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0. Introduction

0.1. Background

Adelic theory for global fields was introduced for the first time by Chevalley in the 
1930’s as a tool for studying the completions of a number field with respect to all possible 
absolute values at the same time. This is a great expression of “local-to-global” principles 
as well as an example of geometric approaches to number theory which have proven to 
be very powerful. One of the principal applications of adelic theory for number fields was 
published in John Tate’s thesis [23] which presented a proof of meromorphic continuation 
and functional equation of ζ functions of number fields in clearer and more compact way 
than the proof given before by Hecke. When C is a curve over a perfect field, one can 
also define the adelic ring AC associated to C as the restricted product of the complete 
discrete valuation fields Kc for any closed point c ∈ C with respect to their valuation 
rings Oc. It is possible to obtain a very elegant proof of the Riemann-Roch theorem for 
curves by using adeles (see [24, 3.] for a sketch of a proof).

Adelic approach has been generalized for higher dimensions by Beilinson in [3] where 
he defined adelic structures as functors on the category of quasi-coherent sheaves. An 
explicit theory of 2-dimensional adelic cohomology and dualities for algebraic surfaces 
was outlined in [20], where hope for proving adelic Riemann-Roch theorem for a surface 
over a finite field was expressed. However, the explicit adelic structures introduced in 
[20] are not equivalent to Beilinson’s, since [20] worked with objects that now are called 
rational adeles. The gap on the definitions was partially fixed in [21], but a complete 
account of 2-dimensional explicit adelic theory was given by Fesenko in [10], where he 
also proved an adelic Riemann-Roch theorem for an algebraic surface over a perfect 
field by using properties of adelic cohomology. In particular, Fesenko showed that the 
function field of an algebraic surface X can be seen as a discrete subspace inside the ring 
of 2-dimensional adeles attached to X. Such a result generalizes the classical result of 
[23] which shows that a global field is a discrete object inside the ring of adeles.
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The non-cohomological part of (explicit) adelic theory for algebraic surfaces can be 
summarized in the following way: fix a nonsingular algebraic surface (X, OX) over a 
perfect field k, then to each “flag” x ∈ y made of a closed point x inside an integral 
curve y ⊂ X we can associate the ring Kx,y which will be a 2-dimensional local field 
if y is nonsingular at x, or a finite product of 2-dimensional local fields if we have a 
singularity. Note how the geometric dimension of X matches the “dimension” of the 
ring Kx,y, and this happens roughly speaking because for a flag x ∈ y (assuming that 
x is a nonsingular point of y) we have two distinct levels of discrete valuations: there 
is the discrete valuation associated to the containment x ∈ y and the discrete valua-
tion associated to y ⊂ X. Kx,y is obtained through a process of successive localizations
and completions starting with OX,x and by the symbol Ox,y we denote the product 
of valuation rings inside Kx,y. The step to the global theory is obtained by perform-
ing a “double restricted product” of the rings Kx,y: first over all points ranging on a 
fixed curve and then over all curves in X, in order to obtain the 2-dimensional adelic 
ring:

AX :=
∏′′

x∈y
y⊂X

Kx,y ⊂
∏
x∈y
y⊂X

Kx,y .

The topology on Kx,y can be defined canonically thanks to the construction by comple-
tions and localizations, and by starting with the standard mx-adic topology on OX,x. 
The topology on AX is obtained after a process of several inductive projective limits by 
starting from the local topologies on all Kx,y. In [10] it is shown that AX is self-dual 
as k-vector space. For 2-dimensional local fields with the same structure of Kx,y there 
is a well known theory of differential forms and residues (e.g. [25]); one can globalize 
the constructions in order to obtain a k-character ξω : AX → k associated to a rational 
differential form ω ∈ Ω1

k(X)|k and the differential pairing:

dω : AX × AX → k

(α, β) �→ ξω(αβ) .

Fesenko in [10] proves that the subspace AX/k(X)⊥ is a linearly compact k-vector 
space (orthogonal spaces are calculated with respect to dω) and the function field k(X)
is discrete in AX . It is possible to define some important subspaces of AX denoted 
as: k(X) = A0, A1, A2, A01, A02, A12, A012 = AX which generate an idelic complex 
assuming the following form:

A×
X : A×

0 ⊕A×
1 ⊕A×

2 A×
01 ⊕A×

02 ⊕A×
12 A×

012
d0
× d1

×

It can be shown that the space ker(d1
×) is a generalization of the group Div(X) since 

there is a surjective map ker(d1
×) → Div(X) and the intersection pairing on Div(X) can 

be extended to a pairing on ker(d1
×) (cf. [7, 3.]).
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The main aim of our work is to obtain a two-dimensional adelic theory, for arith-
metic surfaces i.e. objects of the form ϕ : X → SpecOK where K is a number field. The 
problem is motivated by Fesenko’s “analysis on arithmetic schemes programme”. The pro-
gramme develops a two-dimensional generalization of Tate’s thesis, i.e. two-dimensional 
measure, integration and Fourier analysis. Fesenko’s work reveals relationships between 
geometry and analysis not visible without adelic tools (see also [6] for an alternative 
presentation).

In [16] and [18] Morrow, develops an explicit approach to residues and dualizing 
sheaves of arithmetic surfaces. In particular he defines the residue map for 2-dimensional 
local fields arising from an arithmetic surface and he formulates and proves reci-
procity laws around a point and along a curve of an arithmetic surface. To have a 
reciprocity law along a horizontal curve, he completes horizontal curves with points 
at infinity, i.e. real or complex embeddings of the function field of the horizontal 
curve.

0.2. Results in this paper

At the center of our considerations there is an adelic object for an arithmetic surface 
ϕ : X → B = SpecOK . One expects that one has to take into account (archimedean) 
“data at infinity” of the arithmetic surface. Such an adelic space completed by data at 
infinity was proposed for the first time in [9]. In section 2 we present a simpler and 
slightly different version of it. Already at the level of local theory, adelic geometry for 
arithmetic surfaces is quite interesting, in fact the rings Kx,y can be equal characteristic 
or mixed characteristic 2-dimensional local fields depending whether y is horizontal or 
vertical. Over each point at infinity σ ∈ B∞, i.e. an embedding σ : K → C, we obtain, 
by a base change, a Riemann surface Xσ that can be thought as a fiber at infinity. The 
completed adelic ring A

X̂
will then contain the one dimensional adelic rings AXσ

relative 
to the fibers at infinity Xσ, but counted twice:

A
X̂

= AX ⊕
∏

σ∈B∞

(AXσ
⊕ AXσ

) .

The arithmetic counterparts A∗̂ of the fundamental subspaces A∗ are also defined. There 
is a specific geometric reason that suggests why we should count adeles at infinity twice, 
and it involves the interpretation horizontal curves on X̂ in terms of Arakelov geometry 
i.e. we have to consider their “intersection” with fibers at infinity.

By slightly generalizing the local theory of residues for two dimensional local fields 
developed in [16], in section 3 we define a global adelic residue

ξω : A
X̂

→ T

(ω is a fixed nonzero rational differential form and T is the unit complex circle) and we 
show that ξω is sequentially continuous.
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Fig. 1. The sum of local two-dimensional residues is zero when a point is fixed and curves passing through 
it vary. The sum of local two-dimensional residues is zero when a curve is fixed and the points sitting on it 
vary.

Section 4 is entirely dedicated to the proof of the self-duality of A
X̂

as topological 
additive group. In particular we show that A

X̂
∼= Â

X̂
as topological groups and moreover 

that there is a character ψ : A
X̂

→ T such that any other character of A
X̂

is of the 
form ψ(a·) for a ∈ A

X̂
.

We define the arithmetic differential pairing

dω : A
X̂
× A

X̂
→ T

(α, β) �→ ξω(αβ) .

We improve the reciprocity laws proved in [18] by giving a set of “completed” reciprocity 
laws, i.e. taking into account all flags coming from points at infinity. We show that 
both A0̂1 and A0̂2 (adelic subspaces corresponding to curves and points respectively) 
are self-orthogonal with respect to dω i.e. A0̂1 = A⊥

0̂1 and A0̂2 = A⊥
0̂2. The inclusions 

A0̂1 ⊆ A⊥
0̂1 and A0̂2 ⊆ A⊥

0̂2 are a direct consequence of the completed reciprocity laws, 
thus the self-orthogonality of A0̂1 and A0̂2 can be interpreted as “strong reciprocity laws” 
for arithmetic surfaces. The “strong reciprocity laws” for surfaces over a perfect field were 
proved in [10]. (See Fig. 1.)

The problems of finding proofs of the discreteness of the function field K(X) inside A
X̂

and of the compactness of the quotient A
X̂
/K(X)⊥ are still open, but we plan to publish 

a solution in a forthcoming paper. Finally, in analogy with the case of algebraic surfaces 
we show that the Arakelov intersection pairing can be lifted to the idelic group A×

X . The 
schematic part of the lifting was already proved in [8], so here we solve the problem of 
the data carried by Green functions on fibers at infinity. It is worth remembering that 
Arakelov theory is the only known theory that provides consistent intersection theory 
on arithmetic surfaces, therefore we would expect that a theory of adeles on arithmetic 
surfaces should resonate with Arakelov geometry.

The text contains also two appendices which are indispensable for the understanding 
and moreover prerequisites for this paper are [8] and a basic knowledge of the theory of 
higher local fields (e.g. [17]).
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1. Preliminaries

1.1. Basic notions

General notations All rings are considered commutative and unitary. Let (A, m) be 
a Noetherian local ring and let M be an A-module, then we put M sep := M

/
∩j≥1

mjM . When we pick a point x in a scheme X we generally mean a closed point if not 
otherwise specified, also all sums 

∑
x∈X are meant to be “over all closed points of X”. The 

cardinality of a set T is denoted as #(T ). If F is a discrete valuation field, then F doesn’t 
denote the algebraic closure but its residue field. In particular if a ∈ OF then a is the 
image of a in F . For morphisms of schemes f : X → S, the schematic preimage of s ∈ S

is Xs. Sheaves are denoted with the “mathscr” late χ font; in particular the structure 
sheaf of a scheme X is OX (note the difference with the font O). With the symbol T
we denote the unit circle in the complex plane. The superscript ̂ is used several times 
in this paper to denote completely different objects: the dual of a topological group, 
the completion of a local ring or a “completed structure” in the framework of Arakelov 
geometry. This superposition of notation is harmless because the specific meaning of ̂
will be clear from the context.

Topological groups If not otherwise specified we assume that any topological group is 
abelian and Hausdorff. The dual of a topological group G is the group of (unitary) 
characters:

Ĝ := Homcont(G,T ).

It is a topological group endowed with the compact-to-open topology. Moreover for a 
compact subset C ⊂ G and an open U ⊂ T neighborhood of 1 we denote

W(C,U) =
{
χ ∈ Ĝ : χ(C) ⊂ U

}
⊂ Ĝ .

The sets of the type W(C, U) form an open base at 1 for the compact-to-open topology 
in Ĝ.

If G is algebraically and topologically isomorphic to Ĝ, then we say that G is self-dual. 
If G is also a ST ring (here ST means semi-topological, see appendix A for details) and 
ξ ∈ Ĝ is a nontrivial character, then for any a ∈ G the map
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ξa : G → T

x �→ ξ(ax)

is a character. If the map

Θξ : G → Ĝ

a �→ ξa

is an algebraic and topological isomorphism for any a ∈ G, we say that ξ is a standard 
character. For any subsets S ⊆ G and R ⊆ Ĝ we put:

S⊥ := {χ ∈ Ĝ : χ(S) = 1} ⊆ Ĝ ,

R⊥ := {g ∈ G : χ(g) = 1, ∀χ ∈ R} ⊆ G .

If H is a subgroup of G, we say that H is dually closed if for every element g ∈ G \H, 
there is a character ψ ∈ H⊥ such that ψ(g) �= 1.

