 1.5.
In Sections 8 and 9 we prove most of the above mentioned results.
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2. Preliminaries

Let C be an algebraically closed complete non-Archimedean valued field.

2.1. Grothendieck ringed spaces

Definition 2.1.

i) A family {Ui}i∈I of subsets Ui of a set U is called a covering of U if U =
⋃

i∈I Ui.
ii) A covering {U ′

j}j∈J of a set U is called a refinement of a covering {Ui}i∈I of U if 
there exists a map τ : J → I with U ′

j ⊂ Uτ(j) for any j ∈ J .
iii) The intersection of a covering {Ui}i∈I of a set U with a subset U ′ ⊂ U is the covering 

{Ui ∩ U ′}i∈I of U ′.
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iv) The intersection of a covering {Ui}i∈I of a subset U ⊂ X with a covering {U ′
j}j∈J

of a subset U ′ ⊂ X is the covering {Ui ∩ U ′
j}i∈I,j∈J of U ∩ U ′.

v) The preimage of a covering {Ui}i∈I of a subset U ⊂ X under a map f : Y → X is 
the covering {f−1(Ui)}i∈I of f−1(U).

Definition 2.2. A Grothendieck topology on a set X consists of

• a system S of subsets of X and
• a family C = {Cov(U)}U∈S of systems of coverings, where Cov(U) contains coverings 

of U by elements in S for any U ∈ S,

subject to the following conditions:

i) U, U ′ ∈ S ⇒ U ∩ U ′ ∈ S.
ii) U ∈ S ⇒ {U} ∈ Cov(U).
iii) If U ∈ S, {Ui}i∈I ∈ Cov(U) and {Uij}j∈Ji

∈ Cov(Ui) for any i ∈ I, then 
{Uij}i∈I,j∈Ji

∈ Cov(U).
iv) If U, U ′ ∈ S with U ′ ⊂ U and if {Ui}i∈I ∈ Cov(U), then {Ui ∩ U ′}i∈I ∈ Cov(U ′).
v) ∅, X ∈ S.
vi) If U ∈ S and U ′ ⊂ U such that there exists {Ui}i∈I ∈ Cov(U) with Ui ∩ U ′ ∈ S for 

any i ∈ I, then U ′ ∈ S.
vii) Consider any U ∈ S and any covering {Ui}i∈I of U with Ui ∈ S for any i ∈ I. If 

{Ui}i∈I has a refinement in Cov(U), then it is itself in Cov(U).

If a Grothendieck topology (S, C) on X is understood, then the elements of S are called 
the admissible subsets of X and the elements of any Cov(U) are called the admissible
coverings of U . In this case, the topology (in the usual sense) of X whose open sets are 
the unions of admissible sets, is called the canonical topology of X.

Definition 2.3. A morphism of Grothendieck topological spaces is a map under which the 
preimage of any admissible subset and of any admissible covering is admissible.

Definition 2.4. Consider any Grothendieck topological space X and any ring R.

i) A presheaf of (graded) R-algebras on X is a contravariant functor from the category 
of all admissible subsets of X with inclusions as morphisms into the category of 
(graded) R-algebras.

ii) Given any presheaf F on X, we denote by

F(U) → F(U ′), f �→ f |U ′

the morphism associated with any admissible subsets U ′ ⊂ U ⊂ X.



14 S. Häberli / Journal of Number Theory 219 (2021) 1–92
iii) A presheaf F on X is called a sheaf if any admissible subset U of X and any 
admissible covering C of U satisfy:

• If f, g ∈ F(U) are such that f |U ′ = g|U ′ for any U ′ ∈ C, then f = g.
• For any family (fU ′)U ′∈C ∈ (F(U ′))U ′∈C with

∀ U ′, U ′′ ∈ C : fU ′ |U ′∩U ′′ = fU ′′ |U ′∩U ′′

there exists an f ∈ F(U) such that f |U ′ = fU ′ for any U ′ ∈ C.

iv) The morphisms between sheaves on X are the morphisms between the underlying 
presheaves.

Definition-Proposition 2.5. [8, Proposition 9.2.2.4] Any presheaf F on a Grothendieck 
topological space admits a sheafification, i.e., a homomorphism i : F → F ′ into a sheaf 
F ′ such that any homomorphism F → G into a sheaf G equals ϕ ◦i for a unique morphism 
ϕ : F ′ → G.

Definition 2.6. A Grothendieck (graded) ringed space over a ring R is a pair (X, F), where 
X is a Grothendieck topological space and F is a sheaf of (graded) R-algebras on X.

Definition 2.7. A morphism (X, F) → (Y, G) of Grothendieck (graded) ringed spaces over 
a ring R is a pair (f, f#), where f : X → Y is a morphism of Grothendieck topological 
spaces and where f# is a collection of (graded) R-algebra homomorphisms

f#
U : G(U) → F(f−1(U))

compatible with restriction homomorphisms, where U ranges over all admissible subsets 
of Y .

2.2. Rigid analytic varieties

Definition 2.8. A C-algebra norm on a C-algebra R is a map | ·| : R → R≥0 which restricts 
to the norm on C such that every r, s ∈ R satisfy

• |r| = 0 ⇔ r = 0,
• |r · s| ≤ |r| · |s|,
• |r − s| ≤ max{|r|, |s|}.

Definition 2.9. A C-Banach algebra is a C-algebra R together with a C-algebra norm 
whose induced topology on R is complete.
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Definition-Proposition 2.10. [8, Proposition 5.1.1.1] For any integer n ≥ 0 the Tate 
algebra over C in n variables is the subalgebra Tn of C[[X1, . . . , Xn]] of elements

f =
∑

i1,...,in≥0
ai1,...,in ·Xi1

1 · · · · ·Xin
n

for which |ai1,...,in | → 0 as i1 + · · · + in → ∞. The Gauss norm

|f | := max
i1,...,in≥0

|ai1,...,in |

is a C-algebra norm on Tn by means of which Tn is a C-Banach algebra.

Definition 2.11. A C-Banach algebra R is called C-affinoid if there exists an integer 
n ≥ 0 and a continuous epimorphism Tn → R.

Definition 2.12.

i) A C-affinoid variety is a pair Sp(R) = (Max(R), R), where R is any C-affinoid 
algebra and Max(R) is the maximal spectrum of R, i.e., the set of maximal ideals of 
R equipped with the Zariski topology.

ii) A morphism Sp(S) → Sp(R) of C-affinoid varieties is a pair (σ, σ#), where σ# : R →
S is any C-algebra homomorphism and

σ : Max(S) → Max(R),m �→ (σ#)−1(m)

is the induced continuous map.

Definition-Proposition 2.13. [8, Proposition 7.2.2.1]

i) A morphism (i, i#) : Sp(R′) → Sp(R) is called an open immersion if for any mor-
phism

(σ, σ#) : Sp(S) → Sp(R) with σ(Max(S)) ⊂ i(Sp(R′))

there exists a unique morphism (ψ, ψ#) : Sp(S) → Sp(R′) with

(σ, σ#) = (i, i#) ◦ (ψ,ψ#).

In this case, i is injective.
ii) Any composition of open immersions is an open immersion.
iii) A subset U ⊂ Max(R) is called affinoid if it is the image of i of an open immersion 

(i, i#) : Sp(R′) → Sp(R). In this case, U is (uniquely up to unique isomorphism) 
endowed with the structure of C-affinoid variety and we identify U with Sp(R′).
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iv) The preimage of any affinoid subset under any morphism between C-affinoid varieties 
is an affinoid subset.

Definition-Proposition 2.14. [8, Proposition 9.1.4.2] The following specifies a structure 
of Grothendieck topology on any C-affinoid variety Sp(R):

i) A subset X ⊂ Max(R) is admissible if it admits a covering C by affinoid subsets of 
Max(R) whose preimage under any morphism Sp(S) → Sp(R) has a finite refinement 
by affinoid subsets of Max(S). In particular, the union of any finitely many affinoid 
subsets of Max(R) is admissible.

ii) A covering C of an admissible subset X ⊂ Max(R) by admissible subsets is admissible 
if its preimage under any morphism Sp(S) → Sp(R) has a finite refinement by 
affinoid subsets of Max(S).

Definition-Proposition 2.15. [8, Proposition 9.2.3.1] Consider any C-affinoid variety 
Y = Sp(R). Then there exists a unique sheaf OY of C-algebras on Y with OY (Sp(R′)) =
R′ for any affinoid subset Sp(R′) ⊂ Y and such that for any composition of open im-
mersions

Sp(R′′) (j,j#)−→ Sp(R′) ⊂ X

the restriction homomorphism OY (Sp(R′)) → OY (Sp(R′′)) equals j#. In particular, the 
pair (Y, OY ) is a Grothendieck ringed space over C.

Definition 2.16. A Grothendieck ringed space (X, O) over C is a rigid analytic variety
over C if X admits an admissible covering C and any U ∈ C possesses an isomorphism 
(U, O|U ) ∼= (Y, OY ) of Grothendieck ringed spaces for some C-affinoid variety Y .

As C is algebraically closed, the elements of any affinoid C-algebra A uniquely give rise 
to functions Sp(A) → C (see [8, Section 7.1]). The global sections of any rigid analytic 
variety (X, O) over C may thus be viewed as the functions f : X → C whose restriction 
to any admissible affinoid subset Sp(A) are induced by elements of A.

Definition 2.17. Any such f : X → C is called regular.

Definition-Proposition 2.18. For any affinoid varieties X, Y

Mor((X,OX), (Y,OY )) → Mor(X,Y ), (f, f#) �→ (f, f#
Y )

constitutes a bijection by means of which we view the category of C-affinoid varieties as 
a full subcategory of the category of rigid analytic varieties over C.
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Proposition 2.19. [8, Theorem 6.2.4.1] For any affinoid algebra A over C the map A →
|C|, f �→ supx∈Sp(A) |f(x)| is a complete norm on A.

Example 2.20. [8, Example 9.3.4.1] For any finite set S let AS,rig
C be the affine rigid 

analytic variety over C whose underlying set is CS and for which the covering by all 
closed balls with radius in |C| is admissible affinoid, where any such ball is naturally 
isomorphic to Sp(Tn), where n = |S|. In the case, where S = {1, . . . , n} for some integer 
n ≥ 0, we set An,rig

C := AS,rig
C ; the natural GLn(C)-action on it is through rigid analytic 

isomorphisms. If V is a C-vector space of finite dimension n, denote by Arig
V the rigid 

analytic variety over C with underlying set V such that one, and hence any, C-linear 
isomorphism V → Cn underlies an isomorphism Arig

V → An,rig
C .

Example 2.21. [8, Example 9.3.4.3] For any n ≥ 1 the standard projective variety Pn,rig
C

over C is the unique rigid analytic variety over C whose underlying set is (Cn+1 \
{0})/C× and such that An,rig

C → Pn,rig
C , z �→ [(z, 1)] is an open immersion and the natural 

GLn+1(C)-action on it is through rigid analytic isomorphisms. If V is a C-vector space 
of finite dimension n +1, denote by P rig

V the rigid analytic variety over C with underlying 
set (V \{0})/C× such that one, and hence any, C-linear isomorphism V → Cn+1 induces 
an isomorphism P rig

V → Pn,rig
C .

Proposition 2.22. Let Z be the product of any affine with any projective rigid analytic 
variety. Then the intersection of finitely many affinoid subsets of Z is again affinoid.

Proof. Both affine and projective rigid analytic varieties and hence their products are 
separated in the sense of [8, Definition 9.6.1.1]. The proposition then holds by [8, Propo-
sition 9.6.1.6]. �
Definition 2.23. [8, Definition 9.5.2.1] A subset Y ⊂ X of a rigid analytic variety X is 
called analytic if there exists an admissible covering (Ui)i∈I of X such that Y ∩Ui is the 
zero-locus of finitely many elements in OX(Ui) for all i ∈ I.

Definition 2.24. [8, Section 9.5.3] A morphism f : Y → X between rigid analytic varieties 
is a closed immersion if there exists an admissible affinoid covering (Ui)i∈I of X such that 
f−1(Ui) is affinoid and such that the ring homomorphism belonging to the restriction 
f−1(Ui) → Ui of f is surjective for all i ∈ I.

Definition 2.25. A morphism of rigid analytic varieties is called a locally closed immer-
sion if the underlying map is injective and the induced homomorphisms on stalks are 
surjective.

Proposition 2.26. [8, Proposition 9.5.3.5] A morphism f : Y → X of rigid analytic vari-
eties is a closed immersion if and only if
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i) it is a locally closed immersion,
ii) its image is an analytic subset of X and
iii) there exists an admissible affinoid covering (Xi)i∈I of X and, for each i ∈ I, a finite 

admissible affinoid covering of f−1(Xi).

Proposition 2.27. (Maximum Modulus Principle) [8, Lemma 9.1.4.6] Consider any affi-
noid algebra A and any f ∈ A. Then there exists c > 0 with |f(x)| ≤ c for any 
x ∈ X := Sp(A). Moreover, if f vanishes nowhere on X, then there exists δ > 0 with 
|f(x)| ≥ δ for any x ∈ X.

Theorem 2.28. (Bartenwerfer’s Riemann extension theorem) [2, Section 3] Consider any 
normal quasi-compact rigid analytic variety Y , any closed subvariety Z � Y which is 
everywhere of positive codimension and any regular function s : Y \ Z → C. Then the 
following are equivalent:

i) s extends uniquely to a regular function Y → C,
ii) s extends uniquely to a morphism Y → A1,rig

C of Grothendieck topological spaces 
whose restriction to Z is regular,

iii) s is bounded.

Proposition 2.29 (Kisin). For any affinoid algebra A over C, any admissible U ⊂ X :=
Sp(A) and any a1, . . . , an ∈ A whose common zeroes lie in U exists an ε > 0 such that 
{x ∈ X| ∀1 ≤ i ≤ n : |ai(x)| ≤ ε} ⊂ U .

Proof. See [11, after Remark 5.2.9] for Conrad’s short proof via Berkovich spaces. �
2.3. On some quotients of rigid analytic varieties

Consider any group Γ of C-linear automorphisms of any rigid analytic variety Y over 
C. Let

p : Y → Γ\Y

be the quotient morphism, where Γ\Y is endowed with the structure of Grothendieck 
ringed space induced by the quotient map, that is, a subset (resp. a covering of a subset) 
of Γ\Y is admissible precisely when its preimage is admissible and the sections on an 
admissible subset of Γ\Y are the Γ-invariant sections on its preimage.

Proposition 2.30. Suppose that Y = Sp(A) is the affinoid variety associated with any 
affinoid variety A and suppose that Γ is finite. Then the subalgebra AΓ ⊂ A of Γ-invariant 
elements is affinoid and induces an isomorphism of affinoid varieties

Γ\ Sp(A) → Sp(AΓ).
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Moreover, A is a finite AΓ-module and if A is normal, then so is AΓ.

Proof. See [21, Thm. 1.3] for the first and [20, Prop. 2.33] for the second part. �
We will use the following generalization of Proposition 2.30.

Proposition 2.31. Suppose that Y is separated (see [8, Definition 9.6.1.1.]). Consider any 
admissible affinoid covering (Yn)n≥1 of Y and finite subgroups (Γn)n≥1 of Γ such that

i) ∀n′ ≥ n ≥ 1: Γn ⊂ Γn′ ∧ Yn ⊂ Yn′ ,
ii) ∀n ≥ 1, ∀γ ∈ Γn : γ(Yn) = Yn

iii) and any n ≥ 1 admits an n′ ≥ 1 such that ∀γ ∈ Γ \ Γn′ : γ(Yn) ∩ Yn = ∅.

Then (p(Yn))n≥1 is an admissible covering of Γ\Y and any p(Yn) is admissibly covered by 
finitely many affinoid varieties. In particular, Γ\Y is a rigid analytic variety. Moreover, 
if Y is normal, then so is Γ\Y .

Proof. Consider any n ≥ 1 and choose any n′ ≥ n ≥ 1 satisfying the property in iii). Let 
I be a set of representatives of Γ/Γn′ . Set

∀γ ∈ I : Uγ :=
⋃

γ′∈Γn′

(γγ′)(Yn).

Then the Uγ are pairwise disjoint and they cover U := p−1(p(Yn)). We claim that U ⊂ Y

is admissible and admissibly covered by the Uγ and, in particular, that p(Yn) ⊂ Γ\Y
is admissible. In order to prove the claim, it is enough, since (Yk)k≥1 is an admissible 
covering of Y , to check for any k ≥ 1 that U ∩ Yk ⊂ Yk is admissible and admissibly 
covered by (Uγ ∩ Yk)γ∈I . Consider any such k. Since Y is separated, the intersection of 
any finitely many affinoid subsets of Y is again affinoid [8, Proposition 9.6.1.6]. As Uγ is 
the union of finitely many admissible affinoid subsets, thus so is Uγ ∩ Yk for any γ ∈ I. 
Moreover, iii) provides a k′ ≥ 1 such that Uγ ∩Yk = ∅ for any γ ∈ I \Γk′ . Hence U ∩Yk is 
the union of finitely many admissible affinoid subsets and hence an admissible subset of 
Yk and the covering (Uγ ∩Yk)γ∈I has the finite affinoid, and thus admissible, refinement 
(Uγ ∩ Yk)γ∈I∩Γk′ and is thus itself admissible. This yields the claim.

As Γn′ is finite and acts on the affinoid Yn′ by ii), Proposition 2.30 yields that Γn′\Yn′

is an affinoid variety and that its admissible subsets are precisely those whose preimages 
in Yn′ are admissible. Let γ0 ∈ I represent the identity. By i), Uγ0 is the union of finitely 
many affinoid subsets of Yn′ , and hence quasi-compact, and Γn′ -invariant. Hence its 
image Γn′\Uγ0 in Γn′\Yn′ is an admissible quasi-compact subset or, equivalently, the 
union of finitely many admissible affinoid subsets. As the Uγ are pairwise disjoint and 
form an admissible covering, the inclusion morphism Uγ0 → U induces an isomorphism 
Γn′\Uγ0 → π(Yn) of Grothendieck ringed spaces. Thus p(Yn) is indeed admissibly covered 
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by finitely many affinoid varieties. Moreover, if Y is normal, then so is Yn′ and hence 
Γn′\Yn′ by Proposition 2.30 and hence Γn′\Uγ0 and hence p(Yn).

It remains to be checked that the covering (p(Yn))n≥1 of Γ\Y is admissible. Using 
that (Yk)k≥1 is an admissible covering of Y , it suffices to check for any k ≥ 1 that 
the covering (p−1(p(Yn)) ∩ Yk)n≥1 of Yk is admissible. But the latter covering has as 
admissible refinement the covering given by the single subset p−1(p(Yk)) ∩ Yk, i.e., by 
Yk, and is thus itself admissible. �
2.4. On lattices over admissible coefficient subrings

Suppose that the characteristic of C is finite.

Definition 2.32. A subset S ⊂ C is called strongly discrete if its intersection with every 
ball of finite radius is finite.

Definition 2.33. We call a subring A ⊂ C an admissible coefficient subring if it is strongly 
discrete and if it is a Dedekind domain that is finitely generated over a finite subfield 
of C.

Any subring A ⊂ C as in the introduction is an admissible coefficient subring and 
vice versa (see for instance Harder’s [22, Vol. 2, Sect. 9.1-3]).

Example 2.34. Consider any finite subfield Fq ⊂ C and any t ∈ C with |t| > 1. Then 
Fq[t] is a polynomial ring over Fq and an admissible coefficient subring of C.

Proof. As the norm of C is non-Archimedean, as |x| = 1 for any 0 �= x ∈ Fq and as 
|t| > 1, any polynomial of degree n ≥ 0 over Fq evaluated at t has norm |t|n in C. This 
implies both that Fq[t] is a polynomial ring and that it is strongly discrete in C. That any 
polynomial ring in one variable over a field is a Dedekind domain, is a classical fact. �
Definition 2.35. Consider any admissible coefficient subring A ⊂ C and let E be the 
completion of its quotient field. A finitely generated projective A-submodule Λ ⊂ C is 
an A-lattice if the natural homomorphism Λ ⊗A E → C is injective.

Proposition 2.36. Any A-lattice Λ ⊂ C is strongly discrete.

Proof. See for instance [20, Prop. 2.51]. �
Definition 2.37. Consider any admissible coefficient subring A ⊂ C, any projective A-
module Λ of finite rank d > 0 and any norm | · | on ΛE in the sense of Section 4.1, where 
E is the completion of the quotient field of A. For any 1 ≤ i ≤ d call

μi(Λ) := inf{max{|λ1|, . . . , |λi|} | λ1, . . . , λi ∈ Λ linearly independent}
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the i-th successive minimum of Λ. Set μmax(Λ) := μd(Λ).

Definition-Proposition 2.38. Let A = Fq[t] be as in Example 2.34. Consider any A-module 
Λ and any norm | · | as in Definition 2.37. Then there exists a minimal reduced basis of 
Λ, i.e., an ordered basis (λ1, . . . , λd) of Λ such that (|λ1|, . . . , |λd|) = (μ1(Λ), . . . , μd(Λ))
and such that

∀a ∈ Ad :

∣∣∣∣∣∣
∑

1≤i≤d

aiλi

∣∣∣∣∣∣ = max
1≤i≤d

|ai| · |λi|.

Moreover, |λi| = inf
λ∈Λ

|λi + t · λ| for any λi in any such basis.

Proof. Up to the last assertion, this is [7, Theorem 2.2.8]. Consider then any λi in any 
minimal reduced basis (λ1, . . . , λn) of Λ. Any λ =

∑d
1=j aj · λj ∈ Λ then satisfies as 

desired that

|λi + tλ| = max
j �=i

{|(1 + t · ai) · λi|, |t · aj · λj |} ≥ |(1 + t · ai) · λi| ≥ |λi|. �
For any subset S of any normed vector space V set

d(S) := inf
0�=s∈S

|s|;

this measures the distance of S \ {0} to the origin.

Corollary 2.39. Consider any A = Fq[t], any Λ and any norm on Λ ⊗AE as in Definition-
Proposition 2.38. Consider any direct summand 0 �= L ⊂ Λ. Consider the projection 
π : t−1Λ → Λ := t−1Λ/Λ and set L := t−1L/L ⊂ Λ. Then

max
α∈L

d(π−1(α)) ≤ μmax(L). (3)

Moreover, choose a minimal reduced basis (λ1, . . . , λn) of t−1Λ. Let L′ ⊂ t−1Λ be the 
submodule generated by the λi with |λi| < d(π−1(Λ \ L)). Set L′ := π(L′). If

max
α∈L

d(π−1({α})) < d(π−1(Λ \ L)), (4)

then L
′ = L and d(t−1Λ \ L′) = d(π−1(Λ \ L)).

Proof. This is directly checked. For details, see [20, Cor. 2.54]. �
Definition-Proposition 2.40. For any strongly discrete subgroup Λ ⊂ C the formula

eΛ(T ) := T ·
∏ (

1 − T

λ

)

0�=λ∈Λ
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defines a morphism eΛ : A1,rig
C → A1,rig

C that is a surjective homomorphism with kernel 
Λ. Moreover,

∀c ∈ C \ Λ: 1
eΛ(c) =

∑
λ∈Λ

1
c + λ

.

Proof. This is explained for instance in [13, Chapter 2, Section 1] up to the last part. 
The last part follows from logarithmic differentiation using that d

dT expΛ(T ) = 1. �
Proposition 2.41. Consider any A-lattice Λ ⊂ C and any 0 �= c, c′ ∈ C such that |c| < |λ|
and |c′| ≤ |c′ + λ| for every 0 �= λ ∈ Λ. Then

∣∣∣∣c′c
∣∣∣∣ ≤

∣∣∣∣eΛ(c′)
eΛ(c)

∣∣∣∣ ≤
∣∣∣∣c′c
∣∣∣∣
∣∣∣ c′c ∣∣∣·q·rankFq [t](Λ)

for any polynomial ring Fq[t] ⊂ A over any finite field with q elements.

Proof. Use Definition-Proposition 2.38. For details, see [20, Prop. 2.56]. �
3. On stratifications of rigid analytic varieties by global sections

Consider any reduced rigid analytic variety Z over an algebraically closed complete 
non-Archimedean field C and any finite set S of global sections of an invertible sheaf 
on Z. With any T ⊂ S and any ε ∈ |C×| associate the reduced Zariski open, resp. 
admissible, resp. locally closed subvariety

U(T ) := {z ∈ Z | ∀t ∈ T : t(z) �= 0} ⊂ Z,

U(T, ε) := {z ∈ U(T ) | ∀s ∈ S \ T, ∀t ∈ T :
∣∣∣s
t
(z)
∣∣∣ ≤ ε} ⊂ U(T ),

Ω(T ) := {z ∈ U(T ) | ∀s ∈ S \ T, ∀t ∈ T : s
t
(z) = 0} ⊂ Z.

This yields a stratification of Z by locally closed subvarieties

Z =
⋃̇
T⊂S

Ω(T ).

3.1. Characterization of the Grothendieck topology

Proposition 3.1. A subset X ⊂ Z is admissible if and only if any T ⊂ S with Ω(T ) �= ∅
satisfies that

i) the subset X ∩ Ω(T ) ⊂ Ω(T ) is admissible and that
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ii) any admissible quasi-compact U ⊂ U(T ) with U ∩ Ω(T ) ⊂ X admits an ε ∈ |C×|
with U ∩ U(T, ε) ⊂ X.

Moreover, a covering of an admissible X ⊂ Z by admissible subsets is admissible if and 
only if its intersection with X ∩ Ω(T ) is admissible for any T ⊂ S.

Proof. This is essentially a formal consequence of Proposition 2.29. For details, see [20, 
Proposition 3.1]. �

For the remainder of this section further assume for any Ω(T ) �= ∅ the existence and 
choice of a morphism

ρT : U(T ) → Ω(T ) (5)

such that ρT |Ω(T ) = idΩ(T ) and such that

U(O, ε) := ρ−1
T (O) ∩ U(T, ε)

is quasi-compact for any quasi-compact O ⊂ Ω(T ) and any ε ∈ |C×|.

Example 3.2. Let for example S be a C-basis of the global sections of the first twisting 
sheaf of any standard projective space Z over C and let ρT be the natural projection for 
any ∅ �= T ⊂ S. Consider for any t ∈ T ⊂ S the isomorphism

it : U(T ) → Ω(T ) ×A(S\T ),rig
C , q �→

(
ρT (q), (s

t
(q))s∈S\T

)
.

For any ∅ �= T ⊂ S, any O ⊂ Ω(T ) and any ε ∈ |C×| then

U(O, ε) =
⋂
t∈T

i−1
t (O ×Bε).

In particular, such U(O, ε) is quasi-compact, resp. affinoid, whenever O is.

Proposition 3.1 may then be reformulated as follows.

Corollary 3.3. Consider any Z, S and morphisms ρT as in (5). Let Y ⊂ Z be any closed 
subvariety. Then a subset X ⊂ Y is admissible if and only if any T ⊂ S with Ω(T ) ∩Y �= ∅
satisfies that

i) the subset X ∩ Ω(T ) ⊂ Y ∩ Ω(T ) is admissible and that
ii) any admissible quasi-compact O ⊂ Ω(T ) with O ∩ Y ⊂ X admits an ε(O) ∈ |C×|

with U(O, ε(O)) ∩ Y ⊂ X.
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Moreover, a covering of an admissible X ⊂ Y by admissible subsets is admissible if and 
only if its intersection with X ∩ Ω(T ) is admissible for any T ⊂ S.

Proof. See [20, Cor. 3.4]. �
Corollary 3.4. Consider any rigid analytic variety R and any integer n ≥ 0. Let Y ⊂
R×An,rig

C be any closed subvariety. Then a subset X ⊂ Y is admissible if and only if

i) the subset X \R× {0} ⊂ Y \R× {0} is admissible,
ii) the subset X ∩R× {0} ⊂ Y ∩R× {0} is admissible and
iii) for any admissible quasi-compact O ⊂ R with O×{0} ⊂ X exists an ε > 0 such that 

(O ×Bε) ∩ Y ⊂ X.

