JOURNAL OF NUMBER THEORY | 卷:129 |
Some identities involving theta functions | |
Article | |
Alaca, Ayse1  Alaca, Saban1  Williams, Kenneth S.1  | |
[1] Carleton Univ, Ctr Res Algebra & Number Theory, Sch Math & Stat, Ottawa, ON K1S 5B6, Canada | |
关键词: Theta function identities; Sums of squares; Eisenstein series; | |
DOI : 10.1016/j.jnt.2008.10.006 | |
来源: Elsevier | |
【 摘 要 】
Let phi(q) = Sigma(infinity)(n=-infinity) q(n2) (|q| < 1). For k is an element of N it is shown that there exist k rational numbers A(k, 0), ... , A(k, k-1) such that 1 + 4/E-2k Sigma(infinity)(n=1)(Sigma(d is an element of N) (d|n)(-4/d)d(2k))q(n) = Sigma(k-1)(j=0) A(k, j)phi(4j+2)(q)phi(4k-4j)(-q) where E-2k is an Euler number. Similarly it is shown that there exist k + 1 rational numbers B(k, 0), ... , B(k, k) such that Sigma(infinity)(n=1)(Sigma(d is an element of N) (d|n)(-4/n/d)d(2k))q(n) = Sigma(k-1)(j=0) B(k, j)phi(4j+2)(q)phi(4k-4j)(-q) Recurrence relations are given for the A (k, j) and B (k, j). (C) 2008 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jnt_2008_10_006.pdf | 278KB | download |