We will often use the following simple general result:

Proposition 1.1. Let G be a topological group such that G = lim−−→i∈ZHi where Hi ⊂ G is 
a subgroup and Hi ⊃ Hi+1 for any i ∈ Z. Then any compact subset C ⊂ G is contained 
in some Hi.

Proof. Clearly G =
⋃

i Hi. Assume that the claim is false, so we can construct a sequence 
of points {xi}i∈Z in G such that xi ∈ C ∩ (Hi \Hi+1). Consider now the index n = −i

and put A = {xn}n≥0. If B ⊆ A, then B ∩ Hn is finite for each n, so since points are 
closed in Hn, B ∩Hn is closed in Hn. This means that B is closed in G. In particular, 
A is a closed subset of G, and every subset of A is closed so it has the discrete topology. 
But a closed subset of a compact space is compact, and a compact discrete space must 
be finite. This is a contradiction with the construction of A. �
1.2. Geometric setting

Let’s fix the main objects and notations that we will use throughout the whole paper. 
Some of the material contained in this section can be found with more details in [8]. In 
particular we assume that the reader is familiar with the notion of 2-dimensional local 
field. Moreover, topological aspects of this section rely on appendix A.

Let K be a number field with ring of integers OK . Fix the arithmetic surface ϕ : X →
B = SpecOK which is a B-scheme with the following properties:

� X is two dimensional, integral, and regular. The generic point of X is η and the 
function field of X is denoted by K(X).

� ϕ is proper and flat.
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� The generic fiber, denoted by XK , is a geometrically integral, smooth, projective 
curve over K. The generic point of B is denoted by ξ.

It is well known that ϕ is a projective morphism, so in particular also X is projective 
(see [13, Theorem 8.3.16]). Let’s recall a useful result which characterizes all points of 
dimension 1 on X:

Proposition 1.2. If x is a closed point of the curve XK , then {x} is a horizontal (prime) 
divisor in X. Vice versa if D is a prime divisor on X, then either D ⊆ Xb for a closed 
point b ∈ B or D = {x} where x is a closed point of XK .

Proof. See for example [13, Proposition 8.3.4]. �
Let B∞ be the set of field embeddings σ : K ↪→ C up to conjugation, then #B∞ ≤

[K : Q] and the completion of B is the set B̂ := B ∪ B∞. For any point (i.e. nonzero 
prime ideal) b = p ∈ B we put:

� Ob := ̂OB,b. It is a complete DVR.
� Kb := FracOb. It is a local field with finite residue field. The valuation is denoted 
by vb.

From now on, we always fix a set of representatives in B∞. Therefore B∞ is simply a 
finite set of embeddings viewed as points at infinity of B. For the non-archimedean place 
associated to b = p ∈ B, on K we choose the absolute value

| · |b := N(p)−vb(·)

where N(p) is the cardinality of OK/p. Moreover:

� For any real embedding τ : K → R we consider the absolute value:

| · |τ := |τ(·)|

where on the right hand side we mean the usual absolute value on R. In this case we 
define the real valuation associated to τ as

vτ (·) := − log | · |τ

� For any couple of conjugate embeddings σ, σ : K → C we choose:

| · |σ := |σ(·)|
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where on the right hand side we have the usual absolute value on C.1 Note that | · |σ
doesn’t depend on the choice between σ and σ, since they give the same absolute 
value. The associated real valuation is

vσ(·) := − log | · |σ .

For σ ∈ B∞, Kσ is the completion of K with respect to | · |σ, thus Kσ = C or Kσ = R. 
Furthermore, let’s introduce a constant, associated to each σ ∈ B∞:

εσ :=
{

1 if σ is real
2 if σ is complex .

The adelic ring of B̂ (or equivalently of the number field K) is denoted by AB̂ or more 
classically also by AK , whereas AB := AB̂∩

∏
b∈B Kb is the ring of finite adeles. Another 

notation for the ring of finite adeles is Af
K . For any σ ∈ B∞ consider the base change 

diagram:

Xσ := X ×B SpecC SpecC

X B .

ϕσ Spec σ

ϕ

(1)

By the properties of the fibered product, it turns out that Xσ → SpecC is a com-
plex integral (integrality is a consequence of the geometrical integrality of XK), regular 
projective curve. We denote the function field of Xσ by the symbol C(Xσ).

Remark 1.3. Diagram (1) arises from the following rather obvious commutative diagram:

Xσ SpecC

XK SpecK

X B

β

ϕσ

Spec σ

Spec ι

where ι : OK ↪→ K is the natural embedding and the map β is surjective. In other words 
ϕσ maps surjectively Xσ onto the curve XK . Since the morphisms ι and σ are both flat 
and flatness is preserved after base change, we can conclude that ϕσ is flat.

1 Many authors in this case take the square of the complex absolute value to keep track of the fact that 
point at infinity induced by | · |σ is “complex”, so roughly speaking “of order two”. We will fix this by using 
the coefficient 2 when necessary.
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With the notation X̂, we define the “completed surface”

X̂ := X ∪
⋃

σ∈Bσ

Xσ .

A curve Y on X will always be an integral curve and its unique generic point will be 
denoted with the letter y. For simplicity we will often identify Y with its generic point 
y, which means that by an abuse of language and notation we will use sentences like “let 
y ⊂ X be a curve on X...”. A flag on X is a couple (x, y) where x is a closed point sitting 
on a curve y ⊂ X, it will be denoted simply as x ∈ y.

Definition 1.4. Fix a closed point x ∈ X, then:

� Ox := ̂OX,x. It is a Noetherian, complete, regular, local, domain of dimension 2 with 
maximal ideal m̂x.

� K ′
x := FracOx.

� Kx := K(X)Ox ⊆ K ′
x.

For a curve y ⊂ X we put:

� Oy := ̂OX,y. It is a complete DVR with maximal ideal m̂y.
� Ky := FracOy. It is a complete discrete valuation field with valuation ring Oy. The 
valuation is denoted by vy.

For a flag x ∈ y ⊂ X, we have a surjective local homomorphism OX,x → Oy,x, with 
kernel py,x, induced by the closed embedding y ⊂ X (note that py,x is a prime ideal 
of height 1). The inclusion OX,x ⊂ Ox induces a morphism of schemes ϕ : SpecOx →
Spec OX,x and we define the local branches of y at x as the elements of the set

y(x) := ϕ−1(py,x) = {z ∈ SpecOx : z ∩ OX,x = py,x} .

If y(x) contains only an element, we say that y is unbranched at x. Fix a flag x ∈ y ⊂ X

with z ∈ y(x), then we have the 2-dimensional local field

Kx,z := Frac
(

̂(Ox)
z

)
explicitly obtained in the following way: we localize Ox at the prime ideal z, complete it 
at its maximal ideal and finally we take the fraction field. The ring of integers of Kx,z is 
denoted by Ox,z := OKx,z

= ̂(Ox)z. All the needed material about higher local fields is 
contained in [8, 1.1], whereas for a deeper study the reader can consult [11]; see also a 
more recent introduction in [17].
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Definition 1.5. Let x ∈ y ⊂ X be a flag and let z ∈ y(x), then the first residue field of 
Kx,z is Ex,z := K

(1)
x,z and the second residue field is kz(x) := K

(2)
x,z . The valuation on Kx,z

is vx,z and the valuation on Ex,z is v(1)
x,z; whereas O(2)

Kx,z
:= {a ∈ Ox,z : a ∈ OEx,z

}.

Kx,z Ox,z := OKx,z
O(2)

Kx,z

Ex,z := K
(1)
x,z OEx,z

kz(x) := K
(2)
x,z

⊃ ⊃

⊃

Moreover we put:

Kx,y :=
∏

z∈y(x)

Kx,z , Ox,y :=
∏

z∈y(x)

Ox,z ,

Ex,y :=
∏

z∈y(x)

Ex,z , ky(x) :=
∏

z∈y(x)

kz(x) .

Let’s endow OX,x with the mx-adic topology with respect to its maximal ideal, then 
Kx,z can be endowed with a canonical topology by using the following steps explained 
in appendix A.2:

OX,x Ox = ̂OX,x (Ox)z ̂(Ox)z Kx,z = Frac
(

̂(Ox)
z

)
.

(C) (L) (C) (L) (2)

Then Kx,y is endowed with the product topology and it is a ST ring (see appendix A
for an introduction to semi-topological structures). Here it is very important to point 
out that Kx,y is not a topological ring, since it turns out that the multiplication is not 
continuous as function of two variables.

Remark 1.6. This is one of the several ways to topologise Kx,y; see for example [5, 1.]
for a survey. It is not the most explicit topology for Kx,y, but it is independent from 
the choice of the uniformizing parameter since it is obtained by a general process of 
localizations and completions.

If y is a horizontal curve then Kx,z is of equal characteristic and isomorphic to Ex,z((t))
where Ex,z is a finite extension of Qp and t is (the image of) a uniformizing parameter. 
If y is a vertical curve then Kx,z is of mixed characteristic and isomorphic to a finite 
extension of Kp{ {t} } where Kp is a finite extension of Qp (see [8, example 1.7] for the 
definition of Kp{ {t} }). In this case t it is not (the image of) a uniformizing parameter, 
but it is (the image of) a uniformizing parameter for Ex,z

∼= Kp((t)). It is always possible 



JID:YJNTH AID:6419 /FLA [m1L; v1.261; Prn:25/11/2019; 11:16] P.12 (1-62)
12 W. Czerniawska, P. Dolce / Journal of Number Theory ••• (••••) •••–•••
to choose a uniformizing parameter t = ty of Ky to be also the uniformizing parameter 
of Kx,z for all x ∈ y, this will be our canonical choice if not otherwise specified.

If ϕ(x) = b we have an embedding Kb ↪→ Kx,z, and we say that Kx,z is an arithmetic 
2-dimensional local field over Kb. The module of differential forms relative to x and 
z ∈ y(x) is the Kx,z-vector space:

Ω1
x,z :=

(
Ω1

Ox,z|Ob

)sep
⊗Ox,z

Kx,z ,

where Ω1
Ox,z|Ob

is the usual module of Kähler differential forms and the operator “sep” 
was defined at the end of section 1.1 in the “General notations” paragraph. Then, Ω1

x,z

is endowed with the vector space topology over Kx,z. In [16] and [18] it is defined the 
residue map:

resx,z : Ω1
x,z → Kb

with the following properties:

� It is Kb-linear.
� It is continuous (this is shown in [18, Lemma 2.8, Remark 2.9]).

A more detailed description of Ω1
x,z and resx,z will be given in section 3.

The global adelic theory for the projective scheme X is described in [8, 1.2]. We obtain 
the adelic ring AX as a “double restricted product” of the rings Kx,y performed first 
over closed points ranging on curves, and then over all curves in X. Fix any curve y ⊂ X

and denote by Jx,y the Jacobson radical of Ox,y; we put

A(0)
y :=

⎧⎪⎨⎪⎩
(αx,y)x∈y ∈

∏
x∈y

Ox,y : ∀s > 0, αx,y ∈ Ox + Jsx,y

for all but finitely many x ∈ y

⎫⎪⎬⎪⎭ ⊂
∏
x∈y

Ox,y .

Then for any r ∈ Z and for any choice of uniformizing parameter ty

A(r)
y := m̂r

yA
(0)
y = tryA

(0)
y ⊂

∏
x∈y

Kx,y .

Clearly A(r)
y ⊇ A(r+1)

y and 
⋂

r∈ZA(r)
y = 0; moreover we define

Ay :=
⋃
r∈Z

A(r)
y .
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Definition 1.7. The ring of adeles of X is

AX :=

⎧⎨⎩(βy)y⊂X ∈
∏
y⊂X

Ay : βy ∈ A(0)
y for all but finitely many y

⎫⎬⎭ ⊂
∏
x∈y,
y⊂X

Kx,y .