Moreover, a covering of an admissible subset X ⊂ Y by admissible subsets is admissible 
if and only if both its intersection with X \R×{0} and its intersection with X ∩R×{0}
is admissible.

Proof. See [20, Cor. 3.5]. �
Corollary 3.5. Let R be any separated rigid analytic variety. Consider any admissible 
subset X ⊂ R × A1,rig

C and any regular function s : X \ R × {0} → C. Then there exist 
unique regular functions si : X ∩R× {0} → C such that

s((o, z)) =
∑
i∈Z

si(o, 0)zi for any (o, z) ∈ O ×Bε \O × {0}

for any admissible affinoid O× {0} ⊂ X ∩R× {0} and any ε ∈ |C×| with O×Bε ⊂ X. 
Moreover, the following statements are equivalent:

i) s extends to a regular function X → C.
ii) s extends to a morphism X → A1,rig

C of Grothendieck topological spaces whose re-
striction to X ∩R× {0} is regular.

iii) Any admissible affinoid O×{0} ⊂ X ∩R×{0} admits an ε ∈ |C×| with O×Bε ⊂ X

and such that s is bounded on O ×Bε \O × {0}.
iv) ∀i < 0 : si = 0.

Moreover, the extension in i), resp. ii), is unique if it exists.

Proof. Via Corollary 3.4 and Proposition 2.22, the corollary is reduced to the case where 
R is affinoid, in which it is Bartenwerfer’s [2, Satz 12]. For details, see [20, Cor 3.6]. �
Proposition 3.6. Let Z and S and the ρT be as in Example 3.2. Consider the natural left-
action on Z of any subgroup G of the symmetric group of S. Then for any G-invariant 
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closed subvariety Y ⊂ Z the quotient G\Y is a rigid analytic variety and it is normal if 
Y is.

Proof. For any 0 �= T ⊂ S and any r ∈ |C| set

O(T, r) :=
{
z ∈ Ω(T ) | ∀t, t′ ∈ T :

∣∣∣∣ t′t (z)
∣∣∣∣ ≤ r

}
⊂ Ω(T )

and for any further ε ∈ |C×| set U(T, r, ε) := U(O(T, r), ε) ⊂ U(T ). By Example 3.2 and 
the construction, any such U(T, r, ε) is a GT -invariant admissible affinoid subvariety of 
Z, where GT denotes the stabilizer of T in G. Fix any 1 > ε ∈ |C×|. The construction 
yields for any T ′ ⊂ S with T ′ �⊂ T �⊂ T ′ and any g ∈ G that

U(T, ε) ∩ U(T ′, ε) = ∅ and that g(U(T, r, ε)) = U(g(T ), r, ε).

Hence the G-invariant subvariety

G(U(T, r, ε)) =
⋃
g∈G

U(g(T ), r, ε) ⊂ Z

is a disjoint union of finitely many admissible affinoids; in particular, it is itself admissible 
affinoid. Finally, let C be the covering of Z by the G(U(T, r, ε)) for varying ∅ �= T ⊂ S

and r ∈ |C|. Its intersection with any Ω(T ) �= ∅ is refined by the admissible covering of 
Ω(T ) by the O(T, r), for varying r, so that it is itself admissible. By Proposition 3.3, thus 
C is admissible. In particular, the intersection of C with any G-invariant closed subvariety 
Y ⊂ Z is an admissible covering by G-invariant affinoids. The proposition then follows 
from Proposition 2.30. �
3.2. Stratification and normalization

Consider first a general reduced rigid analytic variety X. We refer to Conrad’s [10]
for the definition of the normalization of X and a proof that it uniquely exists. Conrad 
uses it to define the irreducible components of X as the images of the connected com-
ponents under the normalization morphism [10, Def. 2.2.2]. The irreducible components 
are then the maximal irreducible Zariski closed subsets of X [10, Thm. 2.2.4.(2)]. If X
is the analytification of an algebraic variety X ′ over C, then its normalization, resp. its 
irreducible components, are the analytification of the normalization of X ′, resp. of the 
irreducible components of X ′ [10, Thm. 2.1.3, resp. 2.3.1].

Denote then by OZ the structure sheaf of Z. Consider the Grothendieck ringed space 
(Z, ÕZ) whose underlying Grothendieck topological space coincides with the one under-
lying (Z, OZ) and whose section on any admissible U ⊂ Z are precisely the functions 
f : U → C that are continuous with respect to the canonical topologies, that are bounded 
on any admissible affinoid subset of U and that restrict to regular functions U∩Ω(T ) → C

for any T ⊂ S. Consider the morphism of Grothendieck ringed spaces
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nZ : (Z, ÕZ) → (Z,OZ) (6)

whose underlying topological morphism is the identity and whose homomorphism 
OZ(U) → ÕZ(U) for any admissible U ⊂ Z is the natural injection by means of the 
Maximum Modulus Principle, i.e., Proposition 2.27.

Theorem 3.7. Suppose that

i) Z is irreducible,
ii) the Zariski open subvariety Ω(S) ⊂ Z is normal,
iii) Z \ Ω(S) is of everywhere positive codimension in Z.
iv) any function f : X → C on any admissible X ⊂ Z which is continuous with respect 

to the canonical topology and restricts to a regular function on X ∩Ω(S) restricts to 
a regular function on X ∩ Ω(T ) for any T ⊂ S and

v) any z ∈ Z has a fundamental basis of admissible neighborhoods U such that U ∩Ω(S)
is connected and, in particular, non-empty.

Then nZ is the normalization morphism in the sense of Conrad [10]. In particular, 
(Z, ÕZ) is a normal rigid analytic variety.

Proof. Consider the normalization morphism

(n, n#) : (Z̃,OZ̃) → (Z,OZ).

We shall show that (n, n#) induces an isomorphism

(n, n+) : (Z̃,OZ̃) → (Z, ÕZ)

whose composition with nZ is (n, n#); this will then yield the theorem.
For any T ⊂ S let T̃ := n+(T ) denote the set of global sections on Z̃ obtained by 

pulling back the elements of T by (n, n+). Analogously as for Z and S, this yields a 
stratification of Z̃ by reduced locally closed subvarieties Ω(T̃ ) ⊂ Z̃ for various T ⊂ S. 
Then Ω(T̃ ) = n−1(Ω(T )) for any T ⊂ S; let

(nT , n
#
T ) : Ω(T̃ ) → Ω(T )

be the morphism induced by (n, n#). Abbreviate Ω := Ω(S) and Ω̃ := Ω(S̃).
We first show that n is bijective. As it underlies a normalization morphism, it is 

surjective. We then consider any z ∈ Z and claim that |n−1(z)| = 1. As any normaliza-
tion morphism is finite, n−1(z) is finite. From Proposition 2.29 and the fact that A is 
noetherian (see [8, Prop. 6.1.1.3]) then follows that the natural homomorphism

(n∗OZ̃)z →
∏
−1

OZ̃,y
y∈n (z)
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is an isomorphism (for more details see [10, Proof of Thm. 1.1.3] or [20, Lemma 3.9]). It 
thus suffices to show that (n∗OZ̃)z is integral. As Ω(S) is normal by ii), its irreducible 
and its connected subsets coincide. Assumptions v) and ii) thus provide a fundamental 
system F of admissible open neighborhoods U ⊂ Z of z such that U ∩ Ω is irreducible 
or, equivalently, such that OZ(U ∩ Ω) is integral. As Ω is normal by ii), (nS , n

#
S ) is an 

isomorphism so that (n∗OZ̃)(U∩Ω) is integral, too, for any U ∈ F . Assumption i) implies 
that Z̃ is irreducible. Assumption v) implies that Ω �= ∅ if Z �= ∅. Thus the Zariski open 
subvariety Ω̃ of the irreducible Z̃ is dense. Consequently, the restriction homomorphism

(n∗OZ̃)(U) → (n∗OZ̃)(U ∩ Ω)

is injective for any U ∈ F so that, in fact, (n∗OZ̃)(U) is integral. Since F is a fundamental 
system of admissible neighborhoods of z, this implies that (n∗OZ̃)z is indeed integral. 
We have thus shown that n is bijective.

Since, furthermore, (n, n#) is finite, n is a homeomorphism with respect to the canon-
ical topologies by [8, Lemma 9.5.3.6].

Let us then define n+. Consider first any admissible affinoid U ⊂ Z and set Ũ :=
n−1(U). Let n+(U) be the composition

ÕZ(U) ↪→ ÕZ(U ∩ Ω)b = OZ(U ∩ Ω)b
∼=−→ OZ̃(Ũ ∩ Ω̃)b

∼=−→ OZ̃(Ũ),

where (·)b denotes the operator that associates the subalgebra of bounded elements and 
where the arrows are defined as follows: The first arrow is the restriction homomorphism; 
it is injective since Ω ⊂ Z is dense. As Ω is normal, the homomorphism n#

S (U ∩Ω) is an 
isomorphism. The second arrow is the restriction of this isomorphism to the subalgebra 
of bounded elements. Finally, we claim that the restriction homomorphism

R := OZ̃(Ũ) → OZ̃(Ũ ∩ Ω̃) =: S

induces an isomorphism onto Sb; the last arrow is then defined to be the induced inverse. 
As n is finite and U is affinoid, its preimage Ũ is affinoid too by [8, Proposition 9.4.4.1]. 
The Maximum modulus principle thus yields the boundedness of any element in R and 
hence of its image in S. Conversely, any element in Sb extends uniquely to an element in 
R: Indeed, by normality of Ũ and the Riemann extension theorem (see Theorem 2.28), 
this holds true if Ũ\Ω̃ is of everywhere positive codimension in Ũ . But the latter condition 
is guaranteed by iii) since n is finite. This shows the claim and thus finishes the definition 
of n+(U).

In fact, n+(U) is surjective and hence, by the above, an isomorphism. Indeed, consider 
any f̃ ∈ OZ̃(Ũ). As n is a homeomorphism,

f := f̃ ◦ n−1|U : U → C
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is continuous with respect to the canonical topologies. As OZ̃(Ũ) is affinoid, the Maxi-
mum Modulus Principle (see Proposition 2.27) yields that f̃ , and hence f , is bounded. 
In order to show that f ∈ ÕZ(U), it remains to be checked that the restriction fT of f
to U ∩ Ω(T ) is regular for any T ⊂ S. Since fS corresponds to the restriction of f̃ to 
Ũ ∩ Ω̃ via the isomorphism OZ(U ∩ Ω)b → OZ̃(Ũ ∩ Ω̃)b, it is regular. The regularity of 
an arbitrary fT then follows from Assumption iv). Hence n+(U) is indeed surjective.

For an arbitrary admissible subset X ⊂ Z, the homomorphism n+(X) is then defined 
in the natural way by means of the admissible covering of X by all its admissible affinoid 
subsets using the sheaf property of OZ̃ ; by the affinoid case above, it is an isomorphism 
as well.

It remains to be shown that n is an isomorphism of Grothendieck topological spaces. 
We first consider any T ⊂ S with Ω(T ) �= ∅ and show that (nT , n

#
T ) is an isomorphism. 

As (n, n#) is finite and a homeomorphism with respect to the canonical topologies, 
so is (nT , n

#
T ). In order to see that the latter is an isomorphism, it thus suffices, by 

Proposition 2.26, to show that n#
T induces isomorphisms on stalks. Consider any z ∈ Ω(T )

and set z̃ := n−1
T (z). As nT is surjective and Ω(T ) is reduced, the homomorphism on 

stalks OΩ(T ),z → OΩ(T̃ ),z̃ is injective. In order to see that it is also surjective, consider 
any g̃ ∈ OΩ(T̃ ),z̃ and choose, using that n is a homeomorphism, an admissible affinoid 
U ⊂ U(T ) containing z such that g̃ is defined on Ũ ∩Ω(T̃ ), where Ũ := n−1(U). As n is 
finite, also Ũ is affinoid. Thus we may and do choose an f̃ ∈ OZ̃(Ũ) that restricts to g̃
on the Zariski closed affinoid subvariety Ũ ∩ Ω(T̃ ) ⊂ Ũ . Let f ∈ ÕZ(U) correspond to 
f̃ under the isomorphism n+(U) discussed above. In particular, f restricts to a regular 
function g on U ∩ Ω(T ). By continuity of n and the construction, then n#

T (g) = g̃. This 
yields surjectivity of the above map on stalks. We have thus shown that (nT , n

#
T ) is an 

isomorphism.
That n is an isomorphism, then follows from the fact that the preimage under 

the finite morphism (n, n#) of any quasi-compact is quasi-compact and from apply-
ing Proposition 3.1 once as stated and once to Z and S replaced by Z̃ and S̃ using that 
U(T̃ , ε) = n−1(U(T, ε)) for any T ⊂ S and any ε ∈ |C×|. This finishes the proof. �
4. Quotients of Drinfeld’s period domain by discrete groups

Consider any non-Archimedean local field E. Denote by OE the ring of integers of 
E. Choose a prime element π ∈ OE and set q := | 1π |. Consider any finite dimensional 
E-vector space V �= 0. Set G := AutE(V) and PG := PGL(V) = G/E×. Let C be any 
algebraically closed complete non-Archimedean valued field containing E as a valued 
subfield. Let P rig

V∗
C

be the projective rigid analytic variety over C with underlying set

(HomC(VC , C) \ {0})/C×

(see Example 2.21). Drinfeld’s period domain is the PG-invariant subset

ΩV ⊂ P rig
V∗
C
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of those C×-classes [l] of C-linear maps l : VC → C for which Ker(l) ∩ V = 0.
Most parts of Sections 4.1 and 4.2 may in fact be done more generally when 

HomC(VC , C) is replaced by HomC(VC , Ck) for any k ≥ 1 but to the cost of additional 
complexity in proofs (see [20, Sections 5.1 and 5.2]).

4.1. Admissibility of the period domain

Denote by NV the set of norms on V, i.e., of maps ν : V → R≥0 for which

• ∀e ∈ E, ∀v ∈ V : ν(e · v) = |e| · ν(v),
• ∀v, v′ ∈ V : ν(v + v′) ≤ max{ν(v), ν(v′)},
• ∀v ∈ V : ν(v) = 0 ⇔ v = 0.

Proposition 4.1. [19, Prop. 1.1] Any ν ∈ NV admits a basis β of V such that

∀(ew)w∈β ∈ Eβ : ν

⎛
⎝∑

w∈β

ew · w

⎞
⎠ = max

w∈β
|ew| · ν(w).

The natural action of R>0 on R≥0 induces an action on NV . Set

∀[ν], [ν′] ∈ R>0\NV : ρ([ν], [ν′]) := max
0�=v,v′∈V

ν′(v)
ν(v) · ν(v′)

ν′(v′) .

It is directly checked that the induced map ρ : R>0\ NV ×R>0\ NV → R≥1 is a metric, 
i.e., that ρ(x, y) = 1 ⇔ x = y and ρ(x, y) ≤ ρ(x, z) · ρ(z, y) for all x, y, z ∈ R>0\ NV ,

Proposition 4.2. [19, Theorem 2.3] With respect to the metric ρ, any closed ball in 
R>0\ NV is compact.

Denote by Uν ⊂ V the unit ball with respect to any ν ∈ NV . Denote by SV the set of 
free OE-submodules m ⊂ V of maximal rank. It is naturally acted by E× by dilation.

Definition-Proposition 4.3. For any m ∈ SV denote by νm ∈ NV the norm v �→ inf{|e| ∈
|E×| : v ∈ e ·m}; then Uνm

= m \ πm and for arbitrary ν′ ∈ NV :

ρ([ν′], [ν]) =
maxu∈Uνm

ν′(u)
minu∈Uνm

ν′(u) . (7)

Proof. This is directly checked. �
Consider the map λV : ΩV → R>0\ NV that sends any [l] to the class of the norm 

v �→ |l(v)|.
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Proposition 4.4. (Drinfeld [12, Prop. 6.1]) Let m1, . . . , mt ∈ SV . Set

X(c) := λ−1
V

⎛
⎝
⎧⎨
⎩[ν] ∈ R>0\NV :

∏
1≤s≤t

ρ([ν], [νms
]) ≤ c

⎫⎬
⎭
⎞
⎠ ⊂ ΩV

for any 1 ≤ c ∈ |C|. Then ΩV ⊂ P rig
V∗

C
is admissible and any such X(c) ⊂ ΩV is an 

admissible affinoid subset. Moreover, for any unbounded sequence (cn)n≥1 in |C| the 
covering (X(cn))n≥1 of ΩV is admissible.

Remark 4.5. In the case where t = 1, the subsequent proof specializes to the one given 
by Schneider and Stuhler in [35, Section 1, Proof of Prop. 4], where they denote X(qn)
by Ωn for any positive integer n.

Proof of Proposition 4.4. Set P := P rig
V∗

C
. Set Us := Uνms

for any 1 ≤ s ≤ t. Set m :=∏
1≤s≤t ms and U :=

∏
1≤s≤t Us. Let 1 ≤ c ∈ |C|. For any u ∈ U set

X(c, u) :=

⎧⎨
⎩[l] ∈ P

∣∣∣∣∣∣ c ·
∏

1≤s≤t

|l(us)| ≥
∏

1≤s≤t

maxu′
s∈Us

(|l(u′
s)|)

⎫⎬
⎭ . (8)

From (7) and the fact that V \ {0} = E× · Us for any 1 ≤ s ≤ t follows that

X(c) =
⋂
u∈U

X(c, u); (9)

this is in fact a finite intersection since any X(c, u) depends only on u mod πnm for any 
n ≥ 1 with qn > c. In order to see that any X(c) is admissible affinoid, it thus suffices, 
by Proposition 2.22, to show that any such subset X(c, u) ⊂ P is admissible affinoid. 
Consider any u ∈ U and for every 1 ≤ s ≤ t the admissible subset

X(us) := {[l] ∈ P : l(us) �= 0} ⊂ P ;

any basis β of V containing us yields the rigid analytic isomorphism

ius,β : X(us) → A(β\{us}),rig
C , [l] �→

(
l(v)
l(us)

)
v �=us

.

Let X(u) ⊂ P be the intersection of the X(us) for every 1 ≤ s ≤ t. Choose any OE-basis 
βs of ms that contains us for every 1 ≤ s ≤ t. As any of the maxima in (8) is attained 
at an element of such a βs, thus

X(c, u) =
⋂

v∈
∏

β

⎧⎨
⎩[l] ∈ X(u)

∣∣∣∣∣∣ c ≥
∏

1≤s≤t

∣∣∣∣ l(vs)l(us)

∣∣∣∣
⎫⎬
⎭ . (10)
1≤s≤t s
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In particular, for any 1 ≤ s ≤ t then X(c, u) is contained in the affinoid i−1
us,βs

(Bc), 
where Bc denotes the closed polydisc of radius c around 0. Denote by X ′(c, u) ⊂ P the 
intersection of all i−1

us,βs
(Bc) for all 1 ≤ s ≤ t; it is again affinoid by Proposition 2.22

and satisfies that X(c, u) ⊂ X ′(c, u) ⊂ X(u). In particular, the equality in (10) remains 
valid if X(u) is replaced by X ′(c, u). Thus X(c, u) is an admissible affinoid subset of the 
admissible affinoid subset X ′(c, u) ⊂ P and hence itself an admissible affinoid subset of P . 
As argued before, thus X(c) ⊂ P is an admissible affinoid subset. Moreover, the covering 
(X(qn, u))n≥1 of X(u) is admissible as the image of any morphism Z → X(u) from an 
affinoid Z is already contained in some X(qn, u) by the Maximum Modulus Principle 
(see Proposition 2.27) applied to the composition of ϕ with any of the products in (10).

Consider then any unbounded sequence (cn)n≥1 in |C|. Consider an arbitrary mor-
phism ϕ : Z → P from an affinoid variety Z whose image is contained in ΩV . In order to 
show that ΩV ⊂ P is admissible and admissibly covered by the X(cn), it suffices (see [8, 
Prop. 9.1.4.2]) to show that the image of ϕ is already contained in some X(cn). Since 
ΩV ⊂ X(u) for any u ∈ U and since (X(qn, u))n≥1 is an admissible covering of X(u), 
the image of ϕ is contained in X(qnu , u) for some nu ≥ 1. Choose such an nu ≥ 1 for 
any u ∈ U . By means of the quasi-compactness of U , choose a finite subset U0 ⊂ U such 
that U is covered by the u +πnu+1m for all u ∈ U0. Choose an n ≥ 1 such that cn ≥ qnu

for all u ∈ U0. Any u′ ∈ U thus admits an u ∈ U0 for which u′ − u ∈ πnu+1m and hence

X(cn, u′) ⊃ X(qnu , u′) = X(qnu , u) ⊃ Im(ϕ).

Hence the image of ϕ is contained in X(cn) by (9) as desired. �
Corollary 4.6. For any O ⊂ ΩV the following are equivalent:

i) O is contained in an admissible affinoid subset of ΩV .
ii) O is contained in an admissible quasi-compact subset of ΩV .
iii) λV(O) is bounded.
iv) ∃κ > 0: ∀ [l], [l′] ∈ O, ∀ 0 �= x, y ∈ V : |l(y)|

|l(x)| ≤ κ · |l′(y)|
|l′(x)| .

Proof. Condition iv) is a reformulation of iii) (cf. Def-Proposition 4.2). The Corollary 
then directly follows from Proposition 4.4. �
Corollary 4.7. Consider any O ⊂ ΩV that is contained in an admissible quasi-compact 
subset of ΩV and consider any non-empty discrete subset Λ ⊂ V. Then there exists a 
finite subset of Λ in which every [l] ∈ O attains infλ∈Λ |l(λ)|.

Proof. As Λ ⊂ V is discrete, l(Λ) is strongly discrete (see for instance [20, Ex. 2.48 and 
Lemma 2.49]). Hence for any [l] ∈ ΩV the infimum i(l) := infλ∈Λ |l(λ)| is attained at 
some element of Λ. Assume without loss of generality that O �= ∅ and that 0 /∈ Λ. Choose 
any κ > 0 satisfying the property in Corollary 4.6, iv) for O. Choose any [l0] ∈ O and 
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any λ0 ∈ Λ at which i(l0) is attained. Consider any further [l] ∈ O and any λ ∈ Λ at 
which i(l) is attained. Then

|l0(λ)|
|l0(λ0)|

≤ κ · |l(λ)|
|l(λ0)|

≤ κ

and hence |l0(λ)| ≤ |l0(λ0)|. As l0(Λ) is strongly discrete and as l0|V is injective, the last 
inequality requires λ to lie in a finite subset of Λ that depends only on [l0] and λ0 and 
κ. This yields the corollary. �
Lemma 4.8. Any fiber of λV is open with respect to the canonical topology.

Proof. Set P := P rig
V∗

C
. Let [l] ∈ ΩV . By Proposition 4.1, choose a basis β of V with

∀(μw)w∈β ∈ Eβ :

∣∣∣∣∣∣l
⎛
⎝∑

w∈β

μw · w

⎞
⎠
∣∣∣∣∣∣ = max

w∈β
|μw| · |l(w)|. (11)

Choose any w0 ∈ β for which l(w0) �= 0. We further choose an ε0 > 0 such that for any 
0 < ε ≤ ε0 the closed ball

Bε,β([l]) :=
{

[l′] ∈ P

∣∣∣∣ l′(w0) �= 0 ∧ ∀w ∈ β :
∣∣∣∣ l′(w)
l′(w0)

− l(w)
l(w0)

∣∣∣∣ ≤ ε

}

around [l] is contained in ΩV , where we use that such balls form a basis of neighborhoods 
of [l] ∈ P and that ΩV ⊂ P is admissible. Consider any 0 < ε < ε0 such that

∀w ∈ β : ε <
∣∣∣∣ l(w)
l(w0)

∣∣∣∣ . (12)

We claim that λV(Bε,β([l])) = λV([l]); this will then directly yield that λ−1
V (λV([l])) is 

indeed open. It suffices to show that

∀[l′] ∈ Bε,β([l]),∀v ∈ V :
∣∣∣∣ l′(v)l′(w0)

∣∣∣∣ =
∣∣∣∣ l(v)l(w0)

∣∣∣∣ ; (13)

indeed, any such [l′] then gives rise to the same class of norms on V as [l]. Consider any 
such [l′] and v and write v =

∑
w∈β μw · w with μw ∈ E. Then

∣∣∣∣ l′(v)l′(w0)
− l(v)

l(w0)

∣∣∣∣ ≤ max
w∈β

|μw| ·
∣∣∣∣ l′(w)
l′(w0)

− l(w)
l(w0)

∣∣∣∣
≤ max

w∈β
|μw| · ε

(12)
< max

w∈β
|μw| ·

∣∣∣∣ l(w)
l(w0)

∣∣∣∣ (11)=
∣∣∣∣ l(v)l(w0)

∣∣∣∣ .
As the norm on C is non-Archimedean, this yields (13) as desired. �
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4.2. Quotients by discrete subgroups

The natural left G-action on V induces one on each SV and NV for which SV →
NV , m �→ νm is equivariant. The action of G on SV , resp. NV , is compatible with the one 
of E×, resp. R>0, and thus induces an action of PG on E×\ SV , resp. R>0\ NV .

Let IV be the set of non-empty subsets Δ = {s1, . . . , st} ⊂ E×\ SV admitting 
m1, . . . , mt ∈ SV such that [m1] = s1, . . . , [mt] = st and

m1 � m2 � · · · � mt � πm1. (14)

The PG-action on E×\ SV induces one on IV .
For any Δ ∈ IV and any 0 < ε < 1 set

V ε
Δ :=

⎧⎨
⎩[ν] ∈ R>0\NV

∣∣∣∣∣∣
∏

[m]∈Δ

ρ([ν], [νm]) ≤ c′ ∧ ∀[m] ∈ Δ : ρ([ν], [νm]) ≤ c

⎫⎬
⎭ ,

where c′ = q|Δ|−1− 1+ε

4#Δ and c = q1− 3−ε

4#Δ .

Proposition 4.9. [12, Proof of Prop. 6.2] Let 0 < ε < 1. Then (V ε
Δ)Δ∈IV is a covering of 

R>0\ NV such that ∀g ∈ PG, Δ ∈ IV : g(V ε
Δ) = V ε

g(Δ) and

∀Δ,Δ′ ∈ IV : V ε
Δ ∩ V ε

Δ′ �= ∅ ⇔ Δ ⊂ Δ′ ∨ Δ ⊃ Δ′.

Proof. We refer to [20, Beginning of Section 5.2] for details. �
Recall the PG-equivariant map λV : ΩV → R>0\ NV that sends any [l] to the class of 

the norm v �→ |l(v)|. For any Δ ∈ IV and any 0 < ε < 1 set

Uε
Δ := λ−1

V (V ε
Δ).

Proposition 4.10. [12, Prop. 6.2] Let 0 < ε < 1 be rational. Then (Uε
Δ)Δ∈IV is an admis-

sible affinoid covering of ΩV and ∀g ∈ PG, Δ ∈ IV : g(Uε
Δ) = Uε

g(Δ) and

∀Δ,Δ′ ∈ IV : Uε
Δ ∩ Uε

Δ′ �= ∅ ⇔ Δ ⊂ Δ′ ∨ Δ ⊃ Δ′.

