期刊论文详细信息
JOURNAL OF NUMBER THEORY 卷:211
Adelic geometry on arithmetic surfaces II: Completed adeles and idelic Arakelov intersection theory
Article
Czerniawska, Weronika1  Dolce, Paolo2 
[1] Univ Geneva, Geneva, Switzerland
[2] Univ Udine, Udine, Italy
关键词: Adeles;    Local fields;    Global fields;    Arakelov geometry;    Arithmetic surfaces;    Intersection theory;    Number fields;   
DOI  :  10.1016/j.jnt.2019.10.010
来源: Elsevier
PDF
【 摘 要 】

We work with completed adelic structures on an arithmetic surface and justify that the construction under consideration is compatible with Arakelov geometry. The ring of completed adeles is algebraically and topologically self-dual and fundamental adelic subspaces are self orthogonal with respect to a natural differential pairing. We show that the Arakelov intersection pairing can be lifted to an idelic intersection pairing. (C) 2019 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jnt_2019_10_010.pdf 2848KB PDF download
  文献评价指标  
  下载次数:4次 浏览次数:1次