Finally we recall the definitions of some important subspaces of AX . Consider the 
following diagonal embeddings:

Kx ⊂
∏
y
x

Kx,y, Ky ⊂
∏
x∈y

Kx,y ,

so we can put:

∏
x∈X

Kx ⊂
∏
x∈y
y⊂X

Kx,y,
∏
y⊂X

Ky ⊂
∏
x∈y
y⊂X

Kx,y ,

then we define

A012 := AX ; A12 := AX ∩
∏
x∈y
y⊂X

Ox,y =
∏
y⊂X

A(0)
y ;

A02 := AX ∩
∏
x∈X

Kx ; A2 := AX ∩
∏
x∈X

Ox ; A01 := AX ∩
∏
y⊂X

Ky ;

A1 := AX ∩
∏
y⊂X

Oy ; A0 := K(X) .

The subspaces satisfy a series of inclusion relations depicted in the following diagram:

A0

A01 A012 A02

A1 A12 A2 .

When X is an algebraic surface over a perfect field k, the algebraic and topological 
properties of the subspaces A∗ were studied in [10].
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1.3. Topology on adelic structures

In this crucial subsection we explain how to put a topology on all adelic structures 
introduced so far. We point out that all categorical limit considered here are in the 
category linear topological groups (so linear direct/inverse limits). For more details see 
appendix A.

� For any s > 0 let’s put:

A(0)
y {s} := {(ax,y)x∈y ∈

∏
x∈y

Ox,y : ax,y ∈ Ox + Jsx,y for all but fin. many x ∈ y} .

Endow A(0)
y {s} with the restricted product topology (i.e. linear direct limit).

� A(0)
y =

⋂
s≥0 A

(0)
y {s}, so we put on A(0)

y the linear inverse limit topology.
� The topology is transferred from A(0)

y to A(r)
y for any r ∈ Z, by the multiplication 

by try.
� Each A(r)

y /A(r+j)
y , for j > 0, is endowed with the quotient topology.

� We endow Ay = lim−−→A(r)
y =

⋃
r A

(r)
y with the linear direct limit topology.

� AX is the restricted product (seen as linear direct limit) of the topological groups 
Ay with respect to A(0)

y .

Since Ox + Jx,y surjects onto Ex,y, it is easy to see that the natural projection (which is 
continuous and open)

py : A(0)
y → Af

k(y)

(ax,y)x∈y �→ (ax,y)x∈y

induces an algebraic and topologic isomorphism between A(0)
y /A(1)

y and the ring of the 
one dimensional finite adeles Af

k(y). Consider the exact sequence:

0 → A(1)
y /A(2)

y → A(0)
y /A(2)

y → A(0)
y /A(1)

y → 0

Since A(1)
y /A(2)

y and A(0)
y /A(1)

y are locally compact and self-dual, then A(0)
y /A(2)

y is locally 
compact. We conclude that for any j > 0 the quotient A(r)

y /A(r+j)
y is a locally compact 

topological group (hence complete).

Proposition 1.8. The following two fundamental topological properties hold:

(i) A(r)
y is complete for any r ∈ Z (but in general is not locally compact).

(ii) For each open neighborhood U ⊂ A(r)
y of 0 there is s > r such that A(s)

y ⊂ U .
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Proof. (i) is true since Ox,y is complete and Ox + Jsx,y is closed in Ox,y. (ii) can be 
checked directly from the above definition of the topology. �
Proposition 1.9. There is an algebraic and topological isomorphism

A(r)
y

∼= lim←−−
j>0

A(r)
y /A(r+j)

y

Proof. Thanks to Proposition 1.8, we can apply directly [4, III §7.3, Corollary 1]. �
In particular A(r)

y
∼= tryA

(0)
y [[ty]] and any Laurent power series in tryA

(0)
y [[ty]] is a truly 

convergent series. The open subgroups of Ay that form a local basis at 0 can be described 
in the following way: fix a sequence {Ui}i∈Z of open sets in A(0)

y with the property that 
there exists k ∈ Z such that Ui = A(0)

y for i ≥ k. Then we consider the open set∑′
Uit

i
y :=
{

Laurent series
∑

ajt
j
y such that aj ∈ Uj

}
.

Each open neighborhood U ⊂ Ay of 0 contains some A(r)
y .

2. The ring of completed adeles AX̂ and its subspaces

We want to define adeles for arithmetic surfaces in a way that preserves the most 
fundamental properties of the adelic theory and is compatible with Arakelov geometry. 
In particular, we have to consider points at infinity of the base and, corresponding to 
them, infinite fibers. When we add a fiber at infinity Xσ to the picture, we have to take 
in account all possible flags on the completed surface X̂: a point p on a fiber at infinity 
Xσ originates a flag p ∈ Xσ, but it can be seen also as an “intersection point” between 
a completed horizontal curve y and Xσ. (See Fig. 2.)

Let y be a curve on X, if y is vertical then we put y = y, if y is horizontal, then by y
we mean:

y = y ∪
⋃

σ∈B∞

yσ

where

yσ = ϕ∗
σ(y) ∈ Div(Xσ) .

By simplicity we also put y∞ := ∪σ∈B∞yσ, so we have the decomposition y = y ∪ y∞. 
Any point p ∈ Xσ lies on a completed horizontal curve y because we have the map 
ϕσ : Xσ → XK ⊂ X and points of the generic fiber XK are in bijective correspondence 
with horizontal curves. From now on, a curve on X̂ will be always a completed curve 
y, and a point x ∈ y can be also a point lying on some “part at infinity” yσ (when y is 
horizontal), if not explicitly said otherwise.
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Fig. 2. A visual example where yσ is made of two points (marked on the curve Xσ). The generic point of 
the curve y here is denoted by qy .

The local data of the completed adelic ring will be the following ones:

� For any flag at infinity p ∈ Xσ we put

Kp,σ := Frac
(

̂OXσ,p

)
.

In other words Kp,σ is a local field isomorphic to C((t)). The valuation ring of Kp,σ

is Op,σ
∼= C[[t]] and Ep,σ

∼= C is the residue field.
� If p ∈ y and p ∈ yσ for some σ ∈ B∞, we put

Kp,y := Kp,σ, Op,y := Op,σ, Ep,y := Ep,σ .

� For any other point x ∈ y we have:

Kx,y := Kx,y, Ox,y := Ox,y, Ex,y := Ex,y, ky(x) = ky(x) .

When p is a point at infinity we want to consider the fields Kp,σ and Kp,y as 2-dimensional 
local fields, but if we use a completion/localization topology as described in equation 
(2), we obtain the usual one dimensional valuation topology. Therefore we fix some iso-
morphisms Kp,σ

∼= Kp,y
∼= C((t)) (parameterizations), we consider C with the standard 

topology given by its archimedean norm, and we endow C((t)) with the ind/pro-topology 
(see appendix A.2). Then we carry such a topology on Kp,σ and Kp,y through the param-
eterizations. The ind/pro-topology on C((t)) is coarser than the 1-dimensional valuation 
topology. Let’s emphasize the fact that in order to define a topology on the 2-dimension 
local fields at infinity we need to fix an isomorphism with C((t)), so from now on we 
assume that such a choice has been made.
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Remark 2.1. In [9] the construction of local fields at infinity is slightly different, indeed 
Kp,σ is R((t)) or C((t)), depending whether σ is a real or complex embedding. This might 
seem a very natural choice, but in the framework of Arakelov geometry Xσ is always a 
Riemann surface, even if σ is real. We want to build deep link between Arakelov geometry 
and adelic geometry, therefore we prefer to put Kp,σ

∼= C((t)).

Remark 2.2. In the product 
∏

x∈y,

y⊂X̂

Kx,y we find three different types of 2-dimensional 

local fields: Kp((t)), finite extensions of Kp{ {t} } and C((t)).

We are going to define a new ring AX which will be a subspace of the big product ∏
x∈y,

y⊂X̂

Kx,y. Let’s first extend the spaces A(r)
y for completed curves:

Definition 2.3. For any completed curve y let’s put:

Ay := Ay ⊕
∏

p∈y∞

Kp,y ,

A(0)
y := A(0)

y ⊕
∏

p∈y∞

Op,y ,

A(r)
y := A(r)

y ⊕
∏

p∈y∞

prKp,y
Op,y ,

and endow them with the finite product topology.

Again each A(r)
y is closed in Ay and the latter can be thought as a first restricted 

product performed on the completed curve y. We can use the formal notation:

Ay =
∏′

x∈y

Kx,y .

Let’s assume by simplicity that y is a regular horizontal curve, then Kx,y
∼= Ex,y((t))

where Ex,y is a finite extension of Qp and it is the completion of the field k(y) with 
respect to the valuation induced by the inclusion x ∈ y. Moreover y = SpecOL where 
L is a finite extension of K. In general if y is any horizontal curve admitting singular 
points, then y = SpecR where R is an order of L. For any curve y we put

Ay :=
∏′

x∈y

k(y)x ⊕
∏

q∈y∞

C ,

where the restricted product is with respect to the complete discrete valuation rings 
corresponding to the points x ∈ y. In other words Ay is in general slightly bigger than the 
classical 1-dimensional adelic ring of y. If the point q ∈ y∞ is present (recall that in the 
case of vertical curves there is no archimedean data) and corresponds to a real embedding 
σ, then the “q-component” of Ay is C and not R, i.e. we take C for all archimedean places. 
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The finite part of Ay, denoted by Af
y , and the finite part of classical 1-dimensional adeles 

coincide. This of course descends from our choice of data at infinity (see Remark 2.1), 
but all adelic properties of Ay are clearly the same of the one dimensional adeles. In 
particular all results of [23] hold for Ay.

Lemma 2.4. Let y be a regular horizontal curve and let t be a uniformizing parameter 
of Ky. For any r ∈ Z, A(r)

y is equal to the following ring:

Ξ(r)
y :=

{
(αx,y)x∈y ∈

∏
x∈y

Kx,y : αx,y satisfies the following conditions (∗) and (∗∗)
}

(∗) αx,y ∈ trEx,y[[t]].
(∗∗) Assume that:

αx,y = tr
∑
i≥0

Γx,it
i with Γx,i ∈ Ex,y ,

then for any fixed index i the sequence (Γx,i)x∈y ∈ Af
y . In other words for all but 

finitely many x ∈ y we have that Γx,i ∈ OEx,y
.

Proof. Inclusion A(r)
y ⊆ Ξ(r)

y . Let’s start with r = 0, the general case will follow trivially. 
Consider an element (αx,y)x∈y, then clearly (∗) is true because Ox,y = Ex,y[[t]]. Suppose 
that αx,y =

∑
i≥0 Γx,it

i, then there exists a decomposition:

αx,y =
∑
i≥0

Θx,it
i +
∑
i≥0

Λx,it
i ∈ Ox + Ox,y

where Θx,i ∈ OEx,y
, Λx,i ∈ Ex,y \OEx,y

, and Γx,i = Θx,i + Λx,i. Now fix an index h ≥ 0, 
then the set

Sh := {x ∈ y : Λx,h �= 0}

is finite, indeed note that Ox + Jsx,y = OEx,y
[[t]] + tsEx,y[[t]], thus if Λx,h �= 0, then 

αx,y /∈ Ox + Jh+1
x,y . In other words if for infinitely many x ∈ y we had that Λx,h �= 0, 

then for the same points αx,y /∈ Ox +Jh+1
x,y against the definition of A(0)

y . We have shown 
that for all but finitely many x ∈ y, Γx,i = Θx,i ∈ OEx,y

which is equivalent to say that 
(Γx,i)x∈y ∈ Af

y .
The case when r �= 0 follows easily from the fact that m̂r

yΞ
(0)
y = Ξ(r)

y .
Inclusion Ξ(r)

y ⊆ A(r)
y . As above it is enough to write the proof for r = 0. Let (αx,y)x∈y ∈

Ξ(0)
y , then for any index i ≥ 0 define:

Ti :=
{
x ∈ y : Γx,i /∈ OEx,y

[[t]]
}

;
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by the property (∗∗) Ti is a finite set. Now fix an index h > 0 then for all x ∈ y \∪h−1
i=1 Ti, 

(i.e. for all but finitely many x ∈ y) it holds that Γx,i = Θx,i when i < h, which means 
that

αx,y =
∑
i≥0

Θx,it
i +
∑
i≥h

Λx,it
i ∈ Ox + Jhx,y . �

Proposition 2.5. Let y be a regular horizontal curve and let t be a uniformizing parameter 
of Ky. For any r ∈ Z, A(r)

y
∼= trAy[[t]]. In particular Ay

∼= Ay((t)) and A(0)
y

∼= Ay[[t]].