Proof. By Proposition 4.4 and since qQ ⊂ |C|, any Uε
Δ is the intersection of finitely many 

affinoid subsets of ΩV and is thus, by Proposition 2.22, itself an affinoid subset of ΩV .
By Proposition 4.9, we are thus reduced to showing that the covering (Uε

Δ)Δ∈IV of ΩV
is admissible. Consider any closed ball B ⊂ R>0\ NV around any [νm] for any m ∈ SV , 
set X := λ−1

V (B). By Proposition 4.4, we are further reduced to showing that the affinoid 
X is admissibly covered by the Uε

Δ ∩ X or, equivalently, that X is covered by finitely 
many of the Uε

Δ or, equivalently, that B is covered by finitely many of the V ε
Δ. The latter 

follows from the quasi-compactness of B guaranteed by Proposition 4.2: Indeed, for any 
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Δ ∈ IV let V̊ ε
Δ be defined like V ε

Δ upon replacing ≤ by < everywhere. Then V ε′

Δ ⊂ V̊ ε
Δ for 

any Δ ∈ IV and any 0 < ε′ < ε. Hence the open V̊ ε
Δ for all Δ ∈ IV cover IV(R>0) as well. 

The quasi-compact B is thus covered by finitely many of the V̊ ε
Δ and hence by finitely 

many of the V ε
Δ as desired. The remaining assertions of the proposition follow directly 

from the discussion preceding it. �
Let Γ ⊂ PG be any subgroup which is discrete with respect the locally profinite 

topology on PG (see e.g. [20, Section 2.4]). Consider the quotient map

pΓ : ΩV → Γ\ΩV =: ΩΓ

and endow its target with the structure of Grothendieck ringed space which it induces, 
that is, a subset (resp. a covering of a subset) of ΩΓ is admissible precisely when its 
preimage is admissible and the sections on an admissible subset of ΩΓ are the Γ-invariant 
sections on its preimage.

Lemma 4.11. The stabilizer {γ ∈ Γ: γ(Δ) = Δ} of any Δ ∈ IV in Γ is finite.

Proof. The stabilizer {g ∈ PG : g([m]) = [m]} of any [m] ∈ E×\ SV in PG equals 
AutOE

(m) · E×/E×; its intersection with the discrete Γ is thus finite (see for instance 
[20, Lemma 2.41]). Now use that any Δ ∈ IV is a finite subset of E×\ SV . �
Lemma 4.12. For any quasi-compact U, U ′ ⊂ ΩV the set {γ ∈ Γ: U ′∩γ(U) �= ∅} is finite.

Proof. Consider any rational 0 < ε < 1. As the covering (Uε
Δ)Δ∈IV of ΩV is admissible 

by Proposition 4.10, any quasi-compact subset of ΩV is covered by finitely many of its 
elements. It thus suffices to show for any Δ, Δ′ ∈ IV that {γ ∈ Γ: Uε

Δ′ ∩ γ(Uε
Δ) �= ∅} is 

finite. However, this follows via Proposition 4.10 from Lemma 4.11. �
Proposition 4.13. The Grothendieck ringed space ΩΓ is a normal rigid analytic variety 
over C and (pΓ(Uε

Δ))Δ∈IV is an admissible affinoid covering of ΩΓ for any rational 
0 < ε < 1.

Proof. Consider any such ε. For any Δ ∈ IV set UΔ := Uε
Δ and

ΓUΔ :=
⋃
γ∈Γ

γ(UΔ) = p−1
Γ (pΓ(UΔ)).

From Propositions 2.22 and 4.10 and Lemma 4.12 follows that (UΔ′ ∩ΓUΔ)Δ∈IV is a sys-
tem of admissible subsets of UΔ′ for any Δ′ ∈ IV ; it is then in fact an admissible covering 
since it is refined by (UΔ′ ∩UΔ)Δ∈IV which is an admissible covering by Proposition 4.10. 
As (UΔ′)Δ′∈IV is an admissible covering of ΩV , thus (ΓUΔ)Δ∈IV is an admissible covering 
of ΩV and, equivalently, (pΓ(UΔ))Δ∈IV is an admissible covering of ΩΓ.
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Consider any Δ ∈ IV . It remains to be shown that any (pΓ(UΔ)) is an affinoid rigid 
analytic variety over C. The covering (γ(UΔ))γ∈Γ of ΓUΔ is admissible since, by Proposi-
tions 2.22 and 4.10 and Lemma 4.12, its intersection with any element of the admissible 
covering (UΔ′)Δ′∈IV of ΩV is admissible. Denote by ΓΔ the stabilizer of Δ in Γ; it is 
finite by Lemma 4.11. By Proposition 4.10, then γ(UΔ) = UΔ for any γ ∈ ΓΔ and 
γ(UΔ) ∩ UΔ = ∅ for any γ ∈ Γ \ ΓΔ. The inclusion UΔ → ΓUΔ thus induces an isomor-
phism of Grothendieck ringed spaces ΓΔ\UΔ → pΓ(UΔ). As ΓΔ\UΔ is a normal affinoid 
rigid analytic variety over C, thus so is pΓ(UΔ) as desired. �
Proposition 4.14. Consider any ω ∈ ΩV and denote by Γω its stabilizer in Γ. Then there 
exists a basis of admissible affinoid neighborhoods U of ω such that

i) ∀γ ∈ Γω : γ(U) = U and
ii) ∀γ ∈ Γ \ Γω : γ(U) ∩ U = ∅.

Proof. Consider the fiber f := λ−1
V (λV(ω)). Let S ⊂ Γ be the subset of elements γ for 

which γ(f) ∩ f �= ∅; it is finite by Proposition 4.4 and Lemma 4.12. Using that the 
canonical topology on ΩV is Hausdorff and that f ⊂ ΩV is open by Lemma 4.8, we 
choose for any γ ∈ S \ Γω an admissible affinoid neighborhood Uγ ⊂ f of ω for which 
γ(Uγ) ∩ Uγ = ∅. For any neighborhood U ′ of ω then

U :=

⎛
⎝ ⋂

γ′∈Γω

⋂
γ∈S\Γω

γ′(Uγ)

⎞
⎠ ∩

⎛
⎝ ⋂

γ∈Γω

γ(U ′)

⎞
⎠

is an neighborhood of ω that is contained in U ′ and satisfies i) and ii). If such an 
U ′ is affinoid, then U is the intersection of finitely many affinoid subsets and hence, 
by Proposition 2.22, itself affinoid. As the affinoid neighborhoods of ω form a basis of 
neighborhoods of ω, this yields the proposition. �
Corollary 4.15. The morphism pΓ is open with respect to the canonical topologies and, if 
Γ acts fixed-points free on ΩV , it induces isomorphisms on the stalks and the stalks on 
ΩΓ are then regular.

Example 4.16. Consider any admissible coefficient subring A ⊂ C such that the comple-
tion of its quotient field is E. Consider any projective A-submodule Λ ⊂ V for which 
the natural homomorphism Λ ⊗A E → V is an isomorphism. Let 0 �= I ⊂ A be an ideal. 
Then the kernel of the natural homomorphism

AutA(Λ) → AutA(I−1Λ\Λ)

has discrete image in PG and, if I �= A, its action on ΩV is fixed-point free.
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Proof. As Λ ⊗AE → V is an isomorphism, Λ ⊂ V is discrete (see for instance [20, Lemma 
2.48]). Hence the image in PG of AutA(Λ) is discrete, too (see for instance [20, Example 
2.42]). Consider any [l] ∈ ΩV and any γ in the kernel of AutA(Λ) → AutA(I−1Λ\Λ)
with γ[l] = [l]. Hence γl = c · l for some c ∈ C×. Using Proposition 2.36, choose an 
0 �= λ ∈ Λ for which |l(λ)| is minimal among |l(Λ)| \{0}. Then |c · l(λ)| is minimal among 
|c · l(Λ)| \ {0}. As l(Λ) = c · l(Λ), thus |l(λ)| = |c · l(λ)| = |(γl)(λ)| = |l(λ) + l(γ−1λ − λ)|
and hence

|l(γ−1λ− λ)| ≤ |l(λ)|

Moreover, γ−1λ −λ ∈ IΛ by definition of Γ. If I �= A, then the smallest non-zero element 
of l(IΛ) is strictly larger than the one of l(Λ). In this case, thus γ−1λ −λ = 0 and hence 
c · l(λ) = (γl)(λ) = l(λ) and hence c = 1 and hence γl = l. As l|V is injective, thus γ is 
the identity as desired. �
4.3. Some connected subsets of Drinfeld’s period domain

Consider any E-subspace W ⊂ V and any discrete subset Λ ⊂ V such that Λ ∩ W
contains a non-zero element. For any O ⊂ ΩW and any r ∈ |C| set

UV(Λ, O, r) :=
{

[l] ∈ ΩV

∣∣∣∣ [l|WC
] ∈ O ∧ inf

λ∈Λ\W
|l(λ)| ≥ r · inf

0�=λ∈Λ∩W
|l(λ)|

}
.

Lemma 4.17. Consider any r ∈ |C| and any admissible O ⊂ ΩW . For any admissible 
affinoid U ⊂ ΩV then UV(Λ, O, r) ∩ U ⊂ U is admissible and, if O is quasi-compact, 
quasi-compact. Moreover, UV(Λ, O, r) ⊂ ΩV is admissible.

Proof. Let U ⊂ ΩV be affinoid. We first show that the intersection of

U(r) :=
{

[l] ∈ ΩV

∣∣∣∣ inf
λ∈Λ\W

|l(λ)| ≥ r · inf
0�=λ∈Λ∩W

|l(λ)|
}

⊂ ΩV

with U is a quasi-compact admissible subset of U . Suppose without loss of generality 
that Λ \ W �= ∅; otherwise U(r) = ΩV and then the intersection equals the affinoid U . 
Corollary 4.7 provides a finite subset S1 ⊂ Λ \ W, respectively S2 ⊂ Λ ∩ W \ {0}, in 
which every [l] ∈ U attains

inf
λ∈Λ\W

|l(λ)|, respectively inf
0�=λ∈Λ∩W

|l(λ)|.

Hence

U(r) ∩ U =
⋃ ⋂

{[l] ∈ U : |l(λ)| ≥ r · |l(μ)|}.

μ∈S2 λ∈S1
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By [8, Prop. 7.2.3.7], thus the subset U(r) ∩U ⊂ U is the union of finitely many rational 
subdomains and hence quasi-compact admissible as desired.

Consider the morphism π : ΩV → ΩW , [l] �→ [l|WC
]. Then UV(Λ, O, r) ∩ U is the 

intersection of the admissible U(r) ∩ U with the admissible π−1(O) and is thus itself 
admissible. Since U was arbitrary, the admissibility of UV(Λ, O, r) follows by virtue of 
an admissible affinoid covering of ΩV .

Suppose then that O is quasi-compact. By means of Corollary 4.6, choose an admissi-
ble affinoid O′ ⊂ ΩW such that π(U) ⊂ O′ and O ⊂ O′. Then π restricts to a morphism 
U(r) ∩ U → O′ from a quasi-compact to an affinoid variety. By [8, Proposition 7.2.2.4], 
the preimage UV(Λ, O, r) ∩U of the affinoid O under this restriction is thus quasi-compact 
as desired. �

The following definition and proposition concerning connected varieties is due to Con-
rad [10, Below Theorem 2.1.3] except that we furthermore ask them to be non-empty.

Definition 4.18. A rigid analytic variety X is connected if it is non-empty and if any 
admissible covering {U, U ′} of X satisfies that

U ∩ U ′ = ∅ ⇒ U = ∅ ∨ U ′ = ∅.

Proposition 4.19. A non-empty rigid analytic variety X is connected if and only if any 
x, x′ ∈ X admit connected admissible subvarieties X1, . . . , Xn of X such that x ∈ X1

and x′ ∈ Xn and Xi ∩Xi+1 �= ∅ for any 1 ≤ i < n; in this case, such Xi can in fact be 
chosen to be affinoid.

Theorem 4.20. Suppose that Λ ⊂ V is a discrete subgroup such that

Λ = (Λ ∩W)︸ ︷︷ ︸
�=0

⊕(Λ ∩E · v1) ⊕ · · · ⊕ (Λ ∩ E · vk)

for some 0 �= vi ∈ V such that V = W⊕E ·v1⊕· · ·⊕E ·vk. Then UV(Λ, O, r) is connected 
for any connected admissible O ⊂ ΩW and any 1 ≤ r ∈ |C|.

We shall prove Theorem 4.20 at the end of this section. First, we apply it: If Λ ⊂ W, 
then UV(Λ, ΩW , r) = ΩV for any r ∈ |C|. If dimE(W) = 1, then ΩW is a point and thus 
connected. Theorem 4.20 thus specializes to

Corollary 4.21. Drinfeld’s period domain ΩV is connected.

Corollary 4.22. The quotient of Drinfeld’s period domain by any discrete subgroup of PG
is irreducible.
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Proof. As such a quotient is a normal rigid analytic variety by Proposition 4.13, it is 
irreducible if and only if it is connected (see Conrad [10, Definition 2.2.2]). However, any 
quotient of a connected variety is connected. �

The proof below of Theorem 4.20 is inspired by van der Put’s [38, Example 3.5] and 
builds on the following results. In the case of Corollary 4.21, it in fact specializes to a 
variation of the proof that van der Put outlines there.

Proposition 4.23. (Bosch, Lütkebohmert [9, Corollary 5.11]) Let p : X → Y be a flat 
morphism between quasi-compact rigid analytic varieties over C. Then the image under 
p of any admissible quasi-compact subset is admissible quasi-compact.

Corollary 4.24. Consider any flat morphism p : X → Y between quasi-compact rigid 
analytic varieties over C. Suppose that Y and every fiber of p is connected. Then X is 
connected.

Proof. By assumption, every fiber of p lies in a connected component of X. Thus the 
images under p of the connected components of X are disjoint and, by surjectivity of p, 
cover Y . By Proposition 4.23, this covering of Y is admissible. The connectedness of Y
then yields that X has only one connected component, i.e., that X is connected. �
Definition 4.25. A subset S of the projective line P 1,rig

C is a closed ball if it is the image 
of the closed unit ball of the affine line A1,rig

C under an element of PGL2(C).

Proposition 4.26. A subset S ⊂ P 1,rig
C is a closed ball if and only if it equals

{z ∈ A1,rig
C : |z − c| ≤ |c′|} or {z ∈ A1,rig

C : |z − c| ≥ |c′|} ∪ (P 1,rig
C \A1,rig

C ) (15)

for some 0 �= c′, c ∈ A1,rig
C .

Proof. That any subset as in (15) is a closed ball is directly checked. We consider then 
any g = (a, b; c, d) ∈ GL2(C) and need to show that

Bg := {z ∈ A1,rig
C : |az + b| ≤ |cz + d|}

is a subset of A1,rig
C of the first kind in (15) if |a| > |c|, resp. of the second if |a| ≤ |c|. If 

a = 0 or c = 0, this is directly checked. Thus assume that a �= 0 �= c. Let z ∈ A1,rig
C and 

set z′ := cz + d and μ := bc−ad
c . Then az + b = a

c z
′ + μ and

z ∈ Bg ⇔
∣∣∣a
c
z′ + μ

∣∣∣ ≤ |z′|.

If |a| ≤ |c|, thus z ∈ Bg ⇔ |μ| ≤ |z′|. If |a| > |c|, then
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∣∣∣a
c
z′ + μ

∣∣∣ ≤ |z′| ⇔
∣∣∣a
c
z′ + μ

∣∣∣ ≤ ∣∣∣ c
a
μ
∣∣∣

since both sides imply that |μ| = |ac z′|. From this is directly checked that Bg is of the 
desired form in both cases. �
Proposition 4.27. Any non-empty intersection of any finitely many closed balls in P 1,rig

C

is connected.

Proof. Consider any such intersection I. The connectedness of P 1,rig
C yields the proposi-

tion in the case where I is the intersection over the empty set. Suppose then that I is 
contained in a ball. Then the image of I under the transformation by a suitable element 
of PGL2(C) is in A1,rig

C . We thus assume without loss of generality that I ⊂ A1,rig
C . By 

Proposition 4.26 and since any non-empty intersection of finitely many closed balls in 
A1,rig

C is again a closed ball, there exist a 0 ≤ k ≤ n −1 and some c0, c′0 . . . , ck, c
′
k ∈ A1,rig

C

such that

I = {z ∈ A1,rig
C : |z − c0| ≤ |c′0| ∧ ∀1 ≤ j ≤ k : |z − cj | ≥ |c′j |}.

By [8, Theorem 9.7.2.2], any non-empty such set is connected. �
Proof of Theorem 4.20. Let 1 ≤ r ∈ |C| and set U(O) := UV(Λ, O, r) for any admissible 
O ⊂ ΩW . We shall show that U(O) is connected in the case where O ⊂ ΩW is any 
connected admissible and affinoid subset. In particular, U(O) is then non-empty for any 
non-empty admissible O ⊂ ΩW since the latter can be covered by connected subsets. 
Given this affinoid case, the theorem thus directly follows: Indeed, for an arbitrary con-
nected admissible O ⊂ ΩW use that any admissible affinoid O′, O′′ ⊂ O with O′∩O′′ �= ∅
satisfy that U(O′) ∩U(O′′) = U(O′ ∩O′′) �= ∅ and that, by the affinoid case, both U(O′)
and U(O′′) are connected if O′ and O′′ are.

Consider thus any connected admissible affinoid O ⊂ ΩW . Choose any free OE-
submodule of m0 ⊂ V of maximal rank such that Λ ∩ m0 �= 0 and any vi as in the 
theorem and, using that Λ is discrete, such that

∀1 ≤ i ≤ k : [Λ ∩ E · vi �= 0 ⇒ Λ ∩ OE · vi �= 0 = Λ ∩ OE · π · vi]. (16)

For any 0 ≤ i ≤ k set mi := m0 ⊕ OE · v1 ⊕ · · · ⊕ OE · vi and Ui := mi \ πmi and 
Wi := E ·mi and for any linear l : (Wi)C → C set

μi(l) := maxu∈Ui
|l(u)|. (17)

Any ΩWi
is admissibly covered by the ascending affinoid subsets

Ωn
i := {[l] ∈ P rig

(Wi)∗C
| ∀u ∈ Ui : |l(u)| ≥ |πn| · μi(l)}

for all n ≥ 1 by Lemma 4.4 and Definition-Proposition 4.3. Consider the morphism
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pi : ΩWi
→ ΩWi−1 , [l] �→ [l|(Wi−1)C ]

for any 1 ≤ i ≤ k. Choose any j ≥ 1 for which |π|−j > r. Define Ωn
0 := Ωn

0 for any n ≥ 1
and iteratively

∀1 ≤ i ≤ k,∀n > i · j : Ωn
i := p−1

i (Ωn−j
i−1 ) ∩ Ωn

i .

Since, by construction, pi(Ωn
i ) ⊂ Ωn

i−1 for any n ≥ 1 and since the preimage of an 
affinoid subset under an affinoid morphism is affinoid by [8, Proposition 7.2.2.4], any 
such Ωn

i ⊂ Ωn
i is an affinoid subset. Moreover, being cofinal with (Ωn

i )n≥1, the system 
(Ωn

i )n>i·j of ascending subsets is an admissible covering of ΩWi
for any 0 ≤ i ≤ k. Set

∀0 ≤ i ≤ k,∀n > i · j : Y n
i := Ωn

i ∩ UWi
(Λ ∩Wi, O, r)︸ ︷︷ ︸

=:Ui(O)

.

Thus U(O) = Uk(O) is admissibly covered by the ascending subsets Y n
k for all n > k ·j. It 

thus suffices to show that Y n
k is connected for any large enough n. We choose, by means 

of Corollary 4.6, any n0 ≥ 1 such that O ⊂ Ωn0
0 . We are reduced to showing that Y n

i is 
connected for any 0 ≤ i ≤ k and any n ≥ n0 + i · j. We prove this by induction on i. If 
i = 0, it follows directly from the assumption on O using that Y n

0 = O for any n ≥ n0. 
Consider then any i > 0 and any n ≥ n0 + i · j and suppose by induction hypothesis that 
Y n−j
i−1 is connected. By construction, pi restricts to a morphism

p : Y n
i → Y n−j

i−1 .

As both Ωn
i and Ωn−j

i−1 are affinoid, Lemma 4.17 yields that both Y n
i and Y n−j

i−1 are quasi-
compact. Being admissible subvarieties of standard projective spaces, they are further 
regular. Let [l′] ∈ Y n−j

i−1 . In view of Corollary 4.24, it remains to show that p−1([l′]) is 
isomorphic to a connected admissible subvariety of P 1,rig

C . In view of Proposition 4.27, 
this follows from the following lemmas.

Lemma 4.28. p−1([l′]) �= ∅.

Proof. Use that |C| contains |π|Q, that |l′(Wi−1)| is the union in |C| of finitely many 
translates of |π|Z and that |π|−j > r in order to choose a linear form l : (Wi)C → C such 
that

i) l|(Wi−1)C = l′,
ii) |l(vi)| ∈ |C| \ |l′(Wi−1)|,

iii) |π|−j · μi−1(l′) 
(∗)
≥ |l(vi)| 

(∗∗)
≥ r · μi−1(l′).

We show that [l] ∈ p−1([l′]). By i), it suffices to show that [l] ∈ Y n
i . As r ≥ 1, Condition 

(∗∗) implies that |l(vi)| ≥ μi−1(l′) and hence that
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μi(l) = max{|l(vi)|, μi−1(l′)} = |l(vi)|, (18)

where the first equality holds true, as μi(l) is attained by an element of any basis of mi, 
so for instance of a basis consisting of vi and a basis of mi−1. From ii) it follows, as | · |
is non-Archimedean, that

∀e ∈ E,∀w′ ∈ Wi−1 : |l(e · vi + w′)| = max{|e| · |l(vi)|, |l′(w′)|}. (19)

As [l′] ∈ Ωn−j
i−1 , that [l] ∈ Ωn

i is equivalent to [l] ∈ Ωn
i , i.e., to

∀u ∈ Ui : |l(u)| ≥ |π|n · μi(l).

Consider any u ∈ Ui and write u = e · vi + w′ for some e ∈ OE and some w′ ∈ mi−1. If 
w′ ∈ Ui−1, then

|l(u)|
(19)
≥ |l′(w′)|

[l′]∈Ωn−j
i−1

≥ |π|n−j · μi−1(l′)
(∗)∧(18)

≥ |π|n · μi(l).

If w′ /∈ Ui−1, then e ∈ O×
E as u ∈ Ui; in this case, thus

|l(u)|
(19)
≥ |e| · |l(vi)| = |l(vi)|

(18)= μi(l) ≥ |π|nμi(l).

Hence [l] ∈ Ωn
i . It remains to show that [l] ∈ Ui(O), i.e., that

∀λ ∈ Λ ∩Wi \W : |l(λ)| ≥ r · min
0�=w∈Λ∩W

|l′(w)|.

Consider any λ ∈ Λ ∩Wi \ W. Write λ = e · vi + λ′ for some e ∈ E and λ′ ∈ Wi−1. By 
assumption on Λ, both e · vi and λ′ lie in Λ. If λ′ /∈ W, then

|l(λ)|
(19)
≥ |l′(λ′)|

[l′]∈Ui−1(O)
≥ r · min

0�=w∈Λ∩W
|l′(w)|.

If λ′ ∈ W, then e · vi �= 0 as λ /∈ W; in this case, |e| ≥ 1 by (16) and hence

|l(λ)|
(19)
≥ |e| · |l(vi)|

(∗∗)
≥ r · μi−1(l′)

Λ∩m0 �=0
≥ r · min

0�=w∈Λ∩m0
|l′(w)| ≥ r · min

0�=w∈Λ∩W
|l′(w)|.

Hence [l] ∈ Ui(O). As argued before, thus [l] ∈ p−1([l′]) as desired. �
Lemma 4.29. The fiber p−1([l′]) is isomorphic to the intersection of finitely many closed 
balls of P 1,rig

C .
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Proof. Denote by A the set of C×-classes of linear forms l : (Wi)C → C for which 
[l|(Wi−1)C ] = [l′]. Then p−1([l′]) = Ui(O) ∩Ωn

i ∩A. Choose any 0 �= w0 ∈ W and consider 
the isomorphism

ϕ : A → A1,rig
C , [l] �→ l(vi)

l(w0)
.

We first show that ϕ(Ωn
i ∩A) is a closed ball of P 1,rig

C and then that so is ϕ(Ui(O) ∩Ωn
i ∩A). 

For any [l] ∈ A set

μi−1(l) := μi−1(l|(Wi−1)C )
(17)
:= maxu∈Ui−1 |l(u)|.

Choose a finite set of representatives S of Ui modulo πn+1mi, respectively S′ of (Ui\Ui−1)
modulo πn+1mi. Using that [l′] ∈ Ωn−j

i−1 ⊂ Ωn
i−1 and that μi(l) = max{|l(vi)|, μi−1(l)}

by the same reason as in (17), then

Ωn
i ∩A = {[l] ∈ A| ∀u ∈ S : |l(u)| ≥ |πnl(vi)| ∧ ∀u′ ∈ S′ : |l(u′)| ≥ |πn|μi−1(l)}.

Write any element u of S (resp. of S′) in the form eu · vi + wu for some wu ∈ mi−1 and 
some (non-zero) eu ∈ OE such that wu ∈ Ui−1 or eu ∈ O×

E and set

cu := l′(wu)
l′(w0)

= l(wu)
l(w0)

and c := μi−1(l′)
l′(w0)

= μi−1(l)
l(w0)

for any [l] ∈ A. Then ϕ(Ωn
i ∩A) equals

{z ∈ A1,rig
C | ∀u ∈ S : |eu · z + cu|

(∗)
≥ |πn · z| ∧ ∀u′ ∈ S′ : |eu′ · z + cu′ | ≥ |πn · c|}.

We may and do assume that eu = 0 for some u ∈ S. For such a u then 
(∗)
≥ defines a closed 

ball in P 1,rig
C which is already contained in A1,rig

C . By Proposition 4.26, thus ϕ(Ωn
i ∩ A)

is a closed ball in P 1,rig
C .

Choose then a λ0 ∈ Λ ∩W for which |l′(λ0)| = min
0�=λ∈Λ∩W

|l′(λ)|. Then

∀[l] ∈ A : [l] ∈ Ui(O) ⇔ ∀λ ∈ Λ ∩Wi \W :
∣∣∣∣ l(λ)
l(w0)

∣∣∣∣ ≥ r ·
∣∣∣∣ l′(λ0)
l′(w0)

∣∣∣∣ . (20)

By Corollary 4.7, the affinoid Ωn
i admits a finite subset T ⊂ Λ ∩ Wi \ W in which the 

infimum of the |l(λ)| for all λ ∈ Λ ∩Wi \ W is attained for any [l] ∈ Ωn
i . Choose such a 

T . Write any λ ∈ T in the form eλ · vi + wλ for some eλ ∈ E and some wλ ∈ Wi−1 and 
set

cλ := l′(wλ)
′ = l(wλ) and c0 := l′(λ0)

′
l (w0) l(w0) l (w0)
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for any [l] ∈ A. Then

ϕ(p−1([l′])) = ϕ(Ui(O) ∩ Ωn
i ∩A) = {z ∈ ϕ(Ωn

i ∩A)| ∀λ ∈ T : |eλ · vi + cλ| ≥ r · |c0|}.

As ϕ(Ωn
i ∩ A) is a closed ball of P 1,rig

C which is already contained in A1,rig
C , thus so is 

ϕ(p−1([l′])) by Proposition 4.26. This yields the lemma. �
As argued before Lemmas 4.28 and 4.29, they finish the proof. �

4.4. Quotients by discrete subgroups of codimension 1 vector subspaces

Suppose that d := dimE(V) ≥ 2. Consider any E-subspace W ⊂ V of codimension 1, 
any 0 �= w ∈ W, any v ∈ V \W and any discrete subgroup Γ ⊂ AutE(V) such that any 
γ ∈ Γ restricts to the identity on W and satisfies that γ(v) − v ∈ W.

If AutE(V) is identified with GLd(E) via the choice of an ordered basis of V whose 
first d − 1 vectors are an ordered basis of W, then any γ ∈ Γ is of the form

(
id ∗
0 1

)
.

Consider the admissible subvariety E ⊂ P rig
V∗

C
of those [l] for which [l|WC

] ∈ ΩW ; it is 
isomorphic to ΩW ×A1,rig

C via

i : E → ΩW ×A1,rig
C , [l] �→

(
[l|WC

], l(v)
l(w)

)
. (21)

For any O ⊂ ΩW and any integer n ≥ 1 set

E(O) := i−1(O ×A1,rig
C ) and E(O,n) := i−1(O ×Bn),

where Bn ⊂ A1,rig
C denotes the closed ball of radius n around the origin. Thus 

(E(O, n))n≥1 is an admissible affinoid covering of E(O) for any admissible affinoid 
O ⊂ ΩW . By construction, Γ acts on E . Consider the quotient map

pΓ : E → Γ\E

and endow its target with the structure of Grothendieck ringed space induced by pΓ, 
that is, a subset (resp. a covering of a subset) of Γ\E is admissible precisely when its 
preimage is admissible and the sections on an admissible subset of Γ\E are the Γ-invariant 
sections on its preimage. Thus pΓ restricts to the quotient map ΩV → ΩΓ considered in 
Section 4.14 and Γ\E contains the rigid analytic variety ΩΓ as a Grothendieck ringed 
subspace. By Lemma 4.33 below, Γ\E is in fact itself a rigid analytic variety.
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Denote by vΓ ⊂ W the image of the injective continuous homomorphism

Γ → W, γ �→ vγ := γ(v) − v;

it is a discrete subgroup of W as Γ is discrete in AutE(V). For any [l] ∈ ΩW thus 
l(vΓ) ⊂ C is strongly discrete, i.e., its intersection with every ball of finite radius is finite 
(see for instance [20, Ex. 2.48 and Lemma 2.49]). Set

∀[l] ∈ E : e([l]) :=
el(vΓ)(l(v))

l(w) = e l(vΓ)
l(w)

(
l(v)
l(w)

)
,

where el(vΓ) : A1,rig
C → A1,rig

C is the analytic surjective group homomorphism with kernel 
l(vΓ) defined in Definition-Proposition 2.40. We are thus given a bijective map

eΓ : Γ\E → ΩW ×A1,rig
C , pΓ([l]) �→ ([l|WC

], e([l])).

Lemma 4.30. The map e : E → A1,rig
C , [l] �→ e([l]) is morphism of rigid analytic varieties 

over C.

Proof. Any admissible affinoid covering C of ΩW yields via (21) the admissible affinoid 
covering (E(O, n))O∈C,n≥1 of E . Consider any admissible affinoid non-empty O ⊂ ΩW and 
any integer n ≥ 1. It thus suffices to show that the restriction Y := E(O, n) → C of e is 
regular; indeed, if the restriction is regular, its image is contained in an affinoid subvariety 
of A1,rig

C by Proposition 2.27 and hence it is a morphism of rigid analytic varieties by [8, 
Prop. 9.3.1.1]. Choose any [l0] ∈ O. Set L := vΓ ⊂ W. Then 1

l0(w) · l0(L) ⊂ C is strongly 
discrete. For any integer k ≥ 1 thus

Lk :=
{
λ ∈ L :

∣∣∣∣ l0(λ)
l0(w)

∣∣∣∣ ≤ k

}
⊂ L

is finite and hence the function

ek : Y → C, [l] �→ l(v)
l(w) ·

∏
0�=λ∈Lk

(
1 − l(v)

l(λ)

)

is a finite product of regular functions and thus regular. As the sup-norm on the ring of 
regular functions on Y is complete by [8, Theorem 6.2.4.1], it thus suffices to show that 
the ek for all k ≥ 1 converge uniformly to e. By means of Corollary 4.6, choose a κ > 0
such that

∀[l], [l′] ∈ O,∀0 �= x, y ∈ W :
∣∣∣∣ l(y)l(x)

∣∣∣∣ ≤ κ ·
∣∣∣∣ l′(y)l′(x)

∣∣∣∣ .
For any k ≥ 1, any λ ∈ L \ Lk and any [l] ∈ Y then
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∣∣∣∣ l(v)l(λ)

∣∣∣∣ ≤
∣∣∣∣ l(v)l(w)

∣∣∣∣ ·
∣∣∣∣ l(w)
l(λ)

∣∣∣∣ ≤ n · κ ·
∣∣∣∣ l0(w)
l0(λ)

∣∣∣∣ < n · κ
k

and, if n·κk < 1, hence 
∣∣∣1 − l(v)

l(λ)

∣∣∣ = 1 and

∣∣∣∣∣∣1 −
∏

λ∈L\Lk

(
1 − l(v)

l(λ)

)∣∣∣∣∣∣ ≤ n · κ
k

. (22)

Choose a k0 > n ·κ. Using Proposition 2.27 and that Y is affinoid, choose a c0 > 0 which 
bounds ek0 . For any k ≥ k0 and any [l] ∈ Y thus |ek([l])| = |ek0([l])| ≤ c0 and, further 
using (22), hence

|ek([l]) − e([l])| = |ek([l])| ·

∣∣∣∣∣∣1 −
∏

λ∈L\Lk

(
1 − l(v)

l(λ)

)∣∣∣∣∣∣ ≤ c0 ·
n · κ
k

.

This shows as desired that the ek converge uniformly to e. �
Proposition 4.31. The map eΓ is an isomorphism of rigid analytic varieties. In particular, 
it restricts to an open immersion on ΩΓ.

In order to prove Proposition 4.31 we need the following lemmas. Since any [l] ∈ ΩV
satisfies that l(v) /∈ l(vΓ) and hence that e([l]) �= 0, Proposition 4.31 will directly yield

Definition-Proposition 4.32. The map

qΓ : ΩΓ → ΩW × (A1,rig
C \ {0}), pΓ([l]) �→

(
[l|WC

], 1
e([l])

)

is an open immersion.

Lemma 4.33. Consider any admissible affinoid covering C of ΩW . Then

(pΓ(E(O,n)))O∈C,n≥1

is an admissible covering of Γ\E and any pΓ(E(O, n)) is admissibly covered by finitely 
many affinoid varieties. In particular, Γ\E is a rigid analytic variety.

Proof. The covering (πΓ(E(O)))O∈C of Γ\E is the preimage of C under the natural mor-
phism Γ\E → ΩW and hence admissible. We consider any admissible affinoid O ⊂ ΩW , 
set Y := E(O) and Yn := E(O, n) for any n ≥ 1 and are thus reduced to showing the 
claim that Γ\Y is admissibly covered by the pΓ(Yn) and that each of them is admissibly 
covered by finitely many affinoid varieties. In order to prove the claim, we shall apply 
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Proposition 2.31 to the following setting: For any n ≥ 1 denote by Γn ⊂ Γ the subgroup 
of those elements γ such that

∀ [l] ∈ O :
∣∣∣∣ l(vγ)
l(w)

∣∣∣∣ ≤ n;

it is finite as l(vΓ)
l(w) ⊂ C is strongly discrete for any [l] ∈ O. Moreover, any Yn is Γn-

invariant. Furthermore, as ΩW and A1,rig
C are both separated, so is their product and 

hence E and hence the admissible subvariety Y ⊂ E . It remains to verify the remaining 
Condition iii) of Proposition 2.31; i.e., that any n ≥ 1 admits an n′ ≥ n such that

∀γ ∈ Γ \ Γn′ : γ(Yn) ∩ Yn = ∅. (23)

In order to do so, choose, by means of Corollary 4.6, a κ > 0 such that

∀ [l], [l′] ∈ O,∀ 0 �= x, y ∈ W :
∣∣∣∣ l(y)l(x)

∣∣∣∣ ≥ κ ·
∣∣∣∣ l′(y)l′(x)

∣∣∣∣ .
Consider any n ≥ 1, choose any n′ ≥ n

κ and consider any γ ∈ Γ \ Γn′ . Thus

∃ [l′] ∈ O :
∣∣∣∣ l′(vγ)
l′(w)

∣∣∣∣ > n′

which implies that

∀ [l] ∈ O :
∣∣∣∣ l(vγ)
l(w)

∣∣∣∣ > κ · n′ ≥ n

and hence that

∀ [l] ∈ Yn :
∣∣∣∣ l(γv)l(w)

∣∣∣∣ =
∣∣∣∣ l(vγ)
l(w) + l(v)

l(w)

∣∣∣∣ > n

or, equivalently, that γ(Yn) ∩ Yn = ∅ as desired. �
Lemma 4.34. Any [l] ∈ E admits a basis of admissible neighborhoods such that γ(U) ∩U =
∅ for any U in this basis and any id �= γ ∈ Γ and such that (γ(U))γ∈Γ is an admissible 
covering of an admissible subset of E.

Proof. Let [l] ∈ E and set l0 := l|WC
. Associate with any admissible neighborhood O of 

[l0] in ΩW and any ε ∈ |C×| the admissible neighborhood

X(O, ε) :=
{

[l′] ∈ E : [l′|WC
] ∈ O ∧

∣∣∣∣ l′(v)′ − l(v)
∣∣∣∣ ≤ ε

}

l (w) l(w)
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of [l] in E . Using that l0(vΓ) ⊂ C is strongly discrete, we choose an ε0 > 0 such that 0
is the only element in l0(vΓ) whose norm is ≤ ε0 · |l0(w)|. Moreover, by Lemma 4.8, [l0]
admits an admissible affinoid neighborhood O such that all elements in O induce the 
same class of norms on W. Then the X(O, ε) for all such O and all ε0 ≥ ε ∈ |C×| form a 
desired basis of admissible neighborhoods of [l]. Indeed, consider any such O and ε and 
any [l′] ∈ X(O, ε) and γ ∈ Γ such that γ[l′] ∈ X(O, ε). Then∣∣∣∣ l0(γv − v)

l0(w)

∣∣∣∣ =
∣∣∣∣ l′(γv − v)

l′(w)

∣∣∣∣ =
∣∣∣∣ (γ−1l′)(v)
(γ−1l′)(w) − l(v)

l(w) + l(v)
l(w) − l′(v)

l′(w)

∣∣∣∣ ≤ ε

so that γv − v = 0. As γ further restricts to the identity on W, it is the identity as 
desired. In order to see that (γ(X(O, ε))γ∈Γ is an admissible covering of an admissible 
subset of E(O), it suffices, as (E(O, n))n≥1 is an admissible covering of E(O), to show 
for any n ≥ 1 that (γ(X(O, ε)) ∩ E(O, n))γ∈Γ is an admissible covering of an admissible 
subset of E(O, n). However, this holds true for any n ≥ 1 since, by Proposition 2.22, the 
intersection of the affinoid γ(X(O, ε)) with the affinoid E(O, n) is again affinoid for any 
γ ∈ Γ and, by (23), empty for all but finitely many γ ∈ Γ. �
Lemma 4.35. Consider any admissible O ⊂ ΩW and any integer n ≥ 1. Then

eΓ(pΓ(E(O,n))) ⊃ O ×Bn.

Moreover, if O is affinoid, then there exists an m ≥ 1 with

eΓ(pΓ(E(O,n))) ⊂ O ×Bm.

Proof. Set L := vΓ. As | · | is non-Archimedean, any [l] ∈ E satisfies that

|e([l])| =

∣∣∣∣∣∣ l(v)l(w) ·
∏

0�=λ∈L

l(v) + l(λ)
l(λ)

∣∣∣∣∣∣ =
∣∣∣∣ l(v)l(w)

∣∣∣∣ · ∏
0�=λ∈L

|l(λ)|≤|l(v)|

∣∣∣∣ l(v) + l(λ)
l(λ)

∣∣∣∣ . (24)

As l(L) is strongly discrete for any l ∈ Ω̃L, any x ∈ Γ\E is represented by some [l] ∈ E
such that |l(v)| ≤ |l(v) + l(λ)| for any λ ∈ L and hence, by (24), such that | eΓ(x)| =
|e([l])| ≥

∣∣∣ l(v)
l(w)

∣∣∣. As eΓ is surjective, this shows the first part. Suppose then that O is 
affinoid. By (24), any [l] ∈ E satisfies that

|e([l])| ≤
∣∣∣∣ l(v)l(w)

∣∣∣∣ · ∏
0�=λ∈L

|l(λ)|≤|l(v)|

∣∣∣∣ l(v)l(λ)

∣∣∣∣ ≤
∣∣∣∣ l(v)l(w)

∣∣∣∣ · ∏
0�=λ∈L

|l(λ)|≤|l(v)|

∣∣∣∣ l(v)l(w)

∣∣∣∣ ·
∣∣∣∣ l(w)
l(λ)

∣∣∣∣ . (25)

Moreover, any [l] ∈ E(O, n) and any λ ∈ L with |l(λ)| ≤ |l(v)| satisfy that 
∣∣∣ l(λ)
l(w)

∣∣∣ ≤∣∣∣ l(v)
∣∣∣ ≤ n. By (25), it thus suffices to show that for any [l] ∈ E(O, n) both the number 
l(w)
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of λ ∈ L with 
∣∣∣ l(λ)
l(w)

∣∣∣ ≤ n as well as the norm 
∣∣∣ l(w)
l(λ)

∣∣∣ for any such λ is bounded from above 
by a constant depending only on O and n. Since O is affinoid, Corollary 4.6 provides a 
κ > 0 such that

∀[l′], [l] ∈ O,∀λ ∈ L :
∣∣∣∣ l′(λ)
l′(w)

∣∣∣∣ ≤ κ ·
∣∣∣∣ l(λ)
l(w)

∣∣∣∣ .
From this thus follows the second part as any [l] ∈ O admits only finitely many λ ∈ L
with 

∣∣∣ l(λ)
l(w)

∣∣∣ ≤ κ · n as l(L)
l(w) ⊂ C is strongly discrete. �

Proof of Proposition 4.31. By Lemma 4.33, eΓ is a morphism between reduced rigid 
analytic varieties. As argued above, it is bijective. By Proposition 2.26, it thus remains 
to be shown that eΓ induces isomorphism on the stalks and that there exists an admissible 
affinoid covering of ΩW × A1,rig

C such that the preimage under eΓ of any of its elements 
is a finite union of affinoids. As

d

dT

(
e l(vΓ)

l(w)
(T )
)

= 1,

the tangent map of eΓ ◦pΓ at any point is a triangular matrix with only ones on the 
diagonal with respect to a suitable basis and thus an isomorphism; thus it induces iso-
morphisms on the stalks (see [34, Part 2, Chapter 3.9, Theorem 2]). By Lemma 4.34, 
the quotient morphism pΓ induces isomorphism on the stalks, too. Hence so does eΓ. 
Moreover, the On := O × Bn for all admissible affinoid subsets O ⊂ ΩW and all n ≥ 1
form an admissible affinoid covering of ΩW × A1,rig

C . Consider any such On and set 
X := pΓ(E(O, n)). By means of Lemma 4.35 choose an m ≥ n with On ⊂ eΓ(X) ⊂ Om. 
For any affinoid X ′ ⊂ X then e−1

Γ (On) ∩ X ′ is the preimage of the affinoid subset On

under the morphism X ′ → O×Bm between affinoid varieties induced by eΓ and is thus 
[8, Proposition 7.2.2.4] itself affinoid. As, by Lemma 4.33, X is admissibly covered by 
finitely many such affinoid subvarieties X ′, the preimage e−1

Γ (On) is thus a finite union 
of affinoid subsets. As argued before, eΓ is thus an isomorphism. Finally, by Lemma 4.4, 
the Γ-invariant ΩV ⊂ E is an admissible subvariety. Hence so is ΩΓ ⊂ Γ\E . Thus the 
restriction of eΓ to ΩΓ is an open immersion. �
Proposition 4.36. Let A and Λ ⊂ V be as in Example 4.16 and suppose that b · L ⊂ vΓ
for some 0 �= b ∈ A. Let O ⊂ ΩW be admissible affinoid. Then

i) any ε > 0 admits an r > 0 such that q−1
Γ (O ×Bε) ⊃ pΓ(UV(Λ, O, r)),

ii) any r > 0 admits an ε > 0 such that q−1
Γ (O ×Bε) ⊂ pΓ(UV(Λ, O, r)),

where UV(Λ, O, r) ⊂ ΩV is the subset defined before Lemma 4.17.

Proof. Set L := Λ ∩W and L := vΓ ⊂ L and U(O, r) := UV(Λ, O, r) for any r ∈ |C|. As 
O is affinoid, Corollary 4.6 provides a κ > 0 such that
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∀[l], [l′] ∈ O,∀w′′, w′ ∈ W \ {0} :
∣∣∣∣ l(w′′)
l(w′)

∣∣∣∣ ≤ κ ·
∣∣∣∣ l′(w′′)
l′(w′)

∣∣∣∣ . (26)

Choose for any [l] ∈ O an 0 �= wl ∈ L such that

|l(wl)| = inf0�=λ∈L |l(λ)|.

using that l(L) is strongly discrete by Proposition 2.36. Then

∀[l], [l′] ∈ O :
∣∣∣∣ l(w)
l(wl)

∣∣∣∣ ≤ κ ·
∣∣∣∣ l′(w)
l′(wl)

∣∣∣∣ ≤ κ ·
∣∣∣∣ l′(w)
l′(wl′)

∣∣∣∣ .
In particular, there exists an s > 0 such that

∀[l] ∈ O :
∣∣∣∣ l(w)
l(wl)

∣∣∣∣ ≤ s.

For any [l] ∈ E(O) set wl := wl|WC
and choose a vl ∈ Λ \ L such that

|l(vl)| = infλ∈Λ\L |l(λ)|.

Part i) holds true as for any r ∈ |C×| and any [l] ∈ U(O, r) holds that
∣∣∣∣ l(w)
l(v + λ)

∣∣∣∣ ≤
∣∣∣∣ l(w)
l(vl)

∣∣∣∣ =
∣∣∣∣ l(wl)
l(vl)

· l(w)
l(wl)

∣∣∣∣ ≤ s

r

and hence that

∣∣∣∣ 1
e([l])

∣∣∣∣ =
∣∣∣∣ l(w)
el(L)(l(v))

∣∣∣∣ =
∣∣∣∣∣∑
λ∈L

l(w)
l(v + λ)

∣∣∣∣∣ ≤ s

r
.

Let us then show Part ii). As 1
l(wl) · l(L) is co-compact in l(W) for any [l] ∈ O, there 

exists an r([l]) > 0 such that

∀x ∈ W ∃λ ∈ L :
∣∣∣∣ l(x− λ)

l(wl)

∣∣∣∣ ≤ r([l]). (27)

Using (26) and that |l′(wl)| ≥ |l′(wl′)| for any [l], [l′] ∈ O, we may and do choose the 
r([l]) to be uniformly bounded. As U(O, r) ⊂ U(O, r′) for any r ≥ r′ > 0, it thus suffices 
to show Part ii) only for any r ∈ |C| such that r > r([l]) for any [l] ∈ O. Consider any 
such r. By surjectivity of eΓ, it suffices to find an ε > 0 such that

pΓ(E(O) \ U(O, r)) ⊂ e−1
Γ (O ×B 1

ε
).

By the second part of Lemma 4.35, it thus suffices to find an n ≥ 1 with
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E(O) \ U(O, r) ⊂
⋃
γ∈Γ

γ(E(O,n)). (28)

Using the assumption, choose 0 �= b ∈ A such that b · L ⊂ L. Using that Λ/(A · v + L)
is a torsion A-module, we further choose a c ∈ A such that c · Λ ⊂ A · v + L. We claim 
that any n ≥ max {|c|, |b|} · r satisfies (28). Consider any [l] ∈ E(O) \ U(O, r). Then

∣∣∣∣ l(vl)l(wl)

∣∣∣∣ < r;

indeed, if [l] ∈ ΩΛ, this follows from the definition of U(O, r) and if [l] /∈ ΩΛ, then 
l(V) = l(W) so that (27) provides for any x ∈ W with l(vl) = l(x) an λ ∈ L with ∣∣∣ l(x−λ)

l(wl)

∣∣∣ < r so that

|l(vl)| ≤ |l(vl − λ)| = |l(x− λ)| < r · |l(wl)|.

Let a ∈ A and λ′ ∈ L be such that c · vl = a · v + λ′. Using (27), choose a λ ∈ L with ∣∣∣∣ l(λ′
a −λ)
l(wl)

∣∣∣∣ ≤ |b| · r. Write λ = γ(v) − v for a unique γ ∈ Γ. Then

∣∣∣∣ (γ−1l)(v)
(γ−1l)(w)

∣∣∣∣ =
∣∣∣∣ l(v + λ)

l(w)

∣∣∣∣ ≤
∣∣∣∣ l(v + λ)

l(wl)

∣∣∣∣ =
∣∣∣∣∣ l(v + λ′

a + λ− λ′

a )
l(wl)

∣∣∣∣∣
≤ max

{
|c|
|a| ·

∣∣∣∣ l(vl)l(wl)

∣∣∣∣ ,
∣∣∣∣∣ l(

λ′

a − λ)
l(wl)

∣∣∣∣∣
}

≤ max {|c|, |b|} · r

which yields the claim and hence Part ii). �
5. Compactification of analytic irreducible components

Consider any algebraically closed complete non-Archimedean valued field C of finite 
characteristic, any admissible coefficient subring A ⊂ C (see Definition 2.33), any finitely 
generated projective A-module Λ �= 0 and any congruence subgroup Γ ⊂ AutA(Λ). Let 
E ⊂ C be the smallest local field containing A.

Notation 5.1. For any direct summand L ⊂ Λ denote by ΓL, resp. Γ̊L, the normalizer, 
resp. centralizer, of L in Γ, i.e.,

• ΓL := {γ ∈ Γ: γ(L) = L} ⊂ Γ, resp.
• Γ̊L := {γ ∈ ΓL : γ|L = idL} ⊂ ΓL, and set
• ΓL := {γ|L ∈ AutA(L) : γ ∈ ΓL}.
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5.1. Grothendieck topology on the pre-quotient

Let Ω∗
Λ be the set-theoretic disjoint union of all the ΩL := ΩLE

for all direct summands 
0 �= L ⊂ Λ. In this section we endow Ω∗

Λ with the structure of Grothendieck topological 
space whose quotient Ω∗

Γ by some natural Γ-action, introduced in the next section, will 
be the Grothendieck topological space underlying the desired compactification of ΩΓ.

Definition 5.2. For any subset S ⊂ C let d(S) := inf
0�=s∈S

|s|.

Definition 5.3. For any direct summand 0 �= L ⊂ Λ and any admissible O ⊂ ΩL and any 
r ∈ |C| denote by

U(Λ, O, r)

the subset of Ω∗
Λ of all elements [l] with [l] ∈ ΩL′ for some L ⊂ L′ ⊂ Λ for which

i) [l|LC
] ∈ O and

ii) d(l(L′ \ L)) ≥ r · d(l(L)).

Definition-Proposition 5.4. Endow Ω∗
Λ with the following Grothendieck topology: A subset 

Y ⊂ Ω∗
Λ is admissible if for every direct summand 0 �= L ⊂ Λ

i) the subset Y ∩ ΩL ⊂ ΩL is admissible and
ii) if every affinoid O ⊂ Y ∩ ΩL admits an r ∈ |C| with U(Λ, O, r) ⊂ Y .

Moreover, a covering of an admissible subset of Ω∗
Λ by admissible subsets is admissible 

if its intersection with every ΩL is admissible.

Proof. All properties required by Definition 2.2 follow directly from the corresponding 
ones of the Grothendieck topological spaces ΩL and the fact that any admissible covering 
of an affinoid subset has a finite subcovering. �
Example 5.5. Any subset U(Λ, O, r) as in Definition 5.3 is admissible.

Proof. Consider any admissible O ∈ ΩL and any r ∈ |C|. By Lemma 4.17, the inter-
section of U := U(Λ, O, r) with any ΩL′ is an admissible subset of ΩL′ for any further 
direct summand L ⊂ L′ ⊂ Λ. Consider then any affinoid O′ ⊂ U ∩ ΩL′ for any such L′. 
We shall show that U(Λ, O′, r′) ⊂ U for some r′ ∈ |C|. Using Corollaries 4.6 and 4.7 and 
that O′ is affinoid, choose an ε > 0 such that

∀[l′] ∈ O′ : d(l′(L′)) ≥ ε · d(l′(L)).

Let r ≤ r′ ∈ |C| and [l] ∈ U(Λ, O′, r′) ∩ ΩL′′ for any L′ ⊂ L′′ ⊂ Λ. Then
ε
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d(l(L′′ \ L)) ≥ min{d(l(L′′ \ L′)),d(l(L′ \ L))}
≥ min{r′ · d(l(L′)), r · d(l(L))} ≥ r · d(l(L)).

As [l|L′ ] ∈ O′ ⊂ U , also [l|L] ∈ O. Thus [l] ∈ U . Hence U(Λ, O, r′) ⊂ U . Hence U is 
indeed admissible. �
Corollary 5.6. Consider any admissible Y ⊂ Ω∗

Λ and for any direct summand 0 �= L ⊂ Λ
an admissible covering CL of Y ∩ ΩL and an rO ∈ |C| for any O ∈ CL such that UO :=
U(Λ, O, rO) ⊂ Y . Then the covering C of Y by all these UO is admissible.

Proof. By Example 5.5, any UO is an admissible subset of Y . Moreover, the intersection 
of C with any boundary component ΩL is refined by the admissible CL and is thus, by 
Property vii) of Definition 2.2, itself admissible. Hence C is indeed admissible. �
Corollary 5.7. For any direct summand 0 �= L ⊂ Λ, any [l] ∈ ΩL and any countable 
neighborhood basis (On)n≥1 of [l] in ΩL the system (U(Λ, On, rn))n≥1 is a countable 
neighborhood basis of [l] in Ω∗

Λ for any unbounded sequence {rn}n≥1 ⊂ |C|.

Proof. This follows directly from Example 5.5 and Definition 5.4, i). �
Corollary 5.8. The canonical topology on Ω∗

Λ is first countable.

Corollary 5.9. Let Y ⊂ Ω∗
Λ be admissible. With respect to the canonical topologies, then 

a function f : Y → C is continuous if and only if it is sequentially continuous.

5.2. Structure of Grothendieck graded ringed space

For any direct summand 0 �= L ⊂ Λ denote by Ω̃L the preimage of ΩL under the 
quotient-by-C× morphism Arig

L∗
C
\ {0} → P rig

L∗
C
; it consists precisely of the C-linear maps 

l : LC → C for which Ker(l) ∩ LE = 0.

Definition 5.10. Let Ω̃∗
Λ be the set-theoretic disjoint union of all such Ω̃L equipped with 

the induced C×-action and the C×-equivariant action of AutA(Λ) defined by

∀γ ∈ AutA(Λ), l ∈ Ω̃L : γ(l) := l ◦ (γ−1|(γ(L))C ) ∈ Ω̃γ(L).

The induced action of AutA(Λ) on Ω∗
Λ is by isomorphism of Grothendieck topological 

spaces by

Lemma 5.11. For any U(Λ, O, r) ⊂ Ω∗
Λ as in Definition 5.3 holds that

∀γ ∈ AutA(Λ) : γ(U(Λ, O, r)) = U(Λ, γ(O), r). (29)

Proof. This is directly checked. �
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Definition 5.12. Consider the quotient map

pΓ : Ω∗
Λ → Γ\Ω∗

Λ =: Ω∗
Γ

and endow its target with the structure of Grothendieck topological space which it 
induces, that is, a subset (resp. a covering of a subset) of Ω∗

Γ is admissible precisely when 
its preimage is admissible.

Remark 5.13. The induced canonical topology on Ω∗
Γ was introduced by Kapranov [25]

in the case, where A is a polynomial ring.