Proof. By Lemma 2.4 we have the equality A(r)
y = Ξ(r)

y and the map Ξr
y → trAf

y [[t]] is 
given in the following way and it is well defined:

(αx,y)x∈y =

⎛⎝tr2∑
i≥0

Γx,it
i
2

⎞⎠
x∈y

�→ tr
∑
i≥0

(Γx,i)x∈y t
i .

It is routine check to show that is a ring isomorphism. �
Remark 2.6. Proposition 2.5 is true also when y is a singular curve. The proof is based 
on a slightly modified version of Lemma 2.4; the only difference consists in the fact that 
if x ∈ y is singular then Kx,y =

∏
z∈y(x) Kx,z is a sum of 2-dimensional valuation fields 

and Jx,y is the sum of the maximal ideals of Kx,z. Here we restricted the proof to the 
case of non-singular curves just by simplicity of notations.

Definition 2.7. The modified version of AX which takes in account the completed curves 
is:

AX :=

⎧⎨⎩(βy)y⊂X̂
∈
∏
y⊂X̂

Ay : βy ∈ A(0)
y for all but finitely many y

⎫⎬⎭ ⊂
∏
x∈y,

y⊂X̂

Kx,y .

We also introduce the formal notation

AX =
∏′′

x∈y

y⊂X̂

Kx,y .

The topology on AX is the restricted topology of the additive groups Ay with respect 
to A(0)

y .

Definition 2.8. The completed adelic ring attached to X̂ is

A
X̂

:= AX ⊕
∏

AXσ
σ∈B∞
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where each AXσ
is the adelic ring of the Riemann surface Xσ. The topology on A

X̂
is 

the product topology.

Let Υ be the collection of all finite sets of completed curves of X̂, then for S ∈ Υ we 
define

A
X̂

(S) :=
∏
y∈S

Ay ×
∏
y/∈S

A(0)
y ×

∏
σ∈B∞

AXσ

then: ⋃
S∈Υ

A
X̂

(S) = A
X̂
,
⋂
S∈Υ

A
X̂

(S) =
∏
y⊂X̂

A(0)
y ×

∏
σ∈B∞

AXσ
.

The following proposition establishes a nice relationship between A
X̂

and AX .

Proposition 2.9. The following equality holds:

A
X̂

= AX ⊕
∏

σ∈B∞

(AXσ
⊕ AXσ

) .

Proof. Let α ∈ AX , then it can be decomposed in the following way:

α = (ay)y⊂X × (ap,σ)p∈Xσ,
σ∈B∞

where:

� ay ∈ Ay for all y ⊂ X and ay ∈ A(0)
y for all but finitely many y.

� For any fixed σ we have ap,σ ∈ Kp,σ and ap,σ ∈ Op,σ for all but finitely many p ∈ Xσ.

This means that α ∈ AX ⊆ AX ⊕
∏

σ∈Bσ AXσ
, so obviously

A
X̂

⊆ AX ⊕
∏

σ∈Bσ

(AXσ
⊕ AXσ

) .

Vice versa, let α ∈ AX ⊕
∏

σ∈Bσ AXσ
then:

α = (ay)y⊂X × (ap,σ)p∈Xσ,
σ∈B∞

where ay and ap,σ satisfy the conditions listed above. Since each ϕσ : Xσ → XK is 
surjective and points of XK correspond to horizontal curves on X, we can write easily:

α = (ay)y⊂X × (ap,σ)p∈Xσ,
σ∈B∞

= (ay)y⊂X × ((ap,σ)p∈y∞)y∞⊂X∞
= (ay)y⊂X̂

∈ AX . �
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Remark 2.10. The above definition of A
X̂

is new, but the object is very similar to the ring 
of completed adeles given in [9]. One difference was already emphasized in Remark 2.1; 
moreover in [9, 25.] the spaces A(r)

y are obtained through some local lifting maps of Ex,y

to Ox,y.

Remark 2.11. At first glance, one might think that a reasonable definition of the adelic 
ring A

X̂
can be just AX ⊕

∏
σ∈B∞

AXσ
. With such a definition of A

X̂
we totally forget 

about the flags of the type p ∈ y ⊂ X̂ where y is horizontal and p ∈ X∞. So, we only 
add the flags of the type p ∈ Xσ ⊂ X̂ to the usual geometric picture.

Now we give the definitions of the completed spaces A∗̂: denote by Ky the diagonal 
embedding of Ky inside 

∏
x∈y Kx,y, then we put:

A01 := AX ∩
∏
y⊂X̂

Ky .

Moreover for any σ let A0(σ) be the diagonal embedding C(Xσ) ↪→
∏

p∈Xσ
Kp,σ, then:

A0̂1 := A01 ⊕
∏

σ∈B∞

A0(σ) .

If x ∈ X we have the natural embedding Kx ↪→
∏

y
x Kx,y; if p ∈ Xσ then we consider 
the diagonal Δp,σ ⊂ Kp,y × Kp,σ, where y is the unique horizontal curve containing p
(remember that Kp,y = Kp,σ). Thus we define:

A0̂2 := A
X̂
∩

⎛⎜⎜⎝∏
x∈X

Kx ×
∏

p∈Xσ,
σ∈B∞

Δp,σ

⎞⎟⎟⎠ .

A0 is the diagonal embedding of K(X) in AX and:

A0̂ := A0 ⊕
∏

σ∈B∞

A0(σ) .

Note that: A0̂1 ∩A0̂2 = A0̂ .

Remark 2.12. On a completed arithmetic surface we have a “generalized version” of the 
function field, it is not just K(X) because we have fibers at infinity. It should be intended 
as K(X) ⊕

∏
σ C(Xσ) and note that this coincides with A0̂.
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The other adelic subspaces are the followings:

A1̂2 := A
X̂
∩

⎛⎜⎜⎝∏
x∈y,

y∈X̂

Ox,y ×
∏

p∈Xσ,
σ∈B∞

Op,σ

⎞⎟⎟⎠ , A1̂ := A0̂1 ∩A1̂2 , A2̂ := A0̂2 ∩A1̂2 ,

and the containment relations are the same as the geometric case:

A0̂

A0̂1 A
X̂

A0̂2

A1̂ A1̂2 A2̂ .

3. Residue theory

3.1. Local multiplicative residues

For any b ∈ B̂ we choose a (standard) character ψb : Kb → T such that∏
b∈B̂

ψb : AB̂ → T

is a character which is trivial on the diagonal embedding of K inside the adeles (see [23, 
Lemma 4.1.5]).

Fix a completed curve y ⊂ X̂, by considering all local branches in y(x) we also define:

Ω1
x,y :=

⊕
z∈y(x)

Ω1
x,z .

The structure of Ω1
x,y and the explicit expression of the resx,z depend on the nature of y:

y horizontal The local field Ex,z is the constant field of Kx,z i.e. Kx,z
∼= Ex,z((t)) and 

[Ex,z : Kb] < ∞. In [16, 2.2] it is shown that there is an isomorphism

Ω1
x,z

∼= Ex,z((t))dt (3)

where t is a uniformizing parameter and moreover the local residue assumes the following 
form independently from the choice of the isomorphism (3)
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resx,z : Ω1
x,z → Kb

adt �→ TrEx,z|Kb
(a−1)

where a =
∑

j≥m ajt
j ∈ Ex,z((t)). Moreover we put:

resx,y :=
∑

z∈y(x)

resx,z : Ω1
x,y → Kb ,

Cresx,y := ψb ◦ resx,y : Ω1
x,y → T

where ψb : Kb → T is the standard character.

y = y vertical Kx,z is a finite extension of the standard field L = Kp{ {t} } where 
[Kp : Kb] < ∞ and t is a uniformizing parameter for the residue field L = Kp((t)). 
Thanks to [16, 2.3] we have an isomorphism

Ωcts
L|Kb

:=
(
Ω1

OL|Ob

)sep
⊗OL

L ∼= Kp{{t}}dt (4)

and a local residue independent from isomorphism (4):

resL : Ωcts
L|Kb

→ Kb

adt �→ −TrKp|Kb
(a−1)

where a =
∑

j∈Z ajt
j ∈ Kp{ {t} }. By [16, Remark 2.6], we know that Ω1

x,z = Ωcts
L|Kb

⊗L

Kx,z, so we obtain a well defined trace map

TrKx,z|L : Ω1
x,z → Ωcts

L|Kb

At this point we define:

resx,z := resL ◦TrKx,z|L : Ω1
x,z → Kb ,

resx,y :=
∑

z∈y(x)

resx,z : Ω1
x,y → Kb ,

Cresx,y := ψb ◦ resx,y : Ω1
x,y → T ,

where ψb : Kb → T is the standard character.
When y is a completed horizontal curve and x = p ∈ yσ ⊂ y∞ is a point at infinity, 

then:

Ω1
x,y := Ω1

p,σ = Kp,σdt;

Cresx,y := ψσ ◦ resp,σ : Ω1
p,σ → T .
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Where in the last line, resp,σ is the one dimensional residue on the Riemann surface Xσ

at the point p and ψσ : C → T is the standard character of C.
Finally for a flag at infinity p ∈ Xσ:

Cresp,σ := ψσ ◦ (− resp,σ) : Ω1
p,σ → T .

The detailed proofs of the independence of the various local residues maps from the 
parameterizations and standard fields can be found in [16].

Remark 3.1. The choice of the minus sign in the definition of Cresp,σ is coherent with 
the main theory since Xσ is vertical curve on X̂ in our geometric construction.

The following proposition is the extension of [18, Lemma 3.3] to the adelic case. It 
says that it makes sense to take the product of residues along vertical curves; moreover 
by looking at its proof one immediately realizes that in the definition of two dimensional 
adeles, “the first restricted product” along a fixed curve is a crucial operation.

Proposition 3.2. Let α ∈ AX and fix a vertical curve y ⊆ Xb. Then the series∑
x∈y

resx,y(αx,ydt)

converges in Kb. In particular resx,y(αx,ydt) ∈ Ob for all but finitely many x ∈ y.

Proof. For simplicity let’s assume that y is nonsingular. We know that (αx,y)x∈y ∈ A(r)
y

for some r ∈ Z, it means that (αx,y)x∈y = (tryβx,y)x∈y where (βx,y)x∈y ∈ A(0)
y . Now we 

use the definition of A(0)
y to say that for any s > 0 we have resx,y(βx,y) ∈ p

s+m
Kb

Ob at 
almost all x ∈ y. It follows that for any s > 0, resx,y(αx,y) ∈ p

s+m+r
Kb

Ob at almost all 
x ∈ y. This shows that 

∑
x∈y resx,y(αx,ydt) converges in Kb. �

By the universal property of the module of differential forms we have a canonical 
map Ω1

K(X)|K → Ω1
x,y, therefore by abuse of notation, we can consider an element ω ∈

Ω1
K(X)|K as an element lying in Ω1

x,y. Moreover, by base change we know that Ω1
C(Xσ)|C

∼=
Ω1

K(X)|K ⊗K(X) C(Xσ), so we have a canonical composition map:

Ω1
K(X)|K → Ω1

C(Xσ)|C → Ω1
p,σ

and when clear from the context we can consider ω ∈ Ω1
K(X)|K as an element lying in 

Ω1
p,σ. In other words, it always makes sense to take a residue of a “rational” differential 

form ω ∈ Ω1
K(X)|K for flags in X and in X̂.