Example 5.14. Consider any direct summand 0 �= L ⊂ Λ, any admissible quasi-compact 
O ⊂ ΩL and any 1 < r ∈ |C|. Then the γ(U(Λ, O, r)) for all γ ∈ Γ form an admissible 
covering of an admissible subset of ΩΛ. In particular, pΓ(U(Λ, O, r)) ⊂ Ω∗

Γ is admissible. 
Moreover, if O is connected, then so is pΓ(U(Λ, O, r)) ∩ ΩΓ ⊂ ΩΓ.

Proof. Set U := U(Λ, O, r). Let us show the first assertion. By construction, any γ(U)
depends only on γ modulo ̊ΓL. By means of Example 5.5, Lemma 4.17 and any admissible 
affinoid covering of any stratum ΩL′ , it suffices to show for any admissible affinoid subset 
O′ of any ΩL′ that γ(U) ∩O′ = ∅ for all but finitely many γ ∈ Γ modulo ̊ΓL. Thus consider 
any such admissible affinoid O′ ⊂ ΩL′ . We assume that L′ = Λ and that U ∩O′ �= ∅; the 
general case is directly reduced to this case. Using that O, resp. O′, is quasi-compact, 
choose a κ > 0, resp. κ′ > 0, which satisfies the property in Corollary 4.6, iv) with 
respect to O and LE , resp. O′ and ΛE . Choose any basis β of LF that is contained in 
L and choose any [l] ∈ U ∩O′. Choose a λ ∈ L such that |l(λ)| = d(l(L)). Consider any 
γ ∈ Γ for which γ(U) ∩O′ �= ∅ and choose any [l′] ∈ γ(U) ∩ O′. Choose a λ′ ∈ γL with 

|l′(λ′)| = d(l′(γL)) r>1= d(l′(Λ)). For any v ∈ β then∣∣∣∣ l(γv)l(λ)

∣∣∣∣ ≤ κ′ ·
∣∣∣∣ l′(γv)l′(λ)

∣∣∣∣ ≤ κ′ ·
∣∣∣∣ l′(γv)l′(λ′)

∣∣∣∣ = κ′ ·
∣∣∣∣ l′(γv)l′(γλ)

∣∣∣∣ ·
∣∣∣∣ l′(γλ)
l′(λ′)

∣∣∣∣
∗
≤ κ′ · κ2 ·

∣∣∣∣ (γl)(γv)(γl)(γλ)

∣∣∣∣ ·
∣∣∣∣ (γl)(γλ)
(γl)(λ′)

∣∣∣∣ = κ′ · κ2 ·
∣∣∣∣ l(v)l(λ)

∣∣∣∣ ·
∣∣∣∣ (l(λ)
l(γ−1λ′)

∣∣∣∣
≤ κ′ · κ2 ·

∣∣∣∣ l(v)l(λ)

∣∣∣∣ ,
where at 

∗
≤ we have used that [(γl)|(γL)C ] ∈ γ(O) as [l|LC

] ∈ O and that, as is directly 
checked, the constant κ also satisfies the property in Corollary 4.6, iv) for γ(O) and 
(γL)E . As l(Λ) is strongly discrete, thus l(γ(β)) lies in a finite subset of l(Λ) that depends 
not on γ. As such a γ modulo Γ̊L is uniquely determined by its action on β, there exists 
thus indeed only finitely many γ modulo Γ̊L satisfying the above inequality and hence 
that γ(U) ∩O′ �= ∅. Moreover, if O is connected, then so is U ∩ΩΛ by Theorem 4.20 and 
hence so is its admissible image pΓ(U) ∩ ΩΓ = pΓ(U ∩ ΩΛ) ⊂ ΩΓ. �
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Corollary 5.15. The map pΓ is open with respect to the canonical topologies.

Proof. This follows from Definition-Proposition 5.4 and Examples 5.5 and 5.14. �
Corollary 5.16. Any point in Ω∗

Γ has a fundamental basis of admissible neighborhoods 
whose intersection with ΩΓ is connected and irreducible.

Proof. As ΩΓ is normal by Proposition 4.13, its irreducible and connected subsets 
coincide by [10, Definition 2.2.2]. The corollary thus follows from Example 5.14 and 
Corollary 5.7 using that any point in any stratum ΩL has a basis of connected admissi-
ble affinoid neighborhoods in ΩL. �
Example 5.17. Consider any admissible subset X ⊂ Ω∗

Γ. For any direct summand 0 �= L ⊂
Λ choose an admissible affinoid covering CL of p−1

Γ (X) ∩ΩL and for any O ∈ CL an rO ∈
|C| for which U(Λ, O, rO) ⊂ p−1

Γ (X). Then the covering C of X by the pΓ(U(Λ, O, rO))
for all O in all CL is admissible.

Proof. By Example 5.14, any element of C is admissible. Let D be the covering of p−1
Γ (X)

defined as the preimage of C under pΓ. It remains to check that the intersection of D
with any ΩL is an admissible covering of p−1

Γ (X) ∩ ΩL. However, by construction, such 
an intersection is refined by CL and is thus admissible as desired. �
Proposition 5.18. Consider any direct summand 0 �= L ⊂ Λ, any ω ∈ ΩL and any ad-
missible affinoid neighborhood O ⊂ ΩL of ω satisfying the properties in Proposition 4.14, 
i.e., that

∀γ ∈ Γω : γ(O) = O and ∀γ ∈ Γ \ Γω : γ(O) ∩O = ∅.

Then there exists r0 > 0 such that for any r0 < r ∈ |C| the subset Ur := U(Λ, O, r) ⊂ Ω∗
Λ

satisfies that

∀γ ∈ Γω : γ(Ur) = Ur and ∀γ ∈ Γ \ Γω : γ(Ur) ∩ Ur = ∅.

Proof. From the equality γ(Ur) = U(Λ, γ(O), r) for all γ ∈ Γ directly follows that 
γ(Ur) = Ur for all γ ∈ Γω and γ(Ur) ∩ Ur = ∅ for all γ ∈ ΓL \ Γω. Using Corollary 4.6
and that O is affinoid, choose for the remaining assertion a κ > 0 such that

∀[l], [l′] ∈ O : ∀0 �= x, y ∈ L : |l(y)|
|l(x)| ≤ κ · |l

′(y)|
|l′(x)| .

Choose any [l0] ∈ O and let 0 �= λ0 ∈ L be such that d(l0(L)) = |l0(λ0)|. For any [l] and 
any 0 �= λ ∈ L with d(l(L)) = |l(λ)| then

|l(λ0)| ≤ κ · |l0(λ0)| ≤ κ (30)
d(l(L)) |l0(λ)|
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and, denoting by μmax the last successive minimum (see Definition 2.37),

μmax(l(L))
d(l(L))

(30)
≤ κ · μmax(l(L))

|l(λ0)|
≤ κ2 · μmax(l0(L))

|l0(λ0)|
=: r0.

Let γ ∈ Γ \ ΓL and r0 < r ∈ |C| and suppose, by contradiction, the existence and 
choice of an [l] ∈ γ(Ur) ∩ Ur. Then L′ := γ(L) �⊂ L �⊂ L′. Choose λ ∈ L \ L′ with 
|l(λ)| ≤ μ := μmax(l(L)) and λ′ ∈ L′ \ L with |l(λ′)| ≤ μ′ := μmax(l(L′)). If μ′ ≤ μ, we 
get the contradiction that

|l(λ′)| ≤ μ′ ≤ μ < r · d(l(L))
[l]∈Ur

≤ d(l(L′ \ L)) ≤ |l(λ′)|.

By symmetry, we also get a contradiction if μ ≤ μ′ using that μ′ ≤ r0 · d(l(L′)); the 
latter holds true since all [l′] ∈ γ(O) satisfy that

μmax(l′(L′)) = μmax(γ−1(l′)(L)) ≤ r0 · d(γ−1(l′)(L)) = r0 · d(l′(L′)))

and since [l] ∈ γ(Ur) = U(Λ, γ(O), r). �
Definition-Proposition 5.19. For any orbit O of the natural Γ-action on the set of non-
zero direct summands let

ΩO := pΓ

( ⋃
L∈O

ΩL

)

be equipped with the structure of Grothendieck ringed space turning the natural map 
ΩΓL

→ ΩO into an isomorphism for every L ∈ O. Then a subset X ⊂ Ω∗
Γ is admissible 

if and only if for every such orbit O:

i) X ∩ ΩO ⊂ ΩO is admissible and
ii) every admissible quasi-compact Y ⊂ ΩO with Y ⊂ X admits an r ≥ 0 with

U(Λ, Y, r) := pΓ

( ⋃
L∈O

U(Λ, p−1
Γ (Y ) ∩ ΩL, r)

)
⊂ X.

Moreover, a covering of an admissible subset X ⊂ Ω∗
Γ by admissible subsets is admissible 

precisely if its intersection with X ∩ ΩO is admissible for every orbit O.

Proof. Consider any X ⊂ Ω∗
Γ. For any orbit O the subset X ∩ ΩO ⊂ ΩO is admissible 

if and only if for every L ∈ O the subset p−1
Γ (X) ∩ ΩL is admissible. Thus i) holds 

true for every orbit O if and only if p−1
Γ (X) ∩ ΩL ⊂ ΩL is admissible for every direct 

summand 0 �= L ⊂ Λ. We assume that these equivalent statements hold true. Similarly, 
it directly follows that a covering of X by admissible subsets is admissible if and only 
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if its intersection with X ∩ ΩO is admissible for every such O. We are thus reduced to 
showing that ii) holds true for every such O if and only if every such L and every affinoid 
O ⊂ p−1

Γ (X) ∩ ΩL admit an r ∈ |C| for which U(Λ, O, r) ⊂ p−1
Γ (X). First assume the 

first property and consider any such affinoid O ⊂ ΩL and denote by O the Γ-orbit of L. 
For any r ∈ |C| then

pΓ(U(Λ, O, r)) = U(Λ, pΓ(O), r)

is admissible by Example 5.14; in particular, pΓ(O) ⊂ ΩO is admissible and, being the 
image of O, quasi-compact. Thus ii) provides a desired r ∈ |C|. Conversely assume the 
second property and consider any admissible quasi-compact Y ⊂ ΩO. Choose any L ∈ O

and an admissible affinoid covering CL of p−1
Γ (Y ) ∩ ΩL and for any O ∈ CL an rO ∈ |C|

such that U(Λ, O, rO) ⊂ p−1
Γ (X). Then (pΓ(O))O∈CL

is a covering of Y ; it is in fact 
admissible since any of its elements is admissible by Example 5.14 since the preimage 
in ΩL of the covering has the admissible refinement CL and is thus itself admissible. By 
quasi-compactness of Y , we may thus choose finitely many pΓ(O1), . . . , pΓ(On) which 
cover Y . For any r ∈ |C| greater than the rOi

for all 1 ≤ i ≤ n then

U(Λ, Y, r) ⊂
⋃

1≤i≤n

U(Λ, pΓ(Oi), rOi
) = pΓ

⎛
⎝ ⋃

1≤i≤n

U(Λ, Oi, rOi
)

⎞
⎠ ⊂ X.

This yields the converse direction and finishes the proof. �
Definition-Proposition 5.20. Consider any integer k and any admissible Y ⊂ Ω∗

Λ with 
preimage Ỹ ⊂ Ω̃∗

Λ. A function f : Ỹ → C is called weight k regular if

i) ∀c ∈ C×, l ∈ Ỹ : f(c · l) = c−k · f(l)
ii) and every direct summand 0 �= L ⊂ Λ, every admissible affinoid O ⊂ Y ∩ ΩL and 

one, and hence every, 0 �= λ ∈ L, admit an r ∈ |C| such that U := U(Λ, O, r) ⊂ Y

and

U → C, [l] �→ f(l) · l(λ)k (31)

is bounded, continuous with respect to the canonical topologies and restricts to a 
regular (see Definition 2.17) function U ∩ ΩL′ → C for every direct summand 0 �=
L′ ⊂ Λ.

Proof. If for some 0 �= λ ∈ L the function in (31) is bounded and continuous, then the 
same holds true for any such λ since for any 0 �= λ′, λ ∈ L the regular function

U → C, [l] �→ l(λ)
′
l(λ )
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is continuous and bounded; indeed the function is continuous as it factors through the 
continuous restriction morphism U → O and it is bounded by Proposition 2.27 applied 
to the affinoid O. �
Definition-Proposition 5.21. For any admissible X ⊂ Ω∗

Γ and any integer k let O∗
Γ(k)(X)

be the set of Γ-invariant weight k regular functions π−1
Γ (X) → C, where

πΓ : Ω̃∗
Λ → Ω∗

Γ = Γ\Ω̃∗
Λ/C

×

is the double quotient map. By means of the ring structure on C, then

i) the O∗
Γ(0)(X) for all admissible subsets X ⊂ Ω∗

Γ together with the natural restriction 
homomorphisms form a sheaf O∗

Γ of rings on Ω∗
Γ, called structure sheaf on Ω∗

Γ, and
ii) for any integer k the O∗

Γ(k)(X) for all admissible X ⊂ Ω∗
Γ together with the natural 

restriction homomorphisms form a sheaf O∗
Γ(k) of O∗

Γ-modules on Ω∗
Γ, called k-th 

twisting O∗
Γ-module and

iii) a sheaf R∗
Γ of graded O∗

Γ-algebras on Ω∗
Γ is formed by the

R∗
Γ(X) :=

∑
k∈Z

O∗
Γ(k)(X)

for all admissible X ⊂ Ω∗
Γ together with the natural restriction homomorphisms.

In particular, (Ω∗
Γ, O∗

Γ) (resp. (Ω∗
Γ, R∗

Γ)) is a Grothendieck (graded) ringed space con-
taining the rigid analytic variety ΩΓ as an admissible Grothendieck ringed subspace.

Proof. This is directly checked. �
Proposition 5.22. Consider any admissible X ⊂ Ω∗

Γ. Then precomposition with the re-
striction π−1

Γ (X) → X of πΓ induces a bijection to O∗
Γ(X) from the set O′

Γ(X) of 
functions s : X → C that are continuous with respect to the canonical topologies, that 
restrict to a regular function on X ∩ ΩO for every Γ-orbit O and that are bounded on 
U(Λ, Y, r) for every admissible quasi-compact Y ⊂ ΩO and every r ∈ |C| for which 
U(Λ, Y, r) ⊂ X.

Proof. Consider first any direct summand 0 �= L ⊂ Λ in any orbit O. As already argued 
in the proof of Definition-Proposition 5.19, for any admissible quasi-compact O ⊂ L then 
pΓ(O) ⊂ ΩO is admissible quasi-compact and

pΓ(U(Λ, O, r)) = U(Λ, pΓ(O), r)

for any r ∈ |C|. Using this, it directly follows that precomposition with πΓ defines an 
injective map O′

Γ(X) → O∗
Γ(X). On the other hand, consider any f ∈ O∗

Γ(X). Being C×-
and Γ-invariant, it induces a function s : X → C which, by Corollary 5.15, is continuous 



58 S. Häberli / Journal of Number Theory 219 (2021) 1–92
with respect to the canonical topologies since f is. By construction of the ΩO, moreover, 
s restricts stratawise to a regular function since f does. The boundedness property for 
s follows from the one of f via the argument at the end of the proof of Definition-
Proposition 5.19. �
Proposition 5.23. For any Γ-orbit O = Γ · L �= {0} the composition of the canonical bi-
jection ΩΓL

→ ΩO with the inclusion ΩO ⊂ Ω∗
Γ is an injective morphism of Grothendieck 

ringed spaces whose induced morphisms on stalks are surjective.

Proof. That the composition is a morphism follows directly from Definition-Proposi-
tion 5.19 and Proposition 5.22. By construction, it is injective. It remains to show that it 
is surjective on stalks. Let ω ∈ ΩL. Using Proposition 4.14, choose a basis S of admissible 
affinoid neighborhoods O of ω in ΩL such that γ(O) = O for all γ ∈ Γω and γ(O) ∩O = ∅
for all γ ∈ Γ \Γω. By Example 5.14 applied to the case Λ = L, for any O ∈ S the subset 
pΓL

(O) ⊂ ΩΓL
is admissible and hence the subset pΓ(O) ⊂ ΩO corresponding to pΓL

(O)
under the isomorphism ΩΓL

∼= ΩO is admissible. Since S is a basis, the pΓ(O) for all 
O ∈ S are in fact a basis of admissible neighborhoods of pΓ(ω). By Example 5.14 and 
Definition-Proposition 5.19, the subsets pΓ(U(Λ, O, r)) ⊂ Ω∗

Γ for all O ∈ S and all r ∈ |C|
form a basis of admissible neighborhoods of pΓ(ω) in Ω∗

Γ. Consider any O ∈ S and set 
Ur := U(Λ, O, r) for all r ∈ |C|. It thus suffices to show for large enough r ∈ |C| that 
every section on pΓ(O) = pΓ(Ur) ∩ ΩO extends to a section on pΓ(Ur). However, if r is 
large enough, then

∀γ ∈ Γω : γ(Ur) = Ur and ∀γ ∈ Γ \ Γω : γ(Ur) ∩ Ur = ∅

by Proposition 5.18. For such r the maps γ(Ur) → γ(O), [l] �→ [l|γ(L)C ] for all γ ∈ Γ are 
thus the restrictions of a well-defined map

ρ :
⋃
γ∈Γ

γ(Ur) →
⋃
γ∈Γ

γ(O).

It is directly checked that ρ is Γ-equivariant, continuous with respect to the canonical 
topologies and that its restriction to the intersection of its domain with ΩL′ for any direct 
summand 0 �= L′ ⊂ Λ is a morphism of rigid analytic varieties. The map ρΓ : pΓ(Ur) →
pΓ(O) induced by ρ is then also continuous with respect to the canonical topologies 
and restricts to a morphism of rigid analytic varieties pΓ(Ur) ∩ ΩO′ → pΓ(O) for all 
Γ-orbits O′ �= {0}. Under the identification in Proposition 5.22, any regular function 
s : pΓ(O) → C thus extends to the regular function s ◦ρΓ on pΓ(Ur) using moreover that 
s is bounded; in fact, by construction, s may be interpreted as a Γω-invariant regular 
function on the affinoid variety O and is thus bounded by Proposition 2.27. This shows 
surjectivity on stalks. �
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5.3. Eisenstein series

Denote by F the quotient field of A and by π : ΛF → ΛF /Λ the quotient homomor-
phism. Let α ∈ ΛF /Λ and set L(α) := π−1(α) ∩LF for any direct summand 0 �= L ⊂ Λ. 
Let k be any positive integer. Consider the sum

EΛ,α,k : Ω̃∗
Λ → C, l �→

∑
0�=λ∈L(α)

1
l(λ)k , if l ∈ Ω̃L.

Proposition 5.24. EΛ,α,k converges everywhere and, if Γ fixes α, is in O∗
Γ(k)(Ω∗

Γ).

Proof. Consider any direct summand 0 �= L0 ⊂ Λ, any affinoid O ⊂ ΩL0 , any 0 �= λ0 ∈
L0 and any r ∈ |C|. Set U := U(Λ, O, r) and consider the sum

E : U → C, [l] �→ EΛ,α,k(l) · l(λ0)k.

We first show via the following lemmas that for every further direct summand L0 ⊂ L ⊂
Λ the sum E converges to a regular function on UL := U ∩ΩL and that E is continuous 
with respect to the canonical topologies and bounded.

Lemma 5.25. On every UL the sum E converges to a regular function.

Proof. By means of an admissible affinoid covering of any such UL, it suffices to show 
that the restriction EO′ of E to every admissible affinoid O′ ⊂ UL converges to a regular 
function. Consider any such O′ ⊂ UL and choose any [l] ∈ O′. As L(α) ⊂ LE is discrete, 
where E is the completion of F , the subset l(L(α)) ⊂ C is strongly discrete (see for 
instance [20, Ex. 2.48 and Lemma 2.49]) so that for any integer m ≥ 1 the subset 
L(α)m ⊂ L(α) of those λ for which 

∣∣∣ l(λ)
l(λ0)

∣∣∣ ≤ m is finite; thus

EO′,m : O′ → C, [l′] �→
∑

0�=λ∈L(α)m

l′(λ0)k

l′(λ)k

is a regular function. As the ring of regular functions on O′ is complete with respect to 
the sup-norm by Proposition 2.19, it suffices to show that the EO′,m for all m ≥ 1 form 
a Cauchy-sequence; indeed, as L(α) is covered by the L(α)m for all m ≥ 1, their limit 
must then be EO′ . Applying Corollary 4.6 to the affinoid O′, we choose a κ′ > 0 such 
that

∀m ≥ 1,∀[l′] ∈ O′,∀λ ∈ L(α) \ L(α)m :
∣∣∣∣ l′(λ0)
l′(λ)

∣∣∣∣ ≤ κ′ ·
∣∣∣∣ l(λ0)
l(λ)

∣∣∣∣ ≤ κ′

m
.

This directly yields that the EO′,m indeed form a Cauchy-sequence. �
Lemma 5.26. E is continuous with respect to the canonical topologies and bounded.
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Proof. As for continuity, it suffices, by Corollary 5.9, to show that E is sequentially 
continuous. Consider thus any [l] ∈ U and any sequence {[ln]}n≥1 ⊂ U converging to [l]
and let us show that

lim
n→∞

E([ln]) = E([l]). (32)

Let L ⊃ L0, resp. Ln ⊃ L0, be such that [l] ∈ ΩL, resp. [ln] ∈ ΩLn
for any n ≥ 1. Choose 

a fundamental basis of admissible affinoid neighborhoods (On)n≥1 of [l] in ΩL such that 
On ⊃ On+1 for all n ≥ 1. Using Corollary 5.7, we choose a sequence {rn}n≥1 ⊂ |C|
converging to infinity and an n0 ≥ 1 such that [ln] ∈ Un := U(Λ, On, rn) for every 
n ≥ n0. The choice of the On and the regularity of the restriction EO1 of E to O1 by 
Lemma 5.25 imply that

lim
n→∞

E([ln|LC
]) = lim

n→∞
EO1([ln|LC

]) = EO1([l]) = E([l]).

It thus remains to show that E([ln]) − E([ln|LC
]) converges to 0 for n → ∞. Applying 

Corollary 4.7 and Proposition 2.27 to the affinoid O1, we choose an s > 0 such that 
|l(λ0)| ≤ s · d(l(L)) for every [l] ∈ O1. Choose any f ∈ F for which π−1(α) ⊂ f · Λ. For 
any n ≥ n0 and any λ ∈ Ln(α) \ L0 then

|ln(λ)| ≥ d(ln(Ln(α)\L0)) ≥ |f |·d(ln(Ln\L0))
[ln]∈Un

≥ |f |·rn ·d(ln(L)) ≥ |f | · rn
s

·|ln(λ0)|.

For any n ≥ n0, as O1 ⊃ On, thus

|E([ln]) − E([ln|LC
])| =

∣∣∣∣∣∣
∑

λ∈Ln(α)\L

ln(λ0)k

ln(λ)k

∣∣∣∣∣∣ ≤ sk

(|f | · rn)k −→
n→∞

0.

Thus E is indeed sequentially continuous. In order to see that E is bounded, we use the 
preceding calculations in the case, where O1 = O and n0 = 1 and r1 = r, in order to see 
that

∀[l] ∈ U = U1 : |E([l]) − EO([l|LC
])| = |E([l]) − E([l|LC

])| ≤ sk

(|f | · r)k .

Moreover, as EO is regular by Lemma 5.25, it is bounded by Proposition 2.27. Thus E
is indeed bounded. �

By Lemma 5.25, the sum E converges everywhere on O. Hence EΛ,α,k converges 
everywhere on O and thus, as O was arbitrary, on Ω̃∗

Λ. The construction further yields 
that EΛ,α,k(c · l) = c−k ·EΛ,α,k(l) for any c ∈ C× and any l ∈ Ω̃∗

Λ and, if Γ fixes α, that 
EΛ,α,k is Γ-invariant. Jointly with Lemmas 5.25 and 5.26, this yields the proposition. �
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5.4. Fourier expansion of weak modular forms

Definition 5.27. For any integer k the sections in O∗
Γ(k)(ΩΓ) are called weak modular 

forms of weight k with respect to Γ.

This is a coordinate free version of Basson, Breuer and Pink’s [3, Def. 3.1.7, 3.3.1]
(see Goss’ [17, Cor. 1.40, Prop. 1.43] or see [20, Remark 6.40]).

Suppose that d := rankA(Λ) ≥ 2. Consider any direct summand L ⊂ Λ of corank 
1. Choose any v ∈ Λ \ L. Denote by Γ̊ ⊂ Γ̊L the subgroup of elements γ such that 
γ(v) − v ∈ L. Thus Γ̊ is a discrete subgroup of AutE(ΛE) of the form considered in 
Section 4.4 and

Γ̊ → L, γ �→ vγ := γ(v) − v

is a continuous injective group homomorphism. Denote by vΓ̊ ⊂ L its image and set

∀l ∈ Ω̃Λ : u(l) := 1
el(vΓ̊)(l(v))

.

Let ΩΓ̊, pΓ̊, πΓ̊ be as defined in Section 5.2 upon replacing Γ by Γ̊.

Definition 5.28. UΓ̊ := ΩL ∪ ΩΓ̊ = pΓ̊(U(Λ, ΩL, 0)).

Choose any 0 �= w ∈ L and consider the map

q : UΓ̊ → ΩL ×A1,rig
C , pΓ̊([l]) �→

{
([l|LC

], l(w) · u(l)) if [l] ∈ ΩΛ

([l], 0) if l ∈ ΩL.

Proposition 5.29. The map q is an open immersion of regular rigid analytic varieties.

Proof. Set V := ΛE and W := LE . Then q restricts to the open immersion qΓ̊ : ΩΓ̊ →
ΩW × (A1,rig

C \ {0}) provided by Definition-Proposition 4.32. Moreover, by assumption, 
Γ contains a principal congruence subgroup of some level 0 �= (b) � A. But b · L ⊂ vΓ̊
for any such b. Hence Proposition 4.36 applies and yields, jointly with Corollary 3.4 and 
the fact that the restriction qΓ̊ of q is an open immersion, that q is an isomorphism of 
Grothendieck topological spaces onto an admissible subset of ΩL × A1,rig

C . Jointly with 
Corollary 3.5, this implies that q is an isomorphism of Grothendieck ringed spaces onto 
an admissible subvariety of ΩL ×A1,rig

C . �
For any ε ∈ |C×| denote by Bε ⊂ A1,rig

C the closed disc around 0 of radius ε.

Corollary 5.30. Any admissible X ⊂ UΓ̊ and any admissible affinoid O ⊂ X ∩ ΩL admit 
an ε ∈ |C×| such that O ×Bε ⊂ q(X).
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Proof. This follows directly from Proposition 5.29 and Corollary 3.4. �
For any O ⊂ ΩL and any ε ∈ |C×| set Ũ(O, ε) := Ω̃Λ ∩ (q ◦ πΓ̊)−1(O ×Bε).

Corollary 5.31. Any admissible X ⊂ UΓ̊, any k ∈ Z and any f ∈ OΓ̊(k)(X ∩ ΩΓ̊) admit 
unique weight k − i regular functions fi : π−1

Γ̊ (X ∩ ΩL) → C for all i ∈ Z such that for 
every admissible affinoid O ×Bε ⊂ q(X) holds that

∀l ∈ Ũ(O, ε) : f(l) =
∑
i∈Z

fi(l|LC
)u(l)i (33)

and for which the following are equivalent:

i) ∀i < 0 : fi = 0.
ii) f extends to an element in OΓ̊(k)(X) which restricts to f0 on π−1

Γ̊ (X ∩ ΩL).

iii) The section 
[
g : π−1

Γ̊ (X ∩ ΩΓ̊) → C l �→ f(l) · l(w)k
]

∈ OΓ̊(0)(X ∩ΩΓ̊) extends to a 

morphism of Grothendieck topological spaces π−1
Γ̊ (X) → A1,rig

C whose restriction to 

π−1
Γ̊ (X ∩ ΩL) is in O{id}(0)(X ∩ ΩL).

iv) g is bounded on Ũ(O, ε) for any admissible affinoid O ×Bε ⊂ q(X).

Proof. Consider any such f . Proposition 5.29 and Corollaries 3.4 and 3.5 yield unique 
weight −i regular functions gi ∈ : π−1

Γ̊ (X ∩ΩL) → C for all i ∈ Z that satisfy the desired 
properties when f is replaced by the section g defined in iii) and k by 0. It is directly 
checked that then the

fi : π−1
Γ̊ (X ∩ ΩL) → C l �→ gi([l|LC

]) · l(w)−k

for all i ∈ Z satisfy the desired properties. �
Remark 5.32. By Basson [3, Prop. 3.2.7], any fi is a weak modular form of weight k− i

with respect to some congruence subgroup of AutA(L). For a proof using the notation 
here, see [20, Cor. 6.45].

Remark 5.33. In [3, Sections 3.4 and 3.5], Basson computed the Fourier expansion of for 
instance the Eisenstein series from Section 5.3.

Remark 5.34. Suppose that Γ̊ = Γ̊L and that the action of Γ on ΩΛ and the action of ΓL

on ΩL are both fixed-point free. From Proposition 5.29 follows that the composition

q(UΓ̊) q−1

−→ UΓ̊
π−→ UΓ,

where π denotes the natural quotient morphism, induces isomorphisms on stalks. Con-
sequently, UΓ is regular. For details see [20, Cor. 6.48].
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6. Compactification of analytic moduli spaces

Let A ⊂ C be as in Section 5. Denote by Â the profinite completion of A. Con-
sider any finitely generated free Â-module M �= 0 and any congruence subgroup
K ⊂ AutÂ(M), i.e., K is a subgroup containing the kernel of the natural morphism 
AutÂ(M) → AutA(M/IM) for some ideal 0 �= I ⊂ A.

6.1. Structure of Grothendieck graded ringed space

Definition 6.1. An A-submodule Λ ⊂ M is called an A-structure of M if the inclusion 
induces an Â-linear isomorphism ΛÂ → M .

Proposition 6.2. Any A-structure of M is finitely generated projective.

Proof. As Â is a faithfully flat A-algebra, an A-module Λ is finitely generated if and 
only if ΛÂ is a finitely generated Â-module (see for instance [37, Tag 03C4]). Hence A-
structures of M are finitely generated A-modules. Moreover, they are torsion free, since 
M is. Now use that A is a Dedekind domain. �
Definition 6.3. Consider any A-structure Λ of M . Define the natural bijections

i) Ω∗
{Λ} := Ω∗

Λ × {Λ} → Ω∗
Λ, ([l], Λ) �→ [l],

ii) Ω̃∗
{Λ} := Ω̃∗

Λ × {Λ} → Ω̃∗
Λ, (l, Λ) �→ l.

Endow Ω∗
{Λ} with the Grothendieck topology for which the first bijection is an isomor-

phism with respect to the topology of Ω∗
Λ defined in Definition-Proposition 5.4. Endow 

Ω̃∗
{Λ} with the C×-action for which the second bijection is C×-equivariant.

Definition 6.4. Let Ω∗
M , resp. ΩM ⊂ Ω∗

M , be the disjoint union of the Grothendieck 
topological spaces Ω∗

{Λ}, resp. Ω{Λ} := ΩΛ × {Λ}, for all A-structures Λ of M .

Definition 6.5. Let Ω̃∗
M , resp. Ω̃M ⊂ Ω̃∗

M , be the disjoint union of the Ω̃∗
{Λ}, resp. Ω̃{Λ} :=

Ω̃Λ × {Λ}, for all A-structures Λ of M .

Lemma 6.6. Consider any A-structure Λ of M , any direct summand 0 �= L ⊂ Λ, any 
l ∈ Ω̃L and any g ∈ AutÂ(M). Then g(Λ) is an A-structure of M and g(L) is a direct 
summand of g(Λ) and g(l) : g(L)C → C, λ �→ l(g−1λ) is in Ωg(L).

Proof. This is directly checked. �
Consider the C×-equivariant action of AutÂ(M) on Ω̃∗

M given by

∀g ∈ AutÂ(M),∀(l,Λ) ∈ Ω̃∗
M : g(l,Λ) := (g(l), g(Λ)).

https://stacks.math.columbia.edu/tag/03C4
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By construction, for any A-structure Λ the induced action of AutA(Λ) ⊂ AutÂ(M)
on Ω̃∗

Λ coincides with the one in Definition 5.10. By construction and the remark before 
Lemma 5.11, the induced action of AutÂ(M) on Ω∗

M is via isomorphisms of Grothendieck 
topological spaces.

Definition 6.7. By means of Definition-Proposition 6.6, consider the quotient map

pK : Ω∗
M → K\Ω∗

M =: Ω∗
K

and endow its target with the structure of Grothendieck topological space which it 
induces, that is, a subset (resp. a covering of a subset) of Ω∗

K is admissible precisely 
when its preimage is admissible.

Denote by πK : Ω̃∗
M → K\Ω̃∗

M/C× = Ω∗
K the double quotient map.

Definition-Proposition 6.8. For any admissible X ⊂ Ω∗
K and any integer k let O∗

K(k)(X)
be the set of K-invariant functions π−1

K (X) → C whose restriction to π−1
K (X) ∩ Ω̃∗

{Λ} is 
weight k regular (in the sense of Definition-Proposition 5.20 via Definition 6.3, ii)) for 
every A-structure Λ of M . Then, by means of the ring structure on C,

i) the O∗
K(X) := O∗

K(0)(X) for all admissible subsets X ⊂ Ω∗
K together with the natural 

restriction homomorphisms form a sheaf O∗
K of rings on Ω∗

K, called structure sheaf 
on Ω∗

K, and
ii) for any integer k the O∗

K(k)(X) over all admissible X ⊂ Ω∗
K together with the natural 

restriction homomorphisms form a sheaf O∗
K(k) of O∗

K-modules on Ω∗
K, called k-th 

twisting O∗
K-module and

iii) a sheaf R∗
K of graded O∗

K-algebras on Ω∗
K is formed by the

R∗
K(X) :=

∑
k∈Z

O∗
K(k)(X)

for all admissible X ⊂ Ω∗
K and the natural restriction homomorphisms.

In particular, (Ω∗
K, O∗

K) (resp. (Ω∗
K, R∗

K)) is a Grothendieck (graded) ringed space.

Proof. This is directly checked. �
Example 6.9. Denote by F the quotient field of A. Consider any α ∈ MF /M and any 
integer k ≥ 1 and associate with them the map

EM,α,k : Ω̃∗
M → C, (l,Λ) �→ EΛ,α,k(l),

where EΛ,α,k is the Eisenstein series defined in Section 5.3 and where α is viewed in 
ΛF /Λ via the natural isomorphism ΛF /Λ ∼= MF /M . If K fixes α, then
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EM,α,k ∈ O∗
K(k)(Ω∗

K).

Proof. This follows directly from the construction and Proposition 5.24. �
For any A-structure Λ of M set KΛ := {γ ∈ AutA(Λ)| ∃κ ∈ K : κ|Λ = γ}; since 

K ⊂ AutÂ(M) is a congruence subgroup, so is KΛ ⊂ AutA(Λ).

Proposition 6.10. Any complete set S of representatives of the natural K-action on the 
set of A-structures of M is finite and the natural maps Ω∗

Λ → Ω∗
{Λ} → Ω∗

{M} for all 
Λ ∈ S induce an isomorphism of Grothendieck graded ringed spaces∐

Λ∈S

(Ω∗
KΛ

,R∗
KΛ

) −→ (Ω∗
K,R∗

K) (34)

which restricts to an isomorphism between normal rigid analytic varieties over C∐
Λ∈S

ΩKΛ
−→ ΩK. (35)

Proof. As K contains a principal congruence subgroup, the first assertion follows from 
Corollary 6.20 below whose proof does not depend on this result. That the maps 
Ω∗

Λ → Ω∗
{Λ} → Ω∗

{M} induce isomorphisms (34) and (35) of Grothendieck (graded) 
ringed spaces, follows directly from the construction. Moreover, ΩKΛ

is a normal rigid 
analytic over C for every Λ ∈ S by Proposition 4.13 and hence so are, as S is finite, both 
spaces in (35). �
6.2. Case of principal congruence subgroups

Consider any ideal 0 �= I ⊂ A and set A := A/I. Associate with any A- or Â-module 
Q the A-module Q := I−1Q/Q. Suppose that

K = Ker(AutÂ(M) → AutA(M)).

Proposition 6.11. Consider any free direct summand N ⊂ M , any Â-linear injective 
morphism Ψ : N → M onto a free direct summand of M and any ε ∈ AutA(M) whose 
restriction to N is the map N → M induced by Ψ. Then there exists a σ ∈ AutÂ(M)
that induces ε and restricts to Ψ.

Proof. By means of the unique prime factorization of the non-zero ideals in the Dedekind 
domain A and by the Chinese remainder theorem, it is enough to show the statement 
of the proposition for Â replaced by the p-adic completion Ap of A at any prime ideal 
p ⊂ A and for I replaced by any power (pAp)n. In this case, choose a σ ∈ HomAp

(M, M)
that induces ε and restricts to Ψ. Then the determinant of σ modulo pn equals the 
determinant of ε and is thus a unit. If n ≥ 1, then the determinant of σ is thus itself a 
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unit since Ap is a discrete valuation ring so that σ is in fact an automorphism. If n = 0, 
then ε = 0, so that σ may be chosen to further be an automorphism. �
Corollary 6.12. The natural morphism AutÂ(M) → AutA(M) is surjective.

Corollary 6.13. Suppose that I � A. Then N �→ N induces a bijection from the set of 
K-orbits of free direct summands of M to the set of free A-submodules of M .

Proof. Let N, N ′ ⊂ M be free direct summands with N = N ′. As I � A, then

rankÂ(N) = rankA(N) = rankA(N ′) = rankÂ(N)

so that N and N ′ are Â-linearly isomorphic. By Corollary 6.12, the natural homo-
morphism AutÂ(N) → AutA(N) is surjective. Hence there exists an isomorphism 
Ψ: N → N ′ inducing the identity on N = N ′. By Proposition 6.11, such a Ψ extends 
to an element in K. This shows injectivity. Consider then any A-submodule X ⊂ M . By 
means of a basis of M choose a free direct summand M ′ ⊂ M with

rankA(M ′) = rankÂ(M ′) = rankA(X).

Choose an ε ∈ AutA(M) with ε(M ′) = X. Proposition 6.11 then provides a lift σ ∈
AutÂ(M) of ε. Then σ(M ′) = X which shows surjectivity. �

We further need the following consequences of Prasad’s theorem [32, Theorem A] on 
strong approximation for semi-simple groups over function fields.

Proposition 6.14. Let F be the quotient field of A. Consider any finitely generated pro-
jective A-module Λ. Surjective is then the natural homomorphism

SLA(Λ) := AutA(Λ) ∩ SLF (ΛF ) → SLA(Λ).

Proof. By Prasad’s theorem [32, Theorem A], the subgroup

SLF (ΛF ) ⊂ SLÂF
(ΛÂF

)

is dense. Since AutÂ(ΛÂ) is open in AutÂF
(ΛÂF

), then also the subgroup

SLA(Λ) = AutÂ(ΛÂ) ∩ SLF (ΛF ) ⊂ AutÂ(ΛÂ) ∩ SLÂF
(ΛÂF

) = SLÂ(ΛÂ)

is dense. As, by Proposition 6.11, the natural continuous group homomorphism

SLÂ(ΛÂ) → SLA(Λ)

with discrete target is surjective, so is its restriction to SLA(Λ). �
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Corollary 6.15. The determinant induces an isomorphism

AutA(Λ)/AutA(Λ)
∼=−→ A

×
/A×. (36)

Corollary 6.16. Consider any finitely generated projective A-module Λ, any direct sum-
mand L ⊂ Λ, any injective A-linear map ψ : L → Λ onto a direct summand of Λ and 
any ε ∈ AutA(Λ) with det(ε) ∈ A× whose restriction to L is the map L → Λ induced by 
ψ. Then there exists a γ ∈ AutA(Λ) that induces ε and restricts to ψ.

Proof. Using direct complements, choose an extension γ′ ∈ Γ := AutA(Λ) of ψ. It is 
enough to find a γ′′ ∈ Γ restricting to the identity on L and whose induced γ′′ ∈ AutA(Λ)
equals γ′−1 ◦ ε; indeed, γ := γ′ ◦γ′′ is then a desired automorphism. We are thus reduced 
to the case where ψ is the inclusion, i.e., to showing surjectivity of the natural morphism

C := {γ ∈ Γ: γ|L = idL} → C := {ε ∈ AutA(Λ) : ε|L = idL ∧det(ε) ∈ A×}.

Choose a direct complement L′ of L in Λ. Set G := AutA(L′), H := HomA(L′, L), G :=
{ε ∈ AutA(L′) : det(ε) ∈ A×} and H := HomA(L′, L). Under the natural isomorphisms

C ∼= H � G and C ∼= H � G,

the map C → C restricts to the natural morphism G → G, which is surjective by 
Corollary 6.15, and to the natural morphism H → H, which is surjective by projectivity 
of L′. Hence C → C is surjective, too. �
Proposition 6.17. Any projective module Λ of finite rank d ≥ 1 over any Dedekind ring 
A admits a unique class [J ] ∈ Pic(A) such that Λ ∼= Ad−1 ⊕ J .

Proof. See for instance [28, Theorems 1.32 and 1.39]. �
Corollary 6.18. Consider any finitely generated projective A-modules L and Λ and any 
injective non-surjective A-linear map τ : L → Λ. Then there exists an injective A-linear 
map L → Λ onto a direct summand of Λ which induces τ .

Proof. By the properties of τ , the rank of Λ is greater than the rank of L. By means of 
Proposition 6.17, we thus assume that L is a proper direct summand of Λ. Using that 
L � Λ, we choose an extension ρ ∈ SLA(Λ) of τ . Proposition 6.14 then provides a desired 
σ ∈ SLA(Λ) inducing ρ. �
Corollary 6.19. Consider any direct summands L, L′ ⊂ Λ such that L � L

′. Then there 
exists a γ ∈ Ker(AutA(Λ)) → AutA(Λ) for which γ(L) ⊂ L′.

Proof. Using Corollary 6.18, choose an injective A-linear map ψ : L → L′ onto a direct 
summand of L′ whose induced map L → L

′ is the inclusion. Apply Corollary 6.16 to ψ
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and idΛ to get an extension of ψ in Ker(AutA(Λ)) → AutA(Λ). Such an extension maps 
L to L′. �
Corollary 6.20. Denote by h(A) the class number of A. For any complete set S of repre-
sentatives for the K-action on the set of A-structures as in Proposition 6.10 then holds 
that

|S| = h(A) ·
∣∣∣A×

/A×
∣∣∣ .

Proof. Set K′ := AutÂ(M). If any A-structures Λ, Λ′ lie in the same K′-orbit, i.e., if 
Λ = κ′(Λ′) for some κ′ ∈ K′, then such a κ′ restricts to an A-linear isomorphism 
Λ′ → Λ. Conversely, any A-linear isomorphism ϕ : Λ′ → Λ between any A-structures 
Λ, Λ′ induces an automorphism

M ∼= Λ′
Â

ϕÂ−→ ΛÂ
∼= M

in K′. In the case I = A, the corollary thus follows from Proposition 6.17. Consider 
any A-structure Λ. In the general case, it thus suffices to show that the number n(Λ) of 
K-orbits in the K′-orbit of Λ equals |A×

/A×|. Set Γ′ := AutA(Λ) and let Γ ⊂ Γ′ be its 
principal congruence subgroup of level I. The orbit K′ ·Λ, resp. K·Λ, is then in a natural 
bijection with K′/Γ′, resp. K/Γ. Via the isomorphism Λ ∼= M induced by Λ ⊂ M , then 
as desired

n(Λ) = |(K′/Γ′)/(K/Γ)| = |(K′/K)/(Γ′/Γ)| (6.11)= |AutA(M)/(Γ′/Γ)|

= |AutA(Λ)/(Γ′/Γ)| = |AutA(Λ)/Γ′| (36)=
∣∣(A)×/A×∣∣ . �

Suppose finally that I � A and consider any free A-submodule 0 �= W ⊂ M . For any 
direct summand 0 �= N ⊂ M view ΩN as a disjoint union of the Grothendieck ringed 
spaces Ω{L} for all A-structures L of N . Consider the disjoint union of Grothendieck 
ringed spaces

ΩM,W :=
∐

N⊂M
N=W

ΩN

being naturally acted by K; let ΩK,W be its quotient by K.

Proposition 6.21. For any free direct summand 0 �= N ⊂ M with N = W the inclusion 
ΩN ⊂ ΩM,W induces an isomorphism of Grothendieck ringed spaces

ΩKN

∼= ΩK,W ,

where KN := {κ′ ∈ AutÂ(N)| ∃κ ∈ K : κ|N = κ′}.
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Proof. That it induces an injective morphism ΩKN
→ ΩK,W follows directly from the 

construction. Surjectivity follows from Corollary 6.13. �
Consider further any A-structure Λ of M and identify Λ with M as above. Set Γ := KΛ; 

it is the kernel of the natural homomorphism AutA(Λ) → AutA(Λ). Consider the disjoint 
union of Grothendieck ringed spaces

ΩΛ,W :=
∐
L⊂Λ
L=W

ΩL

being naturally acted by Γ; let ΩΓ,W be its quotient by Γ.

Proposition 6.22. Suppose that W � V . Then the injections ΩL → ΩLÂ
, [l] �→ ([l], L) for 

all L ⊂ Λ with L = W induce an isomorphism of Grothendieck ringed spaces ΩΓ,W ∼=
ΩK,W .

Proof. That it induces an injective morphism ΩΓ,W → ΩK,W follows directly from the 
construction. Let us show that it is also surjective. Consider any direct summand N ⊂ M

with N = W and any A-structure L′ of N . As W � V , Corollary 6.18 provides a direct 
summand 0 �= L � Λ such that L = L′ via the canonical inclusions or identifications 
L ⊂ Λ = M ⊃ N = L′ and an A-linear isomorphism ρ : L → L′ that induces the identity 
map L → L′. Proposition 6.11 then provides a κ ∈ K that restricts to the tensor product 
of ρ by Â and hence restricts to ρ. Then κ(ΩL) = Ωκ(L) = ΩL′ from which surjectivity 
follows. �

Following Definition 2.35, a finitely generated projective A-submodule Y ⊂ C is an 
A-lattice if the natural homomorphism YE → E · Y is injective. Let d := rankÂ(M). By 
a level-I-structure of an A-lattice Y ⊂ C of rank d, we mean an A-linear isomorphism 
i : M → Y . By an isomorphism from any such (Y, i) to any further such tuple (Y ′, i′), we 
mean an element c ∈ C× such that multiplication by c maps Y onto Y ′ and such that 
the induced isomorphism Y → Y ′ is compatible with the level structures.

For any A-structure Λ of M identify Λ with M via the isomorphism induced by the 
inclusion Λ ⊂ M . Corollary 6.12 essentially implies

Corollary 6.23. A bijection between ΩK and the set of isomorphism classes of A-lattices 
in C of rank d with level I-structure is induced by associating with any ([l], Λ) ∈ ΩM the 
class of l(Λ) ⊂ C with level-I-structure l : M → l(Λ) induced by l.

Proof. It is directly checked for any ([l], Λ) ∈ ΩM that (l(Λ), l) is an A-lattice with 
level-I-structure and that its isomorphism class depends only on its class in ΩK,k. Con-
sider any ([l], Λ), ([l′], Λ′) ∈ ΩM whose associated isomorphism classes coincide and let us 
show the claim that their images in ΩK coincide. Without loss of generality, we assume 
the representatives l, l′ to be such that l(Λ) = l′(Λ′). Thus also the free Â-modules l(Λ)Â
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and l′(Λ′)Â of rank d are equal. There exists thus a unique κ ∈ AutÂ(M) whose composi-
tion with the tensor product (l|Λ)Â equals (l′|Λ′)Â via the isomorphisms ΛÂ

∼= M ∼= Λ′
Â
. 

As l = l′, in fact κ ∈ K. This directly yields the claim. Consider then any A-lattice 
Y ⊂ C of rank d with any level I-structure i : M → Y . Then YÂ is a free Â-lattice of 
rank d and hence isomorphic to M . Further using Corollary 6.12, we choose an Â-linear 
isomorphism η : M → YÂ inducing i. Then Λ := η−1(Y ) is an A-structure of M . As Y
is an A-lattice, η|Λ induces an isomorphism ΛE → E · Y and thus extends uniquely to a 
C-linear map l : ΛC → C for which Ker(l) ∩ΛE = 0. Thus [l] ∈ ΩΛ and, by construction, 
(l(Λ), l) = (Y, i) as desired. �
7. Compactifications of algebraic moduli spaces

Let A ⊂ C be as in Sections 5 and 6. Denote by F the quotient field of A, by p
the characteristic of F and by Fp the field with p elements. For any 0 �= a ∈ A set 
deg(a) := dimFp

(A/(a)). For any line bundle E over any scheme S over Fp denote by 
τ : E → Ep, x �→ xp the Frobenius homomorphism.

7.1. Pink’s normal compactification

Proposition 7.1. (Drinfeld [12, Proposition 2.1]) Consider any line bundle E over any 
field K of characteristic p and any homomorphism

ϕ : A → End(E), a �→ ϕa :=
∑
i≥0

ϕa,iτ
i,

where any ϕa,i is in the one-dimensional K-vector space Γ(Spec(K), E1−pi) and any ϕa,0
is the image of a under the structure homomorphism A → K. Then there exists a unique 
integer r ≥ 0 such that ϕa,i = 0 for any i > r · deg(a) and such that ϕa,r·deg(a) �= 0 for 
any 0 �= a ∈ A with r · deg(a) > 0.

Definition 7.2. Any ϕ as in Proposition 7.1 with r > 0 is called a Drinfeld A-module over 
K of rank r.

Let S be a scheme over F .

Definition 7.3. (Pink [29, Definition 3.1]) A generalized Drinfeld A-module over S is a 
pair (E, ϕ) consisting of a line bundle E over S and a ring homomorphism

ϕ : A → End(E), a �→ ϕa =
∑
i

ϕa,iτ
i

with ϕa,i ∈ Γ(S, E1−pi) satisfying the following conditions:
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• The derivative dϕ : A → ϕa,0 is the structure homomorphism A → Γ(S, OS).
• Over any point s ∈ S the map ϕ defines a Drinfeld A-module of some rank rs ≥ 1 in 

the sense of Definition 7.2.

A generalized Drinfeld A-module is of rank ≤ r if

∀a ∈ A,∀i > r · deg(a) : ϕa,i = 0.

An isomorphism of generalized Drinfeld A-modules is an isomorphism of line bundles 
that is equivariant with respect to the action of A on both sides.

Definition 7.4. (Pink [29, Definition 3.2]) A generalized Drinfeld A-module over S of rank 
≤ r with rs = r everywhere is a Drinfeld A-module of rank r over S.

Lemma 7.5. If S = Spec(R) is affine, then giving a Drinfeld A-module of rank r as in 
Definition 7.4 is equivalent to giving, as in the introduction, a ring homomorphism

ϕ : A → R{τ}, a �→ ϕa =
∑

0≤i≤d·deg(a)

ϕa,iτ
i

for which ϕa,0 = ι(a), where ι : A → R is the structure morphism, and for which 
ϕa,d·deg(a) ∈ R× for any 0 �= a ∈ A.

Proof. See Pink’s [29, Proposition 3.4 and its proof]. �
Consider any ideal 0 �= I � A and any free A/I-module V �= 0 of finite rank d.

Notation 7.6. Denote by V the constant group scheme over S with fibers V .

Definition 7.7. A level I structure on a Drinfeld A-module ϕ : A → End(E) of rank d is 
an isomorphism of group schemes

V −→
⋂
a∈I

Ker(ϕa).

Lemma 7.8. Suppose that S = Spec(R) is affine with structure morphism ι : A → R and 
that I = (t) for some 0 �= t ∈ A. Giving a level (t) structure on a Drinfeld A-module ϕ
over R is then equivalent to giving, as in the introduction, a map λ : V → R for which 
λ(V \ {0}) ⊂ R× and

ϕt(T ) = ι(t) · T
∏

0�=v∈V

(
1 − T

λ(v)

)
(37)

for which the induced map λ : V → Ker(R ϕt−→ R) is an A-linear isomorphism.
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Proof. This is directly checked. For details, see [20, Lemma 8.8]. �
Denote by Xd

A,I Drinfeld’s [12, Section 5] fine moduli space over Spec(F ) of Drinfeld 
A-modules of rank d with level I structure; it is an irreducible smooth affine algebraic 
variety of dimension d − 1 of finite type over Spec(F ).

For the remainder of this section consider any congruence subgroup K ⊂ AutÂ(M)
as in Section 6 and suppose that V = I−1M/M and that K contains the kernel K(I) of 
AutÂ(M) → AutA(V ).

Definition 7.9. The subgroup K ⊂ AutÂ(M) is called fine if for some maximal ideal 
p ⊂ A the image of K in AutA(p−1M/M) is unipotent.

Definition-Proposition 7.10. The natural action of K on level I structures induces an 
action on Xd

A,I that factors through the finite group K/K(I). Denote its quotient by

Xd
A,K := (K/K(I))\Xd

A,I .

If K is fine, then the universal family on Xd
A,I descends to a Drinfeld A-module on 

Xd
A,K which is called the universal family on Xd

A,K. Moreover, Xd
A,K and, if K is fine, its 

universal family are, up to a natural isomorphism, independent of the choice of such I.

Proof. See Pink’s [29, (1.1)-(1.3) and Proposition 1.5]. �
Definition 7.11. (Pink [29, Def. 3.9]) A generalized Drinfeld A-module (E, ϕ) over S is 
called weakly separating if for any Drinfeld A-module (E′, ϕ′) over any field L containing 
F , at most finitely many fibers of (E, ϕ) over L-valued points of S are isomorphic to 
(E′, ϕ′).

Theorem 7.12. (Pink [29, Theorem 4.2]) If K is fine, then there exists a normal projective 

algebraic variety X
d

A,K over F together with an open embedding

Xd
A,K → X

d

A,K

and a weakly separating generalized Drinfeld A-module (E, ϕ) on X
d

A,K extending the 

universal family on Xd
A,K; moreover, such X

d

A,K and (E, ϕ) are unique up to unique 
isomorphism.

7.2. Moduli space of A-reciprocal maps

Using that A is finitely generated, choose any 0 �= t ∈ A whose divisors

DivA(t) := {a ∈ A|t ∈ (a)} (38)
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generate A. Consider any free A/(t)-module V �= 0 of finite rank.
For any ideal a ⊂ A consider the a-torsion submodule

Ta(V ) := {v ∈ V | ∀a ∈ a : a · v = 0} ⊂ V.

Set Ta(V ) := T(a)(V ) for any a ∈ A. For any W ⊂ V set

W̊ := W \ {0}.

With any invertible sheaf L on any scheme S associate the graded ring of global 
sections

R(S,L) :=
⊕
n≥0

Γ(S,Ln),

where any Γ(S, Ln) denotes the space of global sections of Ln.

Definition 7.13. A map V̊ → Γ(S, L) is called fiberwise non-zero, resp. fiberwise injective, 
if for any point s ∈ S the composite V̊ → Γ(S, L) → L ⊗OS

k(s) is non-zero, resp. 
injective.