Theorem 3.3 (2D arithmetic reciprocity laws). Let ω ∈ Ω1
K(X)|K and nonzero, then:

(1) Let x ∈ X, then 
∑

y
x resx,y(ω) = 0 and resx,y(ω) = 0 for all but finitely many 
curves y containing x. In particular 

∏
y
x Cresx,y(ω) = 1 and Cresx,y(ω) = 1 for all 

but finitely many x ∈ y.



JID:YJNTH AID:6419 /FLA [m1L; v1.261; Prn:25/11/2019; 11:16] P.25 (1-62)
W. Czerniawska, P. Dolce / Journal of Number Theory ••• (••••) •••–••• 25
(2) Let p ∈ Xσ, and let yp be the only completed horizontal curve containing p, then

Cresp,σ(ω) ·
∏
y
p

Cresp,y(ω) = Cresp,Xσ
(ω) Cresp,yp

(ω) = 1 .

(3) Let y ⊂ X be a vertical curve or y = Xσ for some σ ∈ B∞, then 
∑

x∈y resx,y(ω) = 0. 
In particular 

∏
x∈y Cresx,y(ω) = 1 and Cresx,y(ω) = 1 for all but finitely many x ∈ y.

(4) Let y ∈ X̂ be a horizontal curve, then 
∏

x∈y Cresx,y(ω) = 1.

Proof. See [18, 2.4], [18, 5] and [18, 3] for (1), (4) and the non-archimedean part of (3)
respectively. For the archimedean case of (3) see [24, Corollary of Theorem 3]. (2) Follows 
basically from the definitions of the local residues. �
Remark 3.4. Note that statements (1) and (2) of Theorem 3.3 describe reciprocity laws 
around a point, whereas statements (3) and (4) describe reciprocity laws for a fixed 
curve. Archimedean data are taken in account without any special treatment: points on 
Xσ are considered as points of X̂ and achimedean fibers are considered as vertical curves 
on X̂. We point out that statement (2) is new and it hasn’t been published anywhere 
before.

3.2. Adelic residue

In this subsection we globalize the local residues in order to get a residue at the level 
of completed adeles. Fix a nonzero rational 1-form ω ∈ Ω1

K(X)|K , then we define the 
adelic residue map:

ξω: A
X̂ T

(ax,y)x∈y,

y⊂X̂

× (ap,σ)p∈Xσ,
σ∈B∞

∏
x∈y,

y⊂X̂

Cresx,y(ωax,y)
∏

p∈Xσ,
σ∈B∞

Cresp,σ(ωap,σ)

∈ ∈

(5)

Let’s explain why ξω is well defined (i.e. the product (5) is convergent): along all 
but finitely many curves y ⊂ X the local residue is zero due to the restricted product 
with respect to the spaces A(0)

y . For the remaining curves we use the following argu-
ments

� If y is horizontal it is enough to look at property (∗∗) of Lemma 2.4. It follows that 
the residue is 0 at all but finitely many points of y.

� If y is vertical we use Proposition 3.2.
� For curves at infinity it is enough to appeal to the 1-dimensional adelic restricted 
product.
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Fig. 3. A graphic representation of the action of the adelic residue on 3 different flags: x ∈ y1, x ∈ y2 and 
p ∈ Xσ.

In [18, Lemma 2.8, Remark 2.9] it was proved that the local residues resx,y : Ωx,y → Kb

are continuous, moreover it is clear that the local residues at infinity resp,σ : Ωp,σ → C

are continuous (remember that here C has the archimedean topology and Kp,σ the 
2-dimensional topology). We are interested in the global theory of residues and we will 
show that the adelic residue ξω is sequentially continuous. (See Fig. 3.)

Proposition 3.5. The adelic residue ξω is sequentially continuous.

Proof. To prove the sequential continuity of ξω it is not necessary to consider the 
residues along curves at infinity because we have only a finite number of them and 
the 1-dimensional adelic residue is continuous. So, it is enough to discuss the schematic 
part of ξω which will be denoted as ξωS : AX → T . Note that we can write ξωS = ψS ◦ θω
where ψS : AB → T is the schematic part of the 1-dimensional standard character 
and

θω = (θωb )b∈B : AX → AB

with

θωb :
∏
x∈y,
y⊂X,
x�→b

Kx,y → Kb

θωb ((αx,y)) =
∑

x∈Xb,
y
x

resx,y(ωαx,y) =

(i)︷ ︸︸ ︷∑
y⊂Xb,
x∈y

resx,y(ωαx,y) +

(ii)︷ ︸︸ ︷∑
x∈Xb,
y
x,

resx,y(ωαx,y) ∈ Kb .
y horiz.
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For any n ∈ N, let α(n) := (α(n)
x,y)x,y ∈ AX such that limn→∞ α

(n)
x,y = 0. Moreover put 

β
(n)
x,ydt := ωα

(n)
x,y. Just for simplicity of notations we can assume that all curves involved 

in are nonsingular. We want to show that

lim
n→∞

ξωS

(
α(n)
)

= 1 .

Let’s analyze carefully the summations (i) and (ii):
(i) We know that Kx,y is a finite extension of L = Kp{ {t} } and we can write

TrKx,y|L

(
β(n)
x,y

)
=

∞∑
i=−∞

β(n)
x,y (i)ti for β(n)

x,y (i) ∈ Kp .

Then

resx,y
(
β(n)
x,ydt
)

= −TrKp|Kb

(
β(n)
x,y (−1)

)
.

Since limn→∞ β
(n)
x,y = 0, there exists n0 ∈ N such that for n ≥ n0, we have β(n)

x,y (−1) ∈
OKp

, i.e. resx,y
(
β

(n)
x,ydt
)
∈ Ob. This means that

lim
n→∞

∑
y⊂Xb,
x∈y

resx,y
(
β(n)
x,ydt
)
∈ Ob .

(ii) We know that β(n)
x,y =

∑
i≥m β

(n)
x,y (i)ti, where β(n)

x,y (i) ∈ Ex,y and Ex,y is a finite 

extension of Kb. Furthermore limn→∞ β
(n)
x,y = 0. We have:

lim
n→∞

∑
x∈Xb,
y
x,

y horiz.

resx,y(β(n)
x,ydt) = lim

n→∞

∑
x∈Xb,
y
x,

y horiz.

TrEx,y|Kb
(β(n)

x,y (−1)) . (6)

Due to the adelic restricted product, for all n ≥ n0 we have that resx,y
(
β

(n)
x,y

)
= 0 along 

all but a fixed finite set of curves y ⊂ X, therefore we can exchange the summation and 
the limit in equation (6). So we get:

lim
n→∞

∑
x∈Xb,
y
x,

y horiz.

resx,y(β(n)
x,ydt) =

∑
x∈Xb,
y
x,

y horiz.

lim
n→∞

TrEx,y|Kb
(β(n)

x,y (−1)) =

=
∑

x∈Xb,
y
x,

y horiz.

TrEx,y|Kb

(
lim
n→∞

β(n)
x,y (−1)

)
= 0 .

We can write:

lim ξωS (α(n)) = lim ψS(θω(α(n))) .

n→∞ n→∞
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For each b ∈ B we have

τ
(n)
b := θωb (α(n)) =

∑
y⊂Xb,
x∈y

resx,y(β(n)
x,ydt) +

∑
x∈Xb,
y
x,

y horiz.

resx,y(β(n)
x,ydt)

and by (i) and (ii) we can conclude that:

lim
n→∞

τ
(n)
b ∈ Ob .

Finally:

lim
n→∞

ξωS (α(n)) = lim
n→∞

ψS

((
τ

(n)
b

)
b∈B

)
= ψS

((
lim
n→∞

τ
(n)
b

)
b∈B

)
= 1 . �

From the sequential continuity of the adelic residue we can deduce a stronger version 
of reciprocity laws:

Proposition 3.6. Fix a rational differential form ω ∈ Ω1
K(X)|K . Then the following state-

ments hold:

(1) Fix a point x ∈ X. For any α ∈ Kx we have 
∏

y
x Cresx,y(αω) = 1.
(2) Fix a curve y ⊂ X̂. For any α ∈ Ky we have 

∏
x∈y Cresx,y(αω) = 1.

Proof. (1) Kx = K(X)Ox, but OX,x is sequentially dense into its completion Ox. 
Then the claim follows from the sequential continuity of the adelic residue and The-
orem 3.3(1).

(2) Again It follows from the fact that K(X) is sequentially dense in its completion 
(with respect to y) Ky, the sequential continuity of the adelic residue, and Theo-
rem 3.3(3)-(4). �
4. Self-duality of completed adeles

This section is entirely dedicated to the proof that the additive group A
X̂

is self-dual. 
We will reduce the problem to show the self-duality of Ay and AXσ

.
The following two lemmas characterize the characters of A

X̂
:

Lemma 4.1. Let χ ∈ Â
X̂

, then χ 
(
A(0)

y

)
= 1 for all but finitely many curves y ⊂ X̂. In 

particular if β := (βy)y × (βσ)σ ∈ A
X̂

we have that

χ(β) =
∏
y⊂X̂

χ(βy)
∏

σ∈B∞

χ(βσ) .

(In the above formula we clearly embedded each βy and βσ naturally in Â.)

X
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Proof. Let U ⊂ T be an open neighborhood of 1 which contains no subgroups of T
other than {1} and let V ⊂ A

X̂
be an open subset such that χ(V ) ⊂ U . By the 

definition of restricted product as direct limit with the final topology, we know that for 
any finite set S of completed curves in X̂ the subset V ∩ A

X̂
(S) is open in A

X̂
(S). 

In particular by the definition of product topology, it contains an open subset of the 
following form:

W =
∏
y/∈S′

A(0)
y ×

∏
y∈S′

W ′
y ×

∏
σ∈B∞

W ′
σ

where S′ is another finite set of completed curves in X̂ and W ′
y ⊂ Ay, W ′

σ ⊂ AXσ
are 

open. It follows that H := χ 
(∏

y/∈S′ A
(0)
y

)
⊂ U , but H is a subgroup of T , thus H = {1}

by the choice of U . In particular χ 
(
A(0)

y

)
= 1 for any y /∈ S′. The last assertion of the 

lemma is straightforward. �
Lemma 4.2. Let χy ∈ Ây and let χσ ∈ ̂AXσ

. If χy

(
A(0)

y

)
= 1 for all but finitely many 

curves y ⊂ X̂, then

χ :=
∏
y⊂X̂

χy

∏
σ∈B∞

χσ ∈ Â
X̂
.

Proof. The only thing that is not straightforward is the continuity of χ, and there is no 
need to consider the fibers at infinity since they are finitely many. Let U ⊂ T be an open 
neighborhood of 1 and choose V ⊂ U such that2 IIm V ⊂ U . Now pick a finite set of 
completed curves S ⊂ Υ of cardinality m, and for any y ∈ S take Wy ⊂ χ−1

y (V ). Then ∏
y∈S Wy ×

∏
y/∈S A(0)

y is contained in the preimage of 
∏

y χy. �
The following proposition is basically the “reduction argument” that allows us to 

restrict our attention to Ay and AXσ
.

Proposition 4.3. The following isomorphism of topological groups holds:

Â
X̂

∼=
∏′

y⊂X̂

Ây ×
∏

σ∈B∞

̂AXσ

where on the right hand side the restricted product is taken with respect to the subgroups (
A(0)

y

)⊥
⊂ Ây.

2 By II we denote the actual complex multiplication of all elements in the open sets. In this particular 
case we are taking the “m-th power of V ”.
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Proof. Consider the map:

Ψ :
∏′

y⊂X̂

Ây ×
∏

σ∈B∞

̂AXσ
→ Â

X̂

(χy)y⊂X̂
× (χσ)σ∈B∞ �→

∏
y⊂X̂

χy

∏
σ∈B∞

χσ

where clearly we naturally considered χy, χσ ∈ Â
X̂

. From Lemmas 4.1 and 4.2 it follows 
immediately that Ψ is an isomorphism of groups, so we have to prove that it is continuous 
and open. Let U be an open neighborhood of 1 and consider the compact of A

X̂
:

C =
∏
y∈S

Cy ×
∏
y/∈S

A(0)
y ×

∏
σ∈B∞

Cσ

where Cσ, Cy are compacts, and we assume that S has cardinality m. Then W(C, U) is 
a basic open neighborhood of A

X̂
around the identity character. Take now V ⊂ U such 

that IIm+#B∞ V ⊂ U and consider:

W =
∏
y∈S

W(Cy, V ) ×
∏
y/∈S

(
A(0)

y

)⊥
×
∏

σ∈B∞

W(Cσ, V ) .

Then clearly Ψ(W ) ⊆ W(C, U). The proof of openness is similar. �
Remark 4.4. So in order to show the self-duality of Â

X̂
we are reduced to show two 

things:

� The self-duality of AXσ
.

� There are topological and algebraic isomorphisms θy : Ay → Ây mapping homeo-

morphically A(0)
y onto 

(
A(0)

y

)⊥
for all but finitely many completed curves.

For the self-duality of AXσ
we will use the following general results about Laurent 

power series over a self-dual group.

Lemma 4.5. Let G be a ST ring and suppose that (G, +) is endowed with a standard char-
acter. Then G((t)) has a standard character with conductor equal to 0 (see appendix A.2
to see how G((t)) is topologised and for the definition of conductor).

Proof. Let ξ be a standard character of G. First of all let’s find explicitly a nontrivial 
character of G((t)) which has conductor equal to 0. Consider:

ψ0 : G((t)) → T∑
ait

i �→ ξ(a−1)

i≥m
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Let ψ ∈ ̂G((t)), we want to show that there exists a uniquely determined α ∈ G((t))
such that ψ = ψ0

α. Assume that cψ = i, for any b ∈ G the map b �→ ψ(bti−1) defines a 
character on G that by hypothesis is equal to ξa0 for a uniquely determined a0 ∈ G. So 
consider the character:

ψ1(x) := ψ(x)
ψ0(xa0t−i) for x ∈ G((t)) ,

it is easy to verify that ψ1 (ti−1G[[t]]
)

= 1. By iterating the above argument, for any 
j ≥ 1 one finds a uniquely determined aj ∈ G such that

ψj+1(x) := ψj(x)
ψ0(xajt−i+j) = ψ(x)

ψ0
(
x
∑j

h=0 aht
−i+h
)

is a character trivial on ti−1−jG[[t]]. By taking the limit for j → ∞ we obtain:

1 = lim
j→∞

ψj(x) = ψ(x)
ψ0
(
x
∑

h≥0 aht
−i+h
) .

So we put α :=
∑

h≥0 aht
−i+h and it follows that ψ(x) = ψ0(xα).

Now we show the continuity and the openness of the map G((t)) → ̂G((t)) defined by 
α �→ ψ0

α. It is enough to prove the following simple things:

(a) Given a compact C ⊂ G((t)) and an open U � 1 in T , there exist an open set V � 0
in G((t)) such that: a ∈ V ⇒ aC ⊆ ψ−1(U) .

(b) Given an open U � 0 in A there exist a compact C ⊂ G((t)) and an open V � 1 in 
T , such that: aC ⊆ ψ−1(V ) ⇒ a ∈ U .

The explicit proofs of (a) and (b) are a respectively a very special case of the proofs 
of continuity and openness assertions of Theorem 4.7, so they are omitted here. �
Proposition 4.6. The additive group AXσ

is self-dual for every σ ∈ B∞.

Proof. For any point p ∈ Xσ, we have Kp,σ
∼= C((t)), therefore we can apply Lemma 4.5

to conclude that Kp,σ is self-dual and that a standard character with conductor equal 
to 0 is given by a �→ Cresp,σ(adt). At this point it is enough to follow line by line the 
argument in Tate’s thesis that shows that adeles over a number field are self-dual (see for 
example [22, 5.1]) to prove that AXσ

is self-dual. Actually one needs the 1-dimensional 
version of Lemmas 4.1, 4.2 and 4.3, but recall that we have a 2-dimensional topological 
structure on Kp,σ and AXσ

. �
When y is horizontal one can apply Lemma 4.5 and the explicit expression of Ay to 

show that Ay is self-dual, but when y is vertical, the proof is more problematic because 
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we don’t have any nice expression of Ay in terms of one dimensional adeles. A deeper 
analysis of the proof of Lemma 4.5 unravels that the only real advantage of having the 
expression A = G((t)), is the ind-pro structure of A over a self-dual group G with a 
standard character. In general also Ay has such property, and the following theorem is a 
generalization of Lemma 4.5, where A(−1)

y /A(0)
y plays the role of G and A(0)

y plays the role 
of G[[t]]. We will heavily employ the topological properties described in subsection 1.3.

Theorem 4.7. The additive group Ay is self-dual with a standard character ψ0. Moreover 

ψ0 ∈
(
A(0)

y

)⊥
and Θψ0

(
A(0)

y

)
=
(
A(0)

y

)⊥
.

Proof. It is enough to work with Ay. For simplicity of notations let’s put Ar := A(r)
y , 

A := Ay and t := ty. Let’s summarize some properties (all categorical limits are in the 
category of linearly topologised groups):

(1) Ar is complete and Ar = lim←−−j≥1 Ar/Ar+j .
(2) Ar/Ar+1 is locally compact and self-dual with a standard character.
(3) Ar/Ar+j is locally compact for every j > 0.
(4) A = lim−−→r

Ar =
⋃

r Ar and 
⋂

r Ar = {0}.
(5) Any open neighborhood of 0 in A contains some Ar.

Fix a standard character ξ ∈ ̂A−1/A0. Then consider the following commutative diagram 
of topological groups with exact short sequences:

0 0 0

0 A−1/A0 A−2/A0 A−2/A−1 0

A−1 A−2 A−2

A0 A0 A−1

0 0 0

Since the dual functor is exact on the category of LCA groups, we get the following 
diagram with exact short sequences:



JID:YJNTH AID:6419 /FLA [m1L; v1.261; Prn:25/11/2019; 11:16] P.33 (1-62)
W. Czerniawska, P. Dolce / Journal of Number Theory ••• (••••) •••–••• 33
0 0 0

0 ̂A−1/A0 ̂A−2/A0 ̂A−2/A−1 0

Â−1 Â−2 Â−2

Â0 Â0 Â−1

In other words ξ lifts to a character ξ1 ∈ Â−1 which is trivial on A0, then we can lift ξ1

to a character ξ2 ∈ Â−2 which extends ξ1. By iterating this process we clearly construct 
a character ξn ∈ Â−n extending ξ1. Now we can define a character ψ : A → T in the 
following way:

ψ0(a) := ξn(a) if a ∈ An \An+1 .

By construction ψ0 is trivial on A0. A more explicit expression of ψ0 can be given by 
using the identification Ar = trA0[[t]]: if a =

∑
i≥r ait

i ∈ Ar, then ψ0(a) = ξ(a−1t−1)
where a−1t−1 is the natural projection of a−1t

−1 onto A−1/A0. We want to prove that 
ψ0 is a standard character for A, so that the map:

Θψ0 : A → Â

a �→ ψ0
a

is an algebraic and topological isomorphism.
Surjectivity. Since ξ is a standard character of A−1/A0, any other character in Â−1

which is trivial on A0 is of the form ξ1(g ·) for g ∈ A−1. Consider any ψ ∈ Â and let 
i = cψ the minimum integer i ∈ Z such that ψ(Ai) = 1, note that this integer always 
exists thanks to (5) and the fact that T has no small subgroups. Then:

ψ|Ai−1(· t−i) = ξ1(· a0t
−i) for a0 ∈ A−1.

Let’s define the following character

ψ1(·) = ψ(·)
ψ0(· a0t−i) ,

then for any ti−1b ∈ Ai−1 (b ∈ A0):

ψ1
|Ai−1

(ti−1b) = ψ(ti−1b)
0 −i i−1 = ξ1(a0t

−1b)
0 −1 = 1 .
ψ (a0t t b) ψ (a0t b)
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In other words ψ1 is trivial on Ai−1. By iterating the above process for j > 1, we find 
elements ah ∈ A−1 and characters:

ψj(·) = ψ(·)
ψ0(·
∑j

h=0 aht
−i+h)

which are trivial on Ai−1−j . Now for g ∈ A take the limit:

1 = lim
j→∞

ψj(g) = ψ(g)
ψ0(a
∑

g≥0 aht
−i+h) .

We conclude that ψ(·) = ψ0(· α) for α :=
∑

h≥0 aht
−i+h. The partial sums defining α

form a Cauchy sequence in A−1, which is complete, so α is actually an element of A−1.

Injectivity. For every a ∈ A \ 0, there exists r ∈ Z such that kerψa is trivial on Ar

but not on Ar−1.

Continuity. We have to show that given a compact K ⊂ A and an open U � 1 in T , 
there exist an open set V � 0 in A such that: ψ(V K) ⊆ U . Since K is contained in some 
Am, by simplicity we can “shift” K thanks to the multiplication by tm−1 and assume 
K ⊂ A−1. Then K = lim←−−j

Kj with Kj ∈ A−1/Aj . Now, since ξ is a standard character 
for A−1/A0, it is not difficult to show by induction that the multiplication in A and the 

character ψ0 induce an algebraic and topological isomorphism A−1/Aj
∼= ̂A−j/A1 for 

any j ≥ 0. Thus we induce perfect pairing of LCA groups:

ej : A−1/Aj ×A−j/A1 → T .

Consider the orthogonal complement Wj = K⊥
j := {a ∈ A−j/A1 : ej(Kj , a) = 1}, then 

Wj is open in A−j/A1. Let Vj ⊂ A−j be the lift of Wj , it follows that the open set 
V =
⋃

j Vj is the open set we were looking for.

Openness. We have to show that given an open U � 0 in A there exist a compact 
K ⊂ A and an open V � 1 in T , such that aK ⊆ ψ−1(V ) ⇒ a ∈ U . The open set 
U is contained a basic open subgroup 

∑′
Uit

i where we assume that Ui = A0 for 
i ≥ m. Since A−1/A0 has a standard character, for any i < m there exists a compact 
Ci ⊂ A−1/A0 and an open pen Vi � 1 in T such that:

ξ(aCi) ⊂ Vi ⇒ a ∈ Uit−1 ⊂ A−1/A0 .

Since T has no small subgroups, we can actually choose Vi in a way that

ξ(aCi) = 1 ⇒ a ∈ Uit−1 .
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Now, since for any r ≥ 1 we have surjective homomorphisms of LCA groups A−1/Ar →
A−1/A0, we can lift Ci to Cr

i ∈ A−1/Ar which in turn gives Ci = lim←−−r
Cr

i compact in 
A−1. We put Ki = Cit ∈ A0. For i ≥ m we choose Ki = 0, so we construct the compact 
set K =

∑
i Kit

−i in A. It is easy to show that K and a small enough V ⊂ T containing 
1 satisfy the requirements needed to show openness.

Clearly Θψ0(A0) ⊆ (A0)⊥. Let ψ0
a /∈ (A0)⊥, then there exists b ∈ A0 such that 

ψ0(ab) �= 1, but this means that a /∈ A0 otherwise we would have ψ0(ab) = 1. �
Corollary 4.8. A

X̂
is self-dual.