Definition 7.14. Consider any invertible sheaf L on any scheme S over Spec(A). A map 
ρ : V̊ → Γ(S, L) is A-reciprocal if for all a ∈ DivA(t) and all v, v′ ∈ V̊ :

i) a · v ∈ V̊ ⇒ ρ(v)|Ta(V )| = a · ρ(a · v) ·
∏

0�=w∈Ta(V )
(ρ(v) − ρ(w)),

ii) v + v′ ∈ V̊ ⇒ ρ(v) · ρ(v′) = ρ(v + v′) · (ρ(v) + ρ(v′)),
iii) and if there exists a ring homomorphism ϕρ : A → R(S, L){τ} = End(L−1) restrict-

ing to

DivA(t) → R(S,L)[T ], a �→ ϕa(T ) := a · T ·
∏

0�=v∈Ta(V )

(1 − ρ(v) · T ).

Consider the polynomial ring AV̊ := A[(Yv)v∈V̊ ]. Let IV̊ ⊂ AV̊ be the smallest homo-
geneous ideal for which

σV : V̊ → AV̊ , v �→ Yv

induces an A-reciprocal map

ρV : V̊ → Γ(QV ,OQV
(1)) ⊂ AV̊ /IV̊ ,

where OQV
(1) denotes the first twisting sheaf of QV := Proj(AV̊ /IV̊ ). Denote by

ΩV ⊂ QV
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the open subscheme defined as the non-vanishing locus of {ρV (v)|v ∈ V̊ }.

Proposition 7.15. The scheme QV , resp. ΩV , with the universal family (OQV
(1), ρV ), 

resp. (OQV
(1)|ΩV

, ρV |ΩV
), represents the functor which associates with any scheme S

over Spec(A) the set of isomorphism classes of pairs (L, ρ) consisting of an invertible 
sheaf L on S and a fiberwise non-zero, resp. fiberwise injective, A-reciprocal map ρ : V̊ →
Γ(S, L).

Proof. Denote by OV̊ (1) the first twisting sheaf of PV̊ := Proj(AV̊ ). By [21, Chapter 
2, Theorem 7.1], the scheme PV̊ with the universal family (OV̊ (1), σV ) represents the 
functor which associates with any scheme over Spec(A) the set of isomorphism classes 
of pairs (L, ρ) consisting of an invertible sheaf L on S and a fiberwise non-zero map 
ρ : V̊ → Γ(S, L). The relations defining IV̊ are precisely those that require such a ρ to 
be A-reciprocal. The proposition then follows by construction of QV and ΩV . �

Consider any free A/(t)-submodule 0 �= W ⊂ V . Extending any fiberwise non-zero 
A-reciprocal map ρ : W̊ → Γ(S, L) to V̊ by setting ρ(v) := 0 for any v ∈ V \W yields 
a fiberwise non-zero A-reciprocal map. This defines a closed embedding QW → QV

between the moduli schemes by means of which we identify QW with a closed subscheme 
of QV .

Theorem 7.16.

i) QV is the disjoint union of the locally closed subschemes ΩW for all free A/(t)-
submodules 0 �= W ⊂ V .

ii) Consider the functor which associates with any scheme S over F the set of isomor-
phism classes of triples (E, ϕ, λ), where E is a line bundle on S and ϕ : A → End(E)
is a Drinfeld A-module of rank d over S and λ : V → Ker(ϕ(t)) is a level (t)-
structure. Mapping any such (E, ϕ, λ) to (L, ρ), where L is the inverse of the 
invertible sheaf on S dual to E and where ρ : V̊ → Γ(S, L), v �→ 1

λ(v) , induces an 
isomorphism of functors whose image is the functor in Proposition 7.15 represented 
by the pullback ΩV,F of ΩV to F .

Proof. The assertion in ii) is local in S. Consider any ring homomorphism ι : A → R. 
Via Lemma 7.5, giving a Drinfeld A-module ϕ of rank d over R is equivalent to giving 
for any a ∈ DivA(t) a polynomial

ϕa =
∑

0≤i≤d·deg(a)

ϕa,iτ
i ∈ R{τ}

with ϕa,0 = ι(a) and ϕa,d·deg(a) ∈ R× such that

DivA(t) → R{τ}, a �→ ϕa (39)
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extends to a ring homomorphism A → R{τ}. Via Lemma 7.8, giving a level (t)-structure 
for such ϕ is equivalent to giving an injection λ : V → R for which λ(V̊ ) ⊂ R× and for 
which (37) holds and such that

∀a ∈ DivA(t) : ϕa ◦ λ = λ ◦ a and ∀v, v′ ∈ V : λ(v + v′) = λ(v) + λ(v′). (40)

Let a ∈ DivA(t). We claim that any such level (t) structure satisfies that

ϕa(T ) = ι(a) · T
∏

0�=v∈Ta(V )

(
1 − T

λ(v)

)
. (41)

Indeed, (40) implies that λ(Ta(V )) is contained in the set of zeroes of ϕa. As Ta(V ) is a 
free A/a-module of rank d, moreover

|λ(Ta(V ))| = |Ta(V )| = qd·deg(a) = qdegτ (ϕa).

Hence the left and right hand side of (41) coincide up to an element in R×. This element 
must be 1 since the constant coefficient of each side is ι(a) which is non-zero as R is over 
F . This yields the claim. From this characterization of Drinfeld A-modules over R with 
level (t) structure, Part ii) is directly deduced.

Consider then any s ∈ QV with A-reciprocal map

ρs : V̊ → OQV
(1) ⊗OQV

k(s) =: K

induced by ρ. As ρs is non-zero by assumption, the ring homomorphism ϕ : A → K{τ}
induced by ρs does not coincide with the structure homomorphism A → K; as K is a 
field, it is thus, by Proposition 7.1 a Drinfeld A-module of some rank 1 ≤ d′ ≤ d. Then 
Ker(ϕt) is a free A/(t)-module scheme of rank d′ (see e.g. [27, Proposition 4.1]). Let

W := {0} ∪ {v ∈ V̊ |ρs(v) �= 0}. (42)

Properties i) and ii) in Definition 7.14 of ρs imply that

W̊ → Ker(ϕt), w �→ 1
ρs(w)

extends to an A-linear isomorphism W → Ker(ϕt). Hence W ⊂ V is a free A/(t)-
submodule of rank d′ and s ∈ ΩW . By (42), moreover, s /∈ ΩW ′ for any other free 
non-zero A/(t)-submodule W ′ ⊂ V . This yields Part i). �
Remark 7.17. Lemma 7.8 and Theorem 7.16,ii) work more generally for schemes S over 
Spec(A[ 1t ]). Thus already over Spec(A[ 1t ]), the scheme QV is a compactification of Drin-
feld’s moduli scheme of Drinfeld A-modules of rank r with level (t) structure.
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Proposition 7.18. The pullback of QV to F is irreducible.

Proof. Property v) in the proof of Theorem 8.14, which does not depend on this propo-
sition, implies that ΩV (C) is dense in QV (C). Hence the pullback of ΩV to F is dense in 
the pullback of QV to F . That the latter is irreducible, thus follows via Theorem 7.16,ii)
from the irreducibility of Drinfeld’s moduli scheme over F . �
Definition 7.19. A subgroup Δ ⊂ AutA(V ) is called fine if it has unipotent image in 
AutA(Tp(V )) for some maximal ideal p ⊂ A containing t.

Proposition 7.20. Consider any fine subgroup Δ ⊂ AutA(V ) by means of some maximal 
ideal p ⊂ A and consider any free A/(t)-submodule 0 �= W ⊂ V . Then the stabilizer 
ΔW := {δ ∈ Δ| δ(W ) = W} of W in Δ is a fine subgroup of AutA(W ) by means of p
and it has a non-zero fixed point in Tp(W ), and hence in W , under the natural action.

Proof. The first assertion is directly checked. Let us show the second assertion. The 
assumption that t ∈ p implies that Tp(W ) �= 0. It then suffices to show that the image 
G of ΔW in AutA(Tp(W )) is a p-group, where p is the characteristic of A. Suppose, 
by contradiction, the existence of a non-trivial g ∈ G of order k not divisible by p. 
Let χ, resp. m, be the characteristic, resp. minimal, polynomial of g over A/p and set 
r(X) := Xk − 1. Since g is unipotent, χ is a power of (X − 1). Moreover, r is separable 
since p does not divide k. As m divides both χ and r, it thus equals X − 1. This implies 
that g is trivial and thus yields a contradiction as desired. �

For any subgroup Δ ⊂ AutA(V ) view Δ\QV (C) with its structure of projective rigid 
analytic variety. For any integer k denote by O(k) the analytification of the pullback of 
the k-th twisting OQV

-module to QV (C) under Spec(C) → Spec(A). Pink’s [29, Lemma 
4.4 and its proof] inspired

Proposition 7.21. Consider any fine subgroup Δ ⊂ AutA(V ) and any integer k. Then the 
subsheaf of Δ-invariants of O(k) is an invertible sheaf on the projective rigid analytic 
variety Δ\QV (C) and its pullback to QV (C) is O(k). Moreover, if k > 0, then the 
subsheaf of Δ-invariants of O(k) is ample.

Proof. Let OΔ(k) denote the subsheaf of O(k) of Δ-invariants. For any free A/(t)-
submodule 0 �= W ⊂ V consider the Zariski open subset UW ⊂ QV defined as the union 
of the ΩW ′ for all free A/(t)-submodules W ⊂ W ′ ⊂ V . Choose then a 1 > ε ∈ |C×|. 
For any such W consider the admissible subset

U(W, ε) :=
{

[(yα)α∈V̊ ] ∈ UW (C) | ∀α ∈ W̊ , ∀β ∈ V \W :
∣∣∣∣yβyα

∣∣∣∣ ≤ ε

}
⊂ Q.

By Theorem 7.16,i) and since ΩW (C) ⊂ U(W, ε) for any such W , the rigid analytic 
variety Q is covered by the U(W, C) for all such W . As this covering is finite, it is 
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admissible. As ε < 1, it holds that U(W, ε) ∩ U(W ′, ε) = ∅ for any free submodules 
W, W ′ ⊂ V with W �⊂ W ′ �⊂ W . Moreover, g(U(W, ε)) = U(g(W ), ε) for any such W
and any g ∈ AutA(W ). Consequently, any such U(W, ε) is invariant under ΔW := {δ ∈
Δ|δ(W ) = W} and satisfies that δ(U(W, ε)) ∩U(W, ε) = ∅ for any δ ∈ Δ \ΔW . In order 
to see that OΔ(k) is an invertible sheaf, it thus suffices to show that for any such W the 
subsheaf OW (k) of ΔW -invariants of the restriction of O(k) to U(W, ε) is an invertible 
sheaf on ΔW \U(W, ε). Consider such a W . Then Proposition 7.20 provides an 0 �= α ∈ W

that is fixed by ΔW . For such an α the restriction of the global section (Yα)k to OW (k)
thus induces a nowhere vanishing global section in the quotient ΔW\OW (k) and hence 
yields a trivialization of it as desired. Let F denote the pullback of OΔ(k) under the 
quotient morphism. Using the above trivialization, it is directly checked that the natural 
morphism F → O(k) of O(0)-modules is an isomorphism. By [24, Chapter 2, Proposition 
5.12, (c)], OQV

(k) is the inverse image of the k-th twisting sheaf on Proj(AV̊ ) and is 
thus [24, Chapter 2, Proposition 5.12,(b) and Theorem 7.6] ample if k > 0. If k > 0, 
thus O(k) is ample and, since it is the pullback under the finite quotient map of the 
invertible sheaf OΔ(k), also OΔ(k) is ample by [23, Chapter 1, Proposition 4.4.] via 
Köpf’s GAGA-Theorem [26, Satz 5.1]. �

For the remainder of this section consider any congruence subgroup K ⊂ AutÂ(M)
as in Section 6 and suppose that V = t−1M/M and that K contains the kernel 
K(t) of AutÂ(M) → AutA(V ) and denote by Δ the image of K in AutA(V ). Let 
d := rankA/(t)(V ).

Lemma 7.22. K is fine (in the sense of Definition 7.9) if and only if Δ is fine.

Proof. Suppose first that K is fine. Choose any maximal ideal p ⊂ A such that the image 
in AutA(p−1M/M) of K is unipotent. As K ⊃ K(t), then t ∈ p. The natural morphism 
Tp(V ) → p−1M/M is thus an isomorphism which maps the image of Δ in AutA(Tp(V ))
onto the image of K in AutA(p−1M/M). In particular, Δ is fine. The converse direction 
follows similarly from a suitable isomorphism as before. �
Proposition 7.23. The correspondence in Theorem 7.16,ii) induces an isomorphism be-
tween normal quasi-projective varieties

Xd
A,K → Δ\ΩV,F . (43)

Proof. Theorem 7.16,ii) provides an isomorphism Xd
A,K(t) → ΩV,F between smooth 

quasi-projective varieties which is equivariant with respect to Δ ∼= K/K(t). Its induced 
morphism on quotients is thus as desired. �

Denote by EV the line bundle on QV dual to the minus first twisting OQV
-module 

and view ϕρV as ring homomorphism A → End(EV ). Denote by QV,F , resp. EV,F , resp. 
ϕρV

F , the pullback of QV , resp. EV , resp. ϕρV , to F . Denote by n : Qn
V,F → QV,F the 
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normalization morphism. The action of Δ on QV induces an action on the projective 
variety Qn

V,F ; denote by Qn
Δ its quotient viewed as projective algebraic variety.

The following corollary follows from Theorem 7.16,ii) in the case where Δ = 0 and 
then by Pink’s [29, Lemma 4.4 and its proof] in the general case.

Corollary 7.24. Suppose that K and Δ are fine. Then the pullback of (EV,F , ϕ
ρV

F ) under 
n descends to a weakly separating Drinfeld A-module (En

Δ, ϕΔ) over Qn
Δ which extends, 

via (43), the universal family of the open subscheme Δ\ΩV ⊂ Qn
Δ.

Proof. Theorem 7.16 implies that (EV,F , ϕ
ρV

F ) is a weakly separating Drinfeld A-module 
over QV,F that extends the universal family over ΩV,F . By construction, it is Δ-invariant. 
Moreover, by means of the normality of ΩV,F , we identify ΩV,F with its preimage under 
n. Hence also the pullback of (EV,F , ϕ

ρV

F ) under the finite morphism n is a Δ-invariant 
weakly separating Drinfeld A-module over the projective scheme Qn

V,F that extends the 
universal family over ΩV,F . By Pink’s [29, Lemma 4.4 and its proof], as Δ is fine, then 
the quotient En

Δ of the pullback of En
V,F under n by Δ is a line bundle over Qn

Δ and the 
pullback of (EV,F , ϕ

ρV

F ) descends to a weakly separating Drinfeld A-module (En
Δ, ϕΔ)

over the projective scheme Qn
Δ that extends the universal family over Δ\ΩV,F . �

Corollary 7.25. Suppose that K and Δ are fine. Then Qn
Δ and (En

Δ, ϕΔ) coincide up to 

unique isomorphism with X
d

A,K and (E, ϕ) from Theorem 7.12.

Proof. This follows from Corollary 7.24 and the uniqueness property in Theorem 7.12. �
8. Comparison of algebraic and analytic compactifications

Let A ⊂ C be as in Sections 5, 6, 7. Let 0 �= t ∈ A be such that DivA(t) generates A as 
in Section 7.2. Consider any free Â-module M �= 0 of finite rank, set V := t−1M/M and 
V̊ := V \{0} and let K be the kernel of the natural homomorphism AutÂ(M) → AutA(V ). 
Consider the closed subvariety

Q := QV (C) ⊂ P := Proj(C[(Yv)v∈V̊ ])

provided by Section 7.2 with its structure of reduced rigid analytic variety over C. By 
Theorem 7.16,i), Q is stratified by the locally closed subvarieties ΩW (C) for all free 
A/(t)-submodules 0 �= W ⊂ V ; any ΩW (C) is the intersection of the non-vanishing locus 
in Q of (Yα)0�=α∈W with the vanishing locus in Q of (Yα)α∈V \W . Set Ω := ΩV (C). Recall 
the Eisenstein series Eα := EM,α,1 for all α ∈ V̊ from Example 6.9.

Theorem 8.1. The (Eα)α∈V̊ define a morphism of Grothendieck ringed spaces EK : Ω∗
K →

Q which is the normalization morphism (in the sense of Conrad’s [10]) of Q and restricts 
to Drinfeld’s isomorphism ΩK → Ω between normal rigid analytic varieties. Moreover, 
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the morphism of Grothendieck topological spaces underlying EK restricts to isomorphisms 
between irreducible components.

We prove Theorem 8.1 at the end of this section. We first recall Drinfeld’s correspon-
dence between level structures of A-lattices and level structures of Drinfeld A-modules 
as well as the induced isomorphism between moduli spaces.

Theorem 8.2. (Drinfeld [12, Proposition 3.1]) Consider any integer d ≥ 1 and any ideal 
0 �= I ⊂ A. For any A-lattice Y ⊂ C of rank d with level I-structure i : (I−1/A)d →
I−1Y/Y (see Corollary 6.23) the map

ϕ : A → C{τ}, a �→ ϕa := a · T ·
∏

0�=[x]∈I−1Y/Y

(1− T

eY (x) )

is a Drinfeld module of rank r with level I-structure

(I−1A/A)d → I−1Y/Y, v �→ eY (i(v))

satisfying eY ◦ a = ϕa ◦ eY for any a ∈ A. This induces a bijection from the set of 
isomorphism classes of A-lattices in C of rank d with I-level structure to the set of rank 
d Drinfeld A-modules over C with level I-structure.

Proposition 8.3. (Drinfeld [12, Prop. 6.6]) The rule

ΩK → Ω, πK(l,Λ) �→
[
(Eα(l,Λ))α∈V̊

]
(44)

defines an isomorphism of rigid analytic varieties over C.

Proof. By Definition-Proposition 2.40, for any α ∈ V̊ and any lift α̃ ∈ t−1Λ of α holds 
that

∀(l,Λ) ∈ Ω̃M : Eα(l,Λ) = 1
el(Λ)(l(α̃)) .

From Proposition 6.23 and Theorem 8.2 applied to the case I = (t) and from Theo-
rem 7.16,ii) thus follows that the rule in (44) defines a bijective map. For more details, 
we refer to [12, Prop. 6.6] or [20, Prop. 9.5]. �
Corollary 8.4. Consider any A-structure Λ of M , set Γ := KΛ and view Ω∗

Γ as a subspace 
of Ω∗

K via Proposition 6.10. Consider any free A/(t)-submodule 0 �= W � V and recall 
the rigid analytic variety ΩΓ,W defined before Proposition 6.22. Then

ΩΓ,W → ΩW (C), πΓ(l) �→
[
(Eα(l,Λ))α∈W̊

]
defines an isomorphism of rigid analytic varieties.
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Proof. By means of Corollary 6.13, choose a free direct summand N ⊂ M such that 
t−1N/N = W . By Proposition 8.3,

ΩKN
→ ΩW (C), πKN

(l, L) �→
[
(Eα,N,1(l, L))α∈W̊

]
defines an isomorphism of rigid analytic varieties. It is directly checked that the precom-
position of this isomorphism with the isomorphisms ΩΓ,W → ΩK,W and ΩK,W → ΩKN

provided by Propositions 6.21 and 6.22 defines the desired isomorphism. �
Choose a finite set of representatives {Λi}i∈I of the orbits of the K-action on the set 

of A-structures of M and recall from Proposition 6.10 the isomorphism

∐
i∈I

Ω∗
Γi

→ Ω∗
K,

where Γi := KΛi
for every i ∈ I. For any i ∈ I denote by Ωi the image of ΩΓi

under 
the isomorphism ΩK → Ω between normal rigid analytic varieties in Proposition 8.3. By 
Corollary 4.22, the ΩΓi

are the irreducible components of ΩK and hence the Ωi are the 
irreducible components of Ω.

Definition 8.5. Set Qi := Ωi ∪ (Q \ Ω) ⊂ Q for any i ∈ I.

Lemma 8.6. Any Qi ⊂ Q is Zariski closed and any Ωi ⊂ Qi is Zariski open.

Proof. By Proposition 6.10, any ΩΓi
is Zariski closed and open in ΩK. Hence any Ωi is 

Zariski closed and open in Ω. As, furthermore, Ω is Zariski open in Q, thus any Ωi is 
Zariski open in Qi and any Qi is Zariski closed in Q. �
Proposition 8.7. For any i ∈ I the rule

Ei : Ω∗
Γi

→ Qi, πΓi
(l) �→ (Eα(l,Λi))α∈V̊

defines an isomorphism of Grothendieck topological spaces which restricts to a map 
ΩΓi,W → ΩW (C) underlying an isomorphism of rigid analytic varieties for any free 
A/(t)-submodule 0 �= W � V .

We will prove Proposition 8.7 before Corollary 8.11 after more preparation. How-
ever, we may already see that the rule πΓi

(l) �→ (Eα(l, Λi))α∈V̊ defines a bijective map 
Ei : Ω∗

Γi
→ Qi which restricts to isomorphisms ΩΓi,W → ΩW (C) of rigid analytic va-

rieties: Indeed, this follows from Corollary 8.4 as well as the facts that Q \ Ω, resp. 
Ω∗

Γi
\ ΩΓi

, is the disjoint union the ΩW (C) for all such 0 �= W � V by Theorem 7.16, 
resp. of the ΩΓi,W by construction.
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Let us recall the content of Proposition 3.3 in the present setup. Consider any subset 
T ⊂ V̊ and any ε ∈ |C×| and associate with it the Zariski open, resp. admissible, resp. 
Zariski closed subvariety

U(T ) := {[(yα)α∈V̊ ] ∈ P | ∀α ∈ T : yα �= 0} ⊂ P,

U(T, ε) := {[(yα)α∈V̊ ] ∈ U(T ) | ∀α′ ∈ V̊ \ T, ∀α ∈ T :
∣∣∣∣yα′

yα

∣∣∣∣ ≤ ε} ⊂ U(T ),

Ω(T ) := {[(yα)α∈V̊ ] ∈ U(T ) | ∀α′ ∈ V̊ \ T, ∀α ∈ T : yα
′

yα
= 0} ⊂ U(T ).

Then Ω(T ) �= ∅ ⇔ T �= ∅; in this case, denote by ρT : U(T ) → Ω(T ) the natural 
projection morphism and for any O ⊂ Ω(T ) set

U(O, ε) := ρ−1
T (O) ∩ U(T, ε).

Proposition 8.8. Consider any closed subvariety P ′ ⊂ P . Then a subset X ⊂ P ′ is 
admissible if and only if for any T ⊂ V̊ with Ω(T ) ∩ P ′ �= ∅:

i) the subset X ∩ Ω(T ) ⊂ P ′ ∩ Ω(T ) is admissible and
ii) any admissible quasi-compact O ⊂ Ω(T ) with O∩P ′ ⊂ X admits an ε > 0 such that 

U(O, ε) ∩ P ′ ⊂ X.

A covering of an admissible subset X ⊂ P ′ by admissible subsets is admissible if and 
only if its intersection with X ∩ Ω(T ) is admissible for any T ⊂ V̊ .

Proof. The present setup is a special case of Example 3.2. Hence the proposition is an 
instance of Proposition 3.3. �
Proposition 8.9. Let T ⊂ V̊ . If T = W̊ for some free A/(t)-submodule 0 �= W ⊂ V , then 
Ω(T ) ∩Q = ΩW (C). Otherwise, Ω(T ) ∩Q = ∅. Moreover, Ω(V̊ ) ∩Qi = Ωi for any i ∈ I.

Proof. This follows directly from Theorem 7.16,i). The last assertion follows directly 
from the definition of the Qi. �

For any i ∈ I and any free A/(t)-submodule 0 �= W ⊂ V denote by Orb(i, W ) the 
finite set of orbits O of the Γi-action on the set of direct summand L ⊂ Λi for which 
t−1L/L = W . In the notation of Definition-Proposition 5.19 and Proposition 6.22, for 
any i ∈ I we have a disjoint union

ΩΓi,W =
∐

O∈Orb(i,W )

ΩO (45)

of rigid analytic varieties and for any Y ⊂ ΩΓi,W and any r ∈ |C| we set
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U(Λi, Y, r) :=
⋃

O∈Orb(i,W )

U(Λi, Y ∩ ΩO, r) ⊂ Ω∗
Γi
. (46)

Lemma 8.10. Consider any i ∈ I, any free A/(t)-submodule 0 �= W � V , any admissible 
quasi-compact O ⊂ Ω(W̊ ) and any finite field Fq ⊂ A with q elements. Then there exist 
c, rO > 0 such that for any rO < r ∈ |C|:

E−1
i (U(O, r−r·q·rankFq [t](Λ))) ⊂ U(Λi, E

−1
i (O), r) ⊂ E−1

i (U(O,
c

r
))

Proof. Using the quasi-compactness of O, choose a c > 1 such that

∀[y] = [(yβ)β∈V̊ ] ∈ O,∀α, α′ ∈ W̊ :
∣∣∣∣yα′

yα

∣∣∣∣ ≤ c.

Choose a basis a1, . . . , ak of the Fq[t]-module A and set

c′ := c · max1≤i≤k |ai|.

Using [20, Cor. 2.29], choose a δ > 0 such that for any [y], [z] ∈ Ω(W̊ ):

[
∀α, α′ ∈ W̊ :

∣∣∣∣yα′

yα
− zα′

zα

∣∣∣∣ < δ

]
⇒ [[y] ∈ O ⇔ [z] ∈ O] . (47)

Set rO := max{c′, c2δ }. Consider any rO < r ∈ |C| and set ε := r−r·rankFq [t](Λ). Set 
Λ := Λi and Γ := Γi and E := Ei. Denote by π : t−1Λ → V the quotient morphism. 
Moreover, for any subset S ⊂ C set as before

d(S) := inf0�=s∈S |s|.

Consider any l ∈ Ω̃∗
Λ, say l ∈ Ω̃L. Set L := l(L) and n := rankFq[t](L). Choose an 

xl ∈ t−1L \ {0} of minimal norm and let αl := π(l−1(xl)). Proposition 2.41 then yields 
for any further x′ ∈ t−1L which is non-zero modulo L and of minimal norm in x′ + L, 
with α′ := π(l−1(x′)), that

∣∣∣∣x′

xl

∣∣∣∣ ≤
∣∣∣∣eL(x′)
eL(xl)

∣∣∣∣ =
∣∣∣∣Eαl

(l)
Eα′(l)

∣∣∣∣ ≤
∣∣∣∣x′

xl

∣∣∣∣
∣∣∣ x′
xl

∣∣∣·q·n
. (48)

Suppose first that πΓ(l) ∈ E−1(U(O, ε)). Then αl ∈ W ; indeed, if αl was not in W , 
then we could choose an x′ and α′ as in (48) with α′ ∈ W̊ and apply the assumption 

that then 
∣∣∣Eαl

(l)
Eα′ (l)

∣∣∣ ≤ ε < 1 contradicting the fact that |xl| ≤ |x′| via the first inequality 

of (48). Consider then any x′
1 and α′

1, resp. x′
2 and α′

2, as in (48) such that α′
1 ∈ W̊ , 

resp. α′
2 /∈ W̊ . The first, resp. second, inequality of (48) then yields that
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∣∣∣∣x′
1

xl

∣∣∣∣ ≤
∣∣∣∣Eαl

(l)
Eα′

1
(l)

∣∣∣∣ ≤ c, resp. rr·q·n ≤ 1
ε
≤
∣∣∣∣Eαl

(l)
Eα′

2
(l)

∣∣∣∣ ≤
∣∣∣∣x′

2
xl

∣∣∣∣
∣∣∣∣ x′

2
xl

∣∣∣∣·q·n
, (49)

and, in particular, that |x′
1| < |x′

2| since r > c′. We have thus verified condition (4) of 
Corollary 2.39 in the following case: Let x1, . . . , xn ∈ t−1L be a minimal reduced Fq[t]-
basis of t−1L and let L′ ⊂ Λ be the Fq[t]-submodule generated by the t · l−1(xi) for all xi

with |xi| < d := d(l(π−1(V \W )) ∩ L). Then t−1L′/L′ = W and d(l(t−1L \ t−1L′]) = d

by Corollary 2.39. Hence

d(l(L \ L′))
d(l(L′)) = d(t−1l(L \ L′))

d(t−1l(L′)) = d

|xl|
(49)
≥ r. (50)

In fact, L′ ⊂ Λ is an A-submodule and, as such, a direct summand: Indeed, the first 
inequality of (49) and the definition of c′ and r imply that

∀1 ≤ j ≤ k, 1 ≤ i ≤ n : |aj · xi| ≤ c′ · |xl| < r · |xl| ≤ d = d(l(t−1L \ t−1L′))

and thus, as t−1L is an A-module, that aj · xi ∈ t−1l(L′) for any such i, j. The basis 
property of bot the aj and the xi then yields that t−1l(L′) ⊂ t−1L and hence L′ ⊂
L ⊂ Λ are A-submodules. Moreover, as L′ ⊂ L and L ⊂ Λ are direct summands as 
Fq[t]-submodules, the quotient Λ/L′ is torsion-free as Fq[t]-module and hence also as 
A-module. In particular, Λ/L′ is a projective A-module. The short exact sequence 0 →
L′ → Λ → Λ/L′ → 0 thus splits; equivalently, the A-submodule L′ ⊂ Λ is a direct 
summand.