Proof. The proof follows directly from Propositions 4.3, 4.6 and Theorem 4.7. For more 
clarity, see also Remark 4.4. �
5. Properties of the adelic differential pairing

Fix a nonzero rational differential form ω ∈ Ω1
K(X)|X , then the adelic differential 

pairing (associated to ω) is defined as:

dω : A
X̂
× A

X̂
→ T

(α, β) �→ ξω(αβ) .

For any subset S ⊆ A
X̂

we define the orthogonal complement of S with respect to dω:

S⊥ := {β ∈ A
X̂

: dω(S, β) = 1} . (7)

The operator ⊥ in this section shouldn’t be confused with the one for topological groups 
and their duals.

Proposition 5.1. The map dω has the following properties:

(1) It is symmetric and sequentially continuous.
(2) For any couple of subgroups H1, H2 ⊆ A

X̂
we have H⊥

1 ∩H⊥
2 = (H1 + H2)⊥.

Proof. (1) Symmetry is obvious, sequential continuity follows easily from the fact that 
ξω and the product are sequentially continuous.

(2) If h ∈ H⊥
1 ∩H⊥

2 , then dω(h, H1 +H2) = d(h, H1) + d(h, H2) = 1, so one inclusion 
is proved. Vice versa assume that h ∈ (H1 + H2)⊥, then d(h, Hi) = 0 for i = 1, 2, so we 
have also the other inclusion. �

Now we show that the spaces A0̂1 and A0̂2 are equal to their orthogonal complements. 
Compare these results with the “geometric counterpart” in [10].

Theorem 5.2. A⊥ = Â .
0̂1 01
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Proof. We show the equality by showing two inclusions. First we prove that A0̂1 ⊆ A⊥
0̂1. 

It is essentially a consequence of our reciprocity laws for completed arithmetic surfaces. 
We have to show that for any α, β ∈ A0̂1, dω(α, β) = ξω(αβ) = 1. Let a = αβ, then

ξω(a) =
∏
x∈y,

y⊂X̂

Cresx,y(ωax,y)
∏

p∈Xσ,
σ∈B∞

Cresp,σ(ωap,σ) .

The first product is equal to 1 thanks to Proposition 3.6(2); the second product is 1
thanks to the one dimensional reciprocity law.

Next we show the inclusion A⊥
0̂1 ⊆ A0̂1. We take an element a = (ay) × (aσ) ∈ A⊥

0̂1. 
We need to show that ay ∈ Ky and aσ ∈ A0(σ). We consider 3 cases.

Curves at infinity. Pick any g ∈ A0(σ) ⊂ A0̂1, then since a ∈ A⊥
0̂1

dω(a, g) =
∏

p∈Xσ

Cresp,σ(ap,σgω) = 1 .

If ψ is the standard character of C, it follows that∑
p∈Xσ

resp,σ(ap,σgω) ∈ kerψ = 1
2Z + Ri, ∀g ∈ A0(σ) . (8)

By equation (8) for any λ ∈ R we have∑
p∈Xσ

resp,σ(ap,σλω) = λ
∑
p∈Xσ

resp,σ(ap,σω) ∈ 1
2Z + Ri .

It follows that 
∑

p∈Xσ
resp,σ(ap,σω) = 0. We can replace aσ with aσh for any h ∈ A0(σ)

to get 
∑

p∈Xσ
resp,σ(ap,σhω) = 0. In other words aσ lies in the orthogonal complement 

of A0(σ) with respect to the pairing:

Tω : AXσ
× AXσ

→ C

((αp,σ), (βp,σ)) �→
∑
p∈Xσ

resp,σ(αp,σβp,σω)

But we know that A0(σ) is equal to its orthogonal complement (with respect to Tω). 
Such a result was proved for number fields in [23, Theorem 4.1.4], but see for exam-
ple [7, Theorem 2.21] for the function field case. Therefore we conclude that aσ ∈
A0(σ).

y horizontal. We know that Ay = Ay((ty)), where ty is a local parameter for Ky ⊂ A0̂1
and therefore any ay has the following expression:

Ay = Ay((t)) � ay =
∑

ait
i
y with ai ∈ Ay .
i≥m
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We can also take ω = fdty. Then for any r ∈ Z and any c ∈ k(y):

dω(ay, cf−1try) =
∏
x∈y

Cresx,y(ax,ytrycdty) = ξdty (aytryc) = 1 . (9)

Then ξdty(aytryc) is a standard character of the one dimensional adeles Ay calculated 
at ca−r−1. Since equation (9) holds for every r ∈ Z, and k(y) is equal to k(y)⊥ in Ay

(again [23, Theorem 4.1.4]), we can conclude that ai ∈ k(y) for every i. This means that 
ay ∈ Ky.

y = y vertical. Let t ∈ k(y) be a uniformizing parameter and consider a lift t ∈ OX,y. 
Put ω = fdt and let L = Kp{ {t} } a standard subfield of Kx,y. We know that there exists 
an integer s such that TrKp|Kb

(psKp
) ⊆ pKb

. Fix r ∈ Z such that TrKx,y|L(prax,y) ∈ psL. 
For any m ∈ Z we have f−1prtm ∈ Ky ⊂ A0̂1, so since a ∈ A⊥

0̂1 we obtain that

d(a, f−1prtm) =
∑
x∈y

resx,y(prax,y · tmdt) ∈ Ob .

Since TrKx,y|L(prax,y) ∈ psL and TrKp|Kb
(psKp

) ⊆ pKb
:

∑
x∈y

resx,y(prax,y · tmdt) = 0.

Now we apply [16, Corollary 2.23] to write

0 =
∑
x∈y

resx,y(prax,y · tmdt) =
∑
x∈y

resx,y(prax,y · tmdt) =

=
∑
x∈y

ex,y res(1)x,y(prax,y · tmdt) =
∑
x∈y

res(1)x,y(ex,yprax,y · t
m
dt)

where:

� res(1)x,y : Ex,y → k(b) is the one dimensional residue on Ex,y.
� ex,y := e(Kx,y|Kb) is the ramification degree.

The above relation holds for any m ∈ Z, and moreover we apply the same one-
dimensional argument used in the case of the curves at infinity to conclude that k(y) is 
equal to k(y)⊥ in Ay. It follows that (ax,y)x∈y ∈ k(y), therefore ay ∈ Ky. �

Before proving that A0̂2 is self-orthogonal we need to study with more detail the 
structure of a neighborhood of a point x ∈ X such that ϕ(x) = b. Let’s denote with 
Spec1 Ox the set of prime ideals of height 1 in Ox, then a curve y passing by x corresponds 
to the set of local branches y(x) ⊂ Spec1 Ox. But there might be some elements q ∈
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Fig. 4. A visual representation of the correspondence between prime ideals of Ox and curves passing by x. 
For simplicity we assumed that the curves are nonsingular at x, hence y(x) is exactly a point in SpecOx

for any y.

Spec1 Ox which don’t correspond to any curve passing by x, those are exactly those 
ideals:

T(x) := {q ∈ Spec1 Ox : q ∩ OX,x = (0)} .

The elements of T(x) are called transcendental curves (passing by x). (See Fig. 4.)
Also for any q ∈ T(x) it is possible to construct a 2-dimensional local field Kx,q and 

the residues resx,q : Ωx,q → Kb, Cresx,q : Ωx,q → T in the usual way. But transcendental 
curves have the following pathological behavior:

Lemma 5.3. Fix ω ∈ Ω1
K(X)|K and let q ∈ T(x), then Cresx,q(ω) = 1. Moreover if g ∈ K ′

x, 
then Cresx,q(gω) = 1.

Proof. The first claim follows immediately from the fact that K(X) ⊆ (Ox)q. For the 
second one it is enough to notice that Kx = K(X)Ox is sequentially dense in K ′

x and 
use the first part of the lemma. �

The presence of transcendental curves is a subtlety in the adelic theory. In fact, in 
general Kx is obviously a proper subring of K ′

x, but the following result from commuta-
tive algebra ensures that Kx and K ′

x coincide if and only if there are no transcendental 
curves passing by x.

Proposition 5.4. Let A be a Noetherian, regular, local domain and let Â be the completion 
with respect to its maximal ideal. Then the product ÂFracA is a field if and only if for 
any nonzero prime q ⊂ Â, q ∩A �= (0).

Proof. Since A is regular and local, also Â is regular and local, which implies that Â and 
ÂFracA are integral domains as well. It follows that Â ⊗A FracA ∼= ÂFracA. Then it 
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is well known (e.g. [14, p. 47]) that we have an homeomorphism:

Spec(Â⊗A FracA) ∼= S :=
{
q ∈ Spec Â : q ∩A = (0)

}
. (10)

(⇒) Â⊗A FracA contains only a prime ideal, the trivial one, so by the homeomorphism 
(10), S contains only one element, which is (0). (⇐) If S contains only (0), then by 
the homeomorphism (10) the only prime ideal of Â⊗A FracA is (0), which means that 
Â⊗A FracA is a field. �
Corollary 5.5. Fix a closed point x ∈ X, then Kx = K ′

x if and only if there are no 
transcendental curves passing by x.

Proof. By definition Kx = K(X)Ox is the smallest ring containing K(X) and Ox, so 
the claim follows from Proposition 5.4. �

Now let’s put

AX,x := AX ∩
∏
y
x

Kx,y ,

A′
X,x :=

∏′

q∈Spec1 Ox

Kx,q with resp. to Ox,q ,

and note that A′
X,x ⊇ AX,x. Lemmas 5.8 and 5.9 below will be used to show the inclusion 

A⊥
0̂2 ⊆ A0̂2. The first one will be a modified version of [12, Lemma 3.3], so we present a 

proof. The second one will be just [12, Lemma 3.4] rewritten with our notation, so for 
its proof we remand the reader to the appropriate reference.

Remark 5.6. The paper [12] shows only some local calculations regarding residues on the 
space A′

X,x. Moreover the space denoted as Kx in [12] is exactly our K ′
x.

Lemma 5.7. Let R be a ring, then

Frac (R[[t]]) = F :=

⎧⎨⎩∑
i≥m

ait
i ∈ Frac(R)((t)) : ∃r ∈ R such that ai ∈ R [1/r] , ∀i

⎫⎬⎭ .

In particular, we deduce that in general Frac (R[[t]]) is strictly contained in Frac(R)((t)).

Proof. Since F is a field containing R[[t]], we have to show only the inclusion 
Frac (R[[t]]) ⊆ F . Let φ(t) = f(t)

g(t) ∈ Frac (R[[t]]) with f(t), 0 �= g(t) ∈ R[[t]]. Write 

g(t) = tk(r − tγ(t)) = tkr(1 − t
rγ(t)) with k ≥ 0, 0 �= r ∈ R and γ(t) ∈ R[[t]]. Then 

1
g(t) = t−k

∑
tn

rn (γ(t))n and φ(t) =
∑∞

i=m cit
i where m ∈ Z depends on φ and each ci is 

of the form ci = ρi

νi with ρi ∈ R and νi ∈ N. �

r
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The morphism ϕ : X → B sending x to b induces a finite ring extension Ob[[t]] ↪→ Ox, 
therefore from now on we can always identify Ob[[t]] with its image in Ox when ϕ(x) = b.

Lemma 5.8. Assume that Ox = Ob[[t]]. Fix a rational differential form ω ∈ Ω1
K(X)|K and 

let a = (ax,q) ∈ A′
X,x such that:∏

q∈Spec1 Ox

Cresx,q(gax,qω) = 1 for any g ∈ K ′
x , (11)

then a ∈ K ′
x.

Proof. There is a well known classification result for the elements q ∈ Spec1 Ob[[t]] =
Spec1 Ox (see for example [19, Lemma 5.3.7]):

� q = qv := πbOx, where πb is the uniformizing parameter of Ox. This is the only 
prime ideal such that Kx,qv

is of mixed characteristic.
� q = hqOx where hq ∈ Ob[t] is an irreducible Weierstrass polynomial, i.e. hq =
td + a1t

d−1 + . . . + ad with ai ∈ pKb
.