Set l′ := l|L′
C
. Let O be the Γ-orbit of L′. As argued above, t−1L′/L′ = W . Hence 

O ∈ Orb(i, W ). We claim that E(πΓ(l′)) ∈ O and hence, in view of (50), that [l] ∈
U(Λ, p−1

Γ (E−1(O)) ∩ ΩL′ , r) so that as desired

πΓ(l) ∈ U(Λ, E−1(O), r).

For the claim, it suffices, by (47) and since ρW̊ (E(πΓ(l))) ∈ O, to show that

∀α, α′ ∈ W̊ :
∣∣∣∣Eα′(l)
Eα(l) − Eα′(l′)

Eα(l′)

∣∣∣∣ < δ.

For any β ∈ W̊ set

Eβ = Eβ(l) and E′
β := Eβ(l′) and εβ := Eβ −E′

β =
∑

λ∈l(π−1(β)∩L\t−1L′)

1
λ
. (51)

We then have for any α, α′ ∈ W̊ that∣∣∣∣ εα′

Eα

∣∣∣∣ (50)
≤ 1

r · |xl| · |Eα|
= 1

r
·
∣∣∣∣eL(xl)

xl

∣∣∣∣ ·
∣∣∣∣Eαl

Eα

∣∣∣∣ ≤ 1
r
·
∏ ∣∣∣∣xl + λ

λ

∣∣∣∣ · c |xl|<|λ|= c

r

0�=λ∈L
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and hence as desired that

∣∣∣∣Eα′

Eα
− E′

α′

E′
α

∣∣∣∣ =
∣∣∣∣Eα′

Eα
− Eα′ − εα′

Eα − εα

∣∣∣∣ =
∣∣∣∣∣
εα′
Eα

− Eα′
Eα

· εα
Eα

1 − εα
Eα

∣∣∣∣∣
1> c

r=
∣∣∣∣ εα′

Eα
− Eα′

Eα
· εα
Eα

∣∣∣∣ ≤ c2

r
< δ.

This shows the claim and hence the first inclusion stated in the lemma.
Conversely, assume that πΓ(l) ∈ U(Λ, E−1(O), r). Thus

[l] ∈ U(Λ, p−1(E−1(O)) ∩ ΩL′ , r)

for some L′ ∈ O ∈ Orb(i, W ). Choose such an L′ and set l′ := l|L′
C
∈ Ω̃L′ and define Eβ, 

E′
β and εβ for any β ∈ W̊ as in (51). Using (47) similarly as before, we shall first show 

that ρW̊ (E(πΓ(l))) ∈ O. The assumption implies that E(πΓ(l′)) ∈ O and, as r > 1, that 
xl ∈ l(t−1L′). For any α, α′ ∈ W̊ thus follows that

∣∣∣∣ εα′

E′
α

∣∣∣∣ ≤ 1
r · |xl| · |E′

α|
= 1

r
·
∣∣∣∣el′(L′)(xl)

xl

∣∣∣∣ ·
∣∣∣∣E′

αl

E′
α

∣∣∣∣
≤ 1

r
·

∏
0�=λ∈l′(L′)

∣∣∣∣xl + λ

λ

∣∣∣∣ · c |xl|<|λ|= c

r

and hence that

∣∣∣∣E′
α′

E′
α

− Eα′

Eα

∣∣∣∣ =
∣∣∣∣E′

α′

E′
α

− E′
α′ + εα′

E′
α + εα

∣∣∣∣ =
∣∣∣∣∣∣
E′

α′
E′

α
· εα
E′

α
− εα′

E′
α

1 + εα
E′

α

∣∣∣∣∣∣
1> c

r=
∣∣∣∣E′

α′

E′
α

· εα
E′

α

− εα′

E′
α

∣∣∣∣ ≤ c2

r
< δ.

Hence ρW̊ (E(πΓ(l))) ∈ O by (47) since E(πΓ(l′)) ∈ O. We finally show that

∀α′ ∈ W̊ , ∀α ∈ V \W :
∣∣∣∣ Eα(l)
Eα′(l)

∣∣∣∣ ≤ c

r
. (52)

Consider any α, α′ as in (52). Suppose without loss of generality that Eα(l) �= 0 so that 
π−1(α) ∩ L �= ∅. Choose an x ∈ l(π−1(α) ∩ L) of minimal norm. Then

∣∣∣∣ Eα(l)
Eα′(l)

∣∣∣∣ =
∣∣∣∣Eαl

(l)
Eα′(l) · Eα(l)

Eαl
(l)

∣∣∣∣ ≤ c ·
∣∣∣∣eL(xl)
eL(x)

∣∣∣∣ (48)
≤ c ·

∣∣∣xl

x

∣∣∣ ≤ c

r
.

Hence E(πΓ(l)) ∈ U(O, c ). This establishes the second inclusion. �
r
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Proof of Proposition 8.7. As argued after Proposition 8.7, it remains to be shown the 
claim that Ei induces an isomorphism of Grothendieck topologies. From Definition-
Proposition 5.19 follows via (45), that a subset X ⊂ Ω∗

Γi
is admissible if and only if for 

any free A/(t)-submodule 0 �= W ⊂ V the subset X ∩ ΩΓi,W ⊂ ΩΓ,i is admissible and 
any admissible quasi-compact Y ⊂ X ∩ ΩΓi,W admits an r ∈ |C| with U(Λi, Y, r) ⊂ X. 
Moreover, for any such W the admissible quasi-compact subsets of ΩW (C) are precisely 
the intersections with ΩW (C) of the admissible quasi-compact subsets of Ω(W̊ ) (see 
[20, Cor. 2.30]). As Ei restricts to an isomorphism ΩΓi

→ Ωi and to an isomorphism 
ΩΓi,W → ΩW (C) for any such W � V by Corollary 8.4, the claim directly follows 
from Proposition 8.8 applied to the case P ′ = Qi jointly with Proposition 8.9 and 
Lemma 8.10. �
Corollary 8.11. The Qi for all i ∈ I are the irreducible components of Q. Moreover, Ωi

is dense in Qi for every i ∈ I.

Proof. By Lemma 8.6, any Qi ⊂ Q is Zariski-closed. By Corollary 5.16, any ΩΓi
is dense 

in Ω∗
Γi

. By Proposition 8.7, thus any Ωi is dense in Qi. Consequently, any Qi contains the 
dense irreducible subset Ωi and is thus itself irreducible. Moreover, for any irreducible 
Zariski closed subset Y ⊂ Q the intersection Y ∩Ω with the Zariski open Ω is irreducible 
and thus contained in some Ωi by maximality of the irreducible components Ωi. Hence 
the Qi are maximal among the irreducible Zariski closed subsets of Q and are thus the 
irreducible components. �
Corollary 8.12. Consider any direct summand 0 �= W ⊂ V and any irreducible component 
Y of ΩW (C). Then Y is Zariski locally closed and irreducible subset of Q and its Zariski 
closure in Q consists of Y and all ΩW ′(C) for all 0 �= W ′ � W .

Proof. By Corollary 8.11 applied to Q′ := QW (C) instead of Q, the closure Z of Y in 
Q′ is Y ∪ (Q′ \ΩW (C)). By Lemma 8.6, Y ⊂ Z is Zariski open. Now use that the closed 
embedding QW → QV defined before Theorem 7.16 identifies Z with the closure of Y in 
Q, and that Q′ is the union of the ΩW ′(C) for all 0 �= W ′ ⊂ W . �

Let i ∈ I. Consider the Grothendieck ringed space (Qi, ÕQi
) whose underlying 

Grothendieck topological space coincides with the one underlying (Qi, OQi
) and whose 

sections on any admissible U ⊂ Qi are the functions f : U → C that are continuous with 
respect to the canonical topologies, that are bounded on any admissible affinoid subset 
of U and that restrict to regular functions U∩ΩW (C) → C for any free (A/t)-submodule 
0 �= W ⊂ V . Denote by

nQi
: (Qi, ÕQi

) → (Qi,OQi
)

the morphism of Grothendieck ringed spaces whose underlying morphism of Grothendieck 
topological spaces is the identity and whose homomorphism OQi

(U) → ÕQi
(U) for any 
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admissible U ⊂ Qi is the natural injection by means of the Maximum Modulus Principle, 
i.e., Proposition 2.27.

Corollary 8.13. The isomorphism Ei of Grothendieck topological spaces yields an isomor-
phism

(Ω∗
Γi
,O∗

Γi
) → (Qi, ÕQi

)

of Grothendieck ringed spaces, where the homomorphisms on sections are given by pre-
composition with Ei.

Proof. This directly follows from Proposition 5.22 and the construction of ÕQi
via Propo-

sition 8.7, Corollary 8.4, Lemma 8.10 and (45). �
Theorem 8.14. The morphism nQi

is the normalization of Qi.

Proof of Theorems 8.1 and 8.14. By means of the isomorphism in Corollary 8.13, we 
identify (Ω∗

Γi
, O∗

Γi
) with (Qi, ÕQi

) and are reduced to showing that nQi
is the normal-

ization morphism for Qi. Set Z := Qi. We want to apply Theorem 3.7 to the present 
case, i.e., where the global sections S on Z are the restrictions to Z of the Yα for all 
α ∈ V̊ . Let us verify its conditions:

i) Z is irreducible,
ii) the Zariski open subvariety Ω(S) ⊂ Z is normal,
iii) Z \ Ω(S) is of everywhere positive codimension in Z.
iv) any function f : X → C on any admissible X ⊂ Z which is continuous with respect 

to the canonical topology and restricts to a regular function on X ∩ Ω(S) restricts 
to a regular function on X ∩ Ω(T ) for any T ⊂ S and

v) any z ∈ Z has a fundamental basis of admissible neighborhoods U such that U∩Ω(S)
is connected and, in particular, non-empty.

Condition i) follows from Corollary 8.11. Normality of Ω(S) = Ω(V̊ ) ∩ Z = Ωi follows 
from Theorem 4.13 via Theorem 8.3; this yields ii). By Proposition 8.3, Example 4.16
and Corollary 4.15, moreover, ΩW (C) is everywhere of dimension rankA/(t)(W ) − 1 for 
any free A/(t)-submodule 0 �= W ⊂ V . Via Proposition 8.9, thus follows that Z \Ω(S) is 
of everywhere positive codimension which yields iii). As for Assumption iv), consider any 
admissible X ⊂ Z and any function f : X → C which is continuous with respect to the 
canonical topologies and which restricts to a regular function on X∩Ω(V̊ ). The regularity 
of the restriction of f to X ∩ Ω(W̊ ) for an arbitrary free A/(t)-submodule 0 �= W ⊂ V

then follows from Proposition 5.31 by descending induction on the rank of W . Taking 
Proposition 8.9 again into account, this yields Condition iv). Finally, Corollary 5.16
provides Condition v). We may thus apply Theorem 3.7 which concludes the proof. �
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Corollary 8.15. Let i ∈ I and set Γ := Γi. Consider any Γ-orbit O = Γ ·L �= {0} of direct 
summands of Λi. With respect to the Zariski topology, the subset ΩO ⊂ Ω∗

Γ is irreducible, 
locally closed and its closure is the union of all ΩΓ·L′ for all 0 �= L′ ⊂ L.

Proof. Choose any L ∈ O and set W := t−1L/L ⊂ V . The image Y of ΩO under Ei

is an irreducible component of ΩW (C) by Corollary 8.4 and (45). By Corollary 8.12, 
Y is Zariski locally closed and its closure Z is the union of Y and all ΩW ′(C) for all 
0 �= W ′ � W . As Ei is bijective, ΩO is the preimage of Y and thus a Zariski locally closed 
irreducible subset in Ω∗

Γ. The closure of ΩO in Ω∗
Γ is E−1

i (Z) since Ei is bijective and 
since, being a normalization morphism, Ei finite and thus [8, Prop. 9.6.2.5 and 9.6.3.3]
sends Zariski closed subsets to Zariski closed subsets. However, E−1

i (Z) is the union of 
ΩO and the ΩO′ for all Γ-orbits O′ = Γ · L′ with 0 �= t−1L′/L′ � W by Corollary 8.4. 
The corollary now follows from Corollary 6.19. �
9. Consequences of the comparison

Let A ⊂ C be as in Sections 5, 6, 7, 8. Consider any congruence subgroup K ⊂
AutÂ(M) as in Section 6. Choose 0 �= t ∈ A such that K contains the kernel K(t) of 
the natural homomorphism AutÂ(M) → AutA(V ), where V := t−1M/M , and, using 
that A is finitely generated, such that DivA(t) generates A as in Section 7.2. Identify 
Δ := K/K(t) with the image of K in AutA(V ). Let Q := QV (C) and Ω := ΩV (C) be as 
in Section 8.

Theorem 9.1. The normalization morphism EK(t) in Theorem 8.1 is Δ-equivariant and 
the induced morphism EK : Ω∗

K → Δ\Q is the normalization morphism of Δ\Q and 
restricts to Drinfeld’s isomorphism ΩK → Δ\Ω between normal rigid analytic varieties. 
Moreover, the morphism of Grothendieck topological spaces underlying EK restricts to 
isomorphisms between irreducible components.

Proof. By construction, EK(t) is Δ-equivariant and thus induces a morphism EK : Ω∗
K →

Δ\Q between their quotients. From Theorem 8.1 follows via Köpf’s GAGA-theorem [26, 
Satz 5.1] that the quotient Ω∗

K of Ω∗
K(t) by the finite group Δ is a normal projective rigid 

analytic variety since Ω∗
K(t) is. Moreover, EK is finite since EK(t) is. Moreover, as EK(t)

restricts to an isomorphism ΩK(t) → Ω, also EK restricts to an isomorphism ΩK → Δ\Ω
between their quotients. Furthermore, Corollary 5.16 yields via Proposition 6.10 that 
both the Zariski closed complement of Δ\Ω in Δ\Q and its preimage in Ω∗

K are nowhere 
dense. By [10, Theorem 2.1.2], thus EK is indeed the normalization morphism. Moreover, 
as the Grothendieck topological space on each side of EK is the quotient by Δ of the 
respective side of EK(t), the last assertion, too, follows from Theorem 8.1. �

Choose any complete set S of representatives of the natural K-action on the set of 
A-structures of M and recall the isomorphism
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∐
Λ∈S

(Ω∗
KΛ

,R∗
KΛ

) −→ (Ω∗
K,R∗

K) (53)

of Grothendieck graded ringed spaces provided by Proposition 6.10.

Corollary 9.2. Ω∗
K is a normal projective rigid analytic variety over C whose irreducible 

components are, via (53), the Ω∗
KΛ

for all Λ ∈ S.

Proof. By [10, Theorem 2.1.3], the analytification functor commutes with the normal-
ization functor. From Theorem 9.1 thus follows that Ω∗

K is a normal projective rigid 
analytic variety. Moreover, via (53), the Ω∗

KΛ
are admissible subsets of Ω∗

K and pairwise 
disjoint. It thus suffices to show that each of them is irreducible. Consider any Λ ∈ S. 
Then the admissible subvariety ΩKΛ

⊂ Ω∗
KΛ

is irreducible by Proposition 4.13 and dense 
by Corollary 5.16. Thus Ω∗

KΛ
is itself irreducible as desired. �

Consider any finitely generated projective A-module Λ �= 0 and any congruence sub-
group Γ ⊂ AutA(Λ). For the remainder we consider the following special case of M , 
t, K, S so that we may interpret Λ as an element of S and Γ to be KΛ: Assume that 
M = Λ ⊗A Â; then Λ is an A-structure of M . Using that Γ ⊂ AutA(Λ) is a congruence 
subgroup, assume that 0 �= t ∈ A is such that DivA(t) generates A and that furthermore 
Γ contains the kernel of AutA(Λ) → AutA(t−1Λ/Λ). Identify t−1Λ/Λ with V := t−1M/M

via the isomorphism induced by the inclusion Λ ⊂ M . Assume that K is the preimage in 
AutÂ(M) of the image of Γ in AutA(V ). Assume finally that S contains Λ. In this case 
indeed Γ = KΛ.

Corollary 9.3. The Grothendieck ringed space (Ω∗
Γ, O∗

Γ) is an integral normal projective 
rigid analytic variety over C containing ΩΓ as a dense admissible subvariety.

Proof. Cororollary 9.2 yields the first part and Corollary 5.16 the second. �
The subgroup Γ ⊂ AutA(Λ) is called fine if its image in AutA(Λ/pΛ) is unipotent for 

some maximal ideal p ⊂ A.

Corollary 9.4. Suppose that Γ is fine and let k ≥ 0 be any integer. Denote by E the 
restriction of EK to Ω∗

Γ and by Y its image. Let OY (k) be the pullback under Y ⊂
Δ\QV (C) of the invertible sheaf from Proposition 7.21. Then the morphism

E−1(OY (k)) ⊗E−1(OY ) O∗
Γ → O∗

Γ(k) (54)

induced by E from the inverse image under E of OY (k) to O∗
Γ(k) is an isomorphism 

and the natural morphism (O∗
Γ(k))k′ → O∗

Γ(k · k′) is an isomorphism for any k′ ≥ 0. 
Consequently, if k ≥ 1, then O∗

Γ(k) is an ample invertible O∗
Γ-module.
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Proof. The morphism of Grothendieck topological spaces underlying E is an isomor-
phism by Theorem 9.1. Thus

E−1(OY (k))(X ′) = OY (k)(E(X ′)) (55)

for any admissible X ′ ⊂ Ω∗
Γ. Moreover, by construction of O∗

Γ, any nowhere vanishing 
section in OΓ(k)(X ′) is a basis for OΓ(k)|X′ over OΓ|X′ for any admissible X ′ ⊂ Ω∗

Γ. 
Using that OY (k) is invertible, choose any admissible covering C of Y such that any 
Y ′ ∈ C admits a nowhere vanishing section in OY (k)(Y ′) which is a basis of OY (k)|Y ′

over OY |Y ′ . Let Y ′ ∈ C and set X ′ := E−1(Y ′). Using (55) and that E sends any nowhere 
vanishing section in OY (k)(Y ′) to a nowhere vanishing section in OΓ(k)(X ′), it is directly 
checked that (54) restricts to an isomorphism on X ′. As the preimage of C under E
is an admissible covering, this yields the first part. The second part holds true since 
moreover, by [24, Chapter 2, Prop. 5.12], the natural morphism OY (k)k′ → OY (k · k′)
is an isomorphism for any k′ ≥ 0 and since the formation of tensor products and inverse 
images are compatible.

Suppose that k ≥ 1. As OY (k) is ample invertible by Proposition 7.21, so is its 
inverse image under the finite morphism E by [23, Ch. 1, Prop. 4.4] using that E is the 
analytification of the algebraic normalization of Y by [10, Thm. 2.1.3]. Hence O∗

Γ(k) is 
ample invertible by the isomorphism (54). �
Corollary 9.5. The C-algebra R∗

Γ(Ω∗
Γ) is finitely generated with O∗

Γ(Ω∗
Γ) = C and Ω∗

Γ is 
the analytification of Proj(R∗

Γ(Ω∗
Γ)).

Proof. By Köpf’s GAGA-theorems [26, Sätze 4.7 und 5.1] and Corollaries 9.3 and 9.4, 
the variety Ω∗

Γ is the analytification of some normal integral projective algebraic variety 
X and, if Γ is fine, the ample invertible sheaf O∗

Γ(k) is the analytification of an ample 
invertible sheaf Lk on X for any k ≥ 0, and the global sections on O∗

Γ(k) are naturally 
isomorphic to the ones of Lk. If Γ is fine, thus O∗

Γ(Ω∗
Γ) = C and the corollary follows 

using the isomorphisms (O∗
Γ(k))k′ → O∗

Γ(k · k′) for all k, k′ ≥ 0 as well as the fact (see 
[29, Theorem 5.7]) that the ring of sections in all powers of L1 is a finitely generated 
normal integral domain and that its Proj is X.

Via the choice of a fine normal subgroup Γ′ ⊂ Γ, the general case is reduced to the 
previous case using that by Noether’s theorem (see [36, Theorem 2.3.1]) the subring of 
invariants R∗

Γ(Ω∗
Γ) ⊂ R∗

Γ′(Ω∗
Γ′) with respect to the C-linear action by the finite group 

Γ/Γ′ is again finitely generated. �
Definition 9.6. For any integer k ≥ 0 a weak modular form f ∈ O∗

Γ(k)(ΩΓ) (see Defini-
tion 5.27) is called a modular form if the negatively indexed coefficients of the Fourier 
expansions at all direct summands 0 �= L ⊂ Λ of co-rank 1 all vanish; denote by 
MΓ(k) ⊂ O∗

Γ(k)(ΩΓ) the C-subspace of modular forms of weight k. Set
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MΓ :=
∑
k≥0

MΓ(k).

Proposition 9.7. The restriction homomorphism R∗
Γ(Ω∗

Γ) → R∗
Γ(ΩΓ) is injective with 

image MΓ.

Proof. Let Ω<2
Λ be the union of the ΩL for all direct summands 0 �= L ⊂ Λ with 

rankA(L) ≥ rankA(Λ) − 1 and consider the admissible subset

Ω<2
Γ := pΓ(Ω<2

Λ ) ⊂ Ω∗
Γ.

Corollary 5.31 applied to the various such L yields that the restriction homomorphism 
R∗

Γ(Ω<2
Γ ) → R∗

Γ(ΩΓ) is injective with image MΓ. We claim that, moreover, the restriction 
morphism

R∗
Γ(Ω∗

Γ) → R∗
Γ(Ω<2

Γ )

is bijective. Consider Γ′ := K(t)Λ ⊂ Γ. By construction of Ω<2
Γ′ and Ω∗

Γ as well as 
of O∗

Γ′ and O∗
Γ, the claim is directly reduced to showing the claim in the case Γ = Γ′. 

Thus assume that Γ = Γ′. By the Riemann extension theorem [2, Satz 10], the restriction 
morphism is bijective if Ω∗

Γ is normal and if Ω∗
Γ\Ω<2

Γ ⊂ Ω∗
Γ is Zariski-closed of codimension 

≤ 2. From Corollary 9.3 follows the normality of Ω∗
Γ. The image of Ω∗

Γ under EK is then 
an irreducible component Qi of Q. We are thus reduced to showing that the image 
U of Ω∗

Γ \ Ω<2
Γ ⊂ Ω∗

Γ under the isomorphism Ei : (Ω∗
Γ, O∗

Γ) → (Qi, ÕQi
) provided by 

Corollary 8.13 is Zariski-closed in Qi and of codimension ≤ 2. By Corollary 8.4, the 
image U is the union of the ΩW (C) for all free direct summands 0 �= W ⊂ V with 
rankA/(t)(W ) ≤ rankA/(t)(V ) − 2. By Theorem 7.16,i), equivalently, U is the union of 
the QW (C) ⊂ Qi for all such W . For any such W , moreover, QW (C) is Zariski-closed in 
QV (C) and hence Zariski-closed in Qi with respect to OQi

and thus also with respect 
to ÕQi

. Being a finite union of Zariski-closed subsets, hence U itself is Zariski-closed. 
Moreover, by Theorem 7.16, ii), for any direct summand 0 �= W ⊂ V the dimension 
of any irreducible component of ΩW (C) equals rankA/(t)(W ) − 1. Hence U ⊂ Qi is 
Zariski-closed of codimension ≤ 2. �

We finally summarize, respectively conclude, the following results about the analytic 
Satake compactification of ΩΓ.

Theorem 9.8. (Analytic Satake compactification)

i) The Grothendieck ringed space (Ω∗
Γ, O∗

Γ) is an integral normal projective rigid ana-
lytic variety over C containing ΩΓ as a dense admissible subvariety.

ii) If for some maximal ideal p ⊂ A the image of Γ in AutA(Λ/pΛ) is unipotent, O∗
Γ(k)

is ample invertible for any k ≥ 1.
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iii) For any k ≥ 0 the restriction morphism O∗
Γ(k)(Ω∗

Γ) → OΓ(k)(ΩΓ) is injective and 
its image is the space of modular forms MΓ(k).

iv) The graded C-algebra MΓ :=
∑

k≥0 MΓ(k) is finitely generated with MΓ(0) = C

and Ω∗
Γ is the analytification of Proj(MΓ). Moreover, MΓ(k) is a finite dimensional 

vector space over C for any k ≥ 0.
v) Consider any Γ-orbit O = Γ · L �= {0}. With respect to the Zariski topology, the 

subset ΩO ⊂ Ω∗
Γ is irreducible, locally closed and its closure is the union of all ΩΓ·L′

for all direct summands 0 �= L′ ⊂ L.
vi) Consider any direct summand 0 �= L ⊂ Λ and set O := Γ · L and ΓL := {γ′ ∈

AutA(L) | ∃γ ∈ Γ: γ|L = γ′}. The composition of the canonical bijection ΓL\ΩL →
ΩO with the inclusion ΩO ⊂ Ω∗

Γ is a locally closed immersion (in the sense of 
Definition 2.25) of rigid analytic varieties.

Proof. Part i) is Corollary 9.3. Part ii) is the last statement of Corollary 9.4. Part 
iii) is equivalent to Proposition 9.7. The first statement of Part iv) is a combination 
of Corollary 9.5 and Proposition 9.7 and the second statement follows from the first by 
induction on k. Part v) is Corollary 8.15 in the case where Γ equals Γ′ := Ker(AutA(Λ) →
AutA(V )). In general, the action of the finite group Γ/Γ′ on Ω∗

Γ′ yields a finite morphism 
π : Ω∗

Γ′ → Ω∗
Γ (see [20, Corollary 9.23] for details). As π is finite (and in fact the quotient 

by a finite group), it maps Zariski closed (resp. open) subsets to Zariski closed (resp. 
open) subsets. Thus ΩO = ΩΓ·L = π(ΩΓ′·L) is locally closed and irreducible and the 
closure of ΩO in Ω∗

Γ is the image under π of the closure of ΩΓ′·L in Ω∗
Γ′ . Since the 

closure of ΩΓ′·L is the union of the ΩΓ′·L′ for all 0 �= L′ ⊂ L by Corollary 8.15 and since 
π(ΩΓ′·L′) = ΩΓ·L′ , the closure of ΩΓ·L is the union of the ΩΓ·L′ for all 0 �= L′ ⊂ L. This 
shows part v). Finally, ΩΓL

, resp. Ω∗
Γ, is a rigid analytic variety by Proposition 4.13, 

resp. part i). Part vi) then follows from Proposition 5.23. �
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