Without loss of generality we may assume that ax,q ∈ Ox,q for any q �= qv since multiply-
ing (ax,q) by any nonzero element in K ′

x amounts to an equivalent problem. Moreover, 
for the same reason we can also assume for simplicity that ω = 1dt.

For any q �= qv and any uniformizing parameter πq for the 2-dimensional local fields 
Kx,q, we can choose the following isomorphism:

Kx,q

∼=−→ Ex,q((hq))

πq �→ hq(t) .

In other words t can be identified with a root of the polynomial equation hq(t) = πq. By 
Hensel’s lemma we deduce that such a root exists and it is integral, thus we can write:

t =
∑
i≥0

ciπ
i
q with ci ∈ Ex,q .

The following two easy results are fundamental:

(i) hq ∈ O×
x,q′ for any q′ �= q, qv. This is obvious from the definition of O×

x,q′ .
(ii) t ∈ Ox,q′ for any q′ �= q. Assume by contradiction that t /∈ Ox,q′ and let hq =

td + a1t
d−1 + . . . + ad, then by (i):

0 = vx,q′(td + a1t
d−1 + . . . + ad) = min

{
vx,q′(td), vx,q′(a1t

d−1), . . . , vx,q′(ad)
}

=
= min {dvx,q′(t), (d− 1)vx,q′(t), . . . , 0} = dvx,q′(t) < 0

which cannot be true.



JID:YJNTH AID:6419 /FLA [m1L; v1.261; Prn:25/11/2019; 11:16] P.41 (1-62)
W. Czerniawska, P. Dolce / Journal of Number Theory ••• (••••) •••–••• 41
If for any q′ �= qv we write

ax,q′ =
∑
i≥0

ai,q′πi
q′ , ai,q′ ∈ Ex,q′ ,

by (i)–(ii) and equation (11), for any n ≥ 0 we have∏
q′∈Spec1 Ox

Cresx,q′(h−1
q tnax,q′ω) = Cresx,q(h−1

q tnax,qω) · Cresx,qv
(h−1

q tnax,qv
ω) = 1 .

Therefore, we have the equality

Cresx,q(h−1
q tnax,qω) = Cresx,qv

(h−1
q tnax,qv

ω)−1 , (12)

but by definition

Cresx,q(h−1
q tnax,qω) = ψb

(
TrEx,q|Kb

(cn0a0,q)
)
. (13)

Since we can take 1, c0, ..., c
deg hq−1
0 as a basis of Ex,q over Kb, equations (12) and (13)

imply that TrEx,q|Kb
(λa0,q) is determined by ax,qv

for any λ ∈ Ex,q. By using non-
degeneracy of the trace pairing

Ex,q × Ex,q → Kb

(u, s) �→ TrEx,q|Kb
(us)

we conclude that the element a0,q is uniquely determined by ax,qv
. We can conduct the 

same calculations for h−i−1
q tnax,q, to see that ai,q is determined by ax,qv

for any positive 
integer i. It leads us to a conclusion that ax,q is uniquely determined by ax,qv

for any 
q �= qv.

So, we are reduced to show that ax,qv
is in K ′

x. Recall that Kx,qv
∼= Kb{ {t} }, so we 

can write

ax,qv
=
∑
i∈Z

ai,qv
ti , ai,qv

∈ Kb .

Now, by putting p0 = tOx and reasoning similarly as above we obtain

Cresx,qv
(ti−1ax,qv

ω)−1 = Cresx,p0(ti−1ax,p0ω) = 1 , for all i ≥ 1 .

It means that a−1
−i,qv

∈ Ob for any i ≥ 1. By definition of Kb{ {t} }, we know that there 
exists N > 0 such that a−i,qv

∈ Ob for i ≥ N . In other words if i ≥ N and a−i,qv
�= 0, 

then a−i,qv
∈ O×

b . Since limj→−∞ aj,qv
= 0, we conclude that it has to exist M > 0

such that a−i,qv
= 0 for i ≥ M . This proves that ax,qv

∈ Kb((t)). Again thanks to the 
definition of Kb{ {t} }, we know that there exists m ∈ Z such that vb(ai,qv

) ≥ m, which 
means that for any choice of uniformizing parameter s ∈ Ob, then ai,qv

= sm+jg with 
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j ≥ 0 and g ∈ O×
b . We distinguish two cases:

� If m < 0, then ai,qv
= (1/s)−m · sjg ∈ Ob[1/s]

� If m ≥ 0, then ai,qv
= (1/s) · sm+j+1g ∈ Ob[1/s]

Thanks to Lemma 5.7 we conclude that ax,qv
∈ K ′

x. �
Let x ∈ X such that ϕ(x) = b, then we put O#

x := Ob[[t]] ⊆ Ox (recall that Ob[[t]] is 
canonically embedded in Ox). For any prime u ∈ Spec1 O#

x we have the 2-dimensional 
local field K#

x,u obtained by the usual process of completion/localization. In general we 
can construct all local adelic objects relative to the flags x ∈ u ∈ Spec1 O#

x . Such objects 
arising from the special ring O#

x will be marked with the symbol # to distinguish them 
from the usual ones. Let q ∈ Spec1 Ox be a prime sitting over u, then we have a finite 
field extension Kx,q|K#

x,u and a trace map TrKx,q|K#
x,u

which extends directly at the level 
of differential forms:

TrKx,q|K#
x,u

: Ω1
x,q → Ω1,#

x,u

fdt �→ TrKx,q|K#
x,u

(f)dt

Such a map is exactly the abstract trace map for differential forms defined in [16] and 
mentioned in section 3. We recall that in [16] it is also proved that the residue is functorial 
with respect to the trace, which in our case means that resx,q = res#x,u ◦ TrKx,q|K#

x,u
. The 

local trace map defined above can be further generalized to an adelic trace:

Trx : A′
X,x →

(
A′

X,x

)#
(ax,q)q �→

⎛⎝∑
q|u

TrKx,q|K#
x,u

(ax,q)

⎞⎠
u

where with the notation q|u we denote all ideals q ∈ Spec1 Ox sitting over u.

Lemma 5.9. Let f ∈ A′
X,x such that Trx(fg) ∈ (K ′

x)# for any g ∈ K ′
x, then f ∈ K ′

x.

Proof. See [12, Lemma 3.4]. �
Theorem 5.10. A⊥

0̂2 = A0̂2 .

Proof. First of all let’s prove that A0̂2 ⊆ A⊥
0̂2. We have to show that for any α, β ∈ A0̂2, 

dω(α, β) = ξω(αβ) = 1. Let a = αβ, then

ξω(a) =
∏
x∈y,

y⊂X̂

Cresx,y(ωax,y)
∏

p∈Xσ,
σ∈B∞

Cresp,σ(ωap,σ) =

=
∏
x∈X,
y
x

Cresx,y(ωax,y)
∏

p∈Xσ,
y
p,

σ∈B∞

Cresp,σ(ωap,σ) Cresp,y(ωap,y) .
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We can conclude ξω(a) = 1 thanks to Proposition 3.6(1) and from the explicit definition 
of A0̂2 at infinity.

Now we show the inclusion A⊥
0̂2 ⊆ A0̂2. Fix a = (ax,y) × (ap,σ) ∈ A⊥

0̂2 and assume 
ω = fdt, we consider two cases:

x = p is a point on Xσ. For any g ∈ C((t)) we consider the element (f−1g, f−1g) ∈ Δp,σ, 
then if y is the unique horizontal curve containing p we obtain

Cresp,y(ap,yf−1gω) · Cresp,σ(ap,σf−1gω) = 1 .

This means

resp,y(ap,ygdt) − resp,σ(ap,σgdt) ∈ kerψσ = 1
2Z + Ri . (14)

Since equation (14) holds for any g ∈ C((t)), it is clear that it must be (ap,y, ap,σ) ∈ Δp,σ.

x is a point on X. Recall that Ox is a finite ring extension of Ob[[t]].
We first treat the case where there are transcendental curves passing by x; let’s extend 

the element (ax,y)y
x to an element (a′x,q)q ∈ A′
X,x in the following way: for a transcen-

dental curve q ∈ T(x) let’s insert a′x,q ∈ Kx; at all other primes nothing changes. Now 
let g ∈ Kx, then:∏

q∈Spec1 Ox

Cresx,q(a′x,qgω) =
∏
y
x

Cresx,y(ax,ygω)︸ ︷︷ ︸
(i)

∏
q∈T(x)

Cresx,q(a′x,qgω)

︸ ︷︷ ︸
(ii)

= 1 (15)

where (i) = 1 because (ax,y) × (ap,σ) ∈ A⊥
0̂2 and (ii) = 1 thanks to Lemma 5.3. Since Kx

is sequentially dense in K ′
x, equation (15) implies that for any h ∈ K ′

x∏
q∈Spec1 Ox

Cresx,q(a′x,qhω) = 1 . (16)

Now we use equation (16) and the functoriality of the residue with respect to the trace 
map:

Ob �
∑
q

resx,q(a′x,qhω) =
∑
u

∑
q|u

res#x,u
(
TrKx,q|K#

x,u
(a′x,qhω)

)
=

=
∑
u

res#x,u

⎛⎝∑
q|u

TrKx,q|K#
x,u

(a′x,qhω)

⎞⎠ =
∑
u

res#x,u

⎛⎝∑
q|u

TrKx,q|K#
x,u

(a′x,q)hω

⎞⎠ .

By Lemma 5.8 we can conclude that Trx
(
a′x,q
)
q
∈ (K ′)#x diagonally. By replacing ax,y

with ca′x,y for any c ∈ K ′
x we can again conclude that Trx

(
ca′x,q
)

∈ (K ′)#x diagonally. 

q
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At this point we can use Lemma 5.9 to conclude that (a′x,q)q ∈ K ′
x. It means that 

(ax,y)y
x ∈ Kx by the choice of (a′x,q)q.
If there are no transcendental curves passing by x, then A′

X,x = AX,x and Kx = K ′
x

by Corollary 5.5. Then we can apply a simplified version of the argument used above to 
conclude the proof. �
Remark 5.11. We were informed by I. Fesenko that there is an alternative proof of 
Theorem 5.10 which uses an arithmetic version of his argument in [10].

6. Idelic interpretation of Arakelov intersection theory

A prerequisite for this section is the whole appendix B. In [8], it is described how 
to get a lift of the Deligne pairing (i.e. the schematic part of the Arakelov intersection 
number) at the level of ideles. Let’s summarize the result: first of all we consider the 
idelic complex attached to the (uncompleted) surface X

A×
X : A×

0 ⊕A×
1 ⊕A×

2 A×
01 ⊕A×

02 ⊕A×
12 A×

012

(a0, a1, a2) (a0a
−1
1 , a2a

−1
0 , a1a

−1
2 )

(a01, a02, a12) a01a02a12

d0
× d1

×

(17)

and we note that we have a surjective map:

p : ker(d1
×) → Div(X)

(α, β, α−1β−1) �→
∑
y⊂X

vy(αx,y)[y] .

Then by globalizing the Kato’s symbol, we define ad idelic Deligne pairing 〈 , 〉i :
ker(d1

×) × ker(d1
×) → Pic(B) which descends to the Deligne pairing 〈 , 〉 : Pic(X) ×

Pic(X) → Pic(B). In turn, the Deligne pairing is strictly related to intersection theory 
because for any two divisors D, E ∈ Div(X), the class in Pic(B) of the divisor

〈D,E〉 = ϕ∗i(D,E) =
∑
x∈X

[k(x) : k(ϕ(x))] ix(D,E) [ϕ(x)]

is equal to 〈OX(D),OX(D)〉. Note that we have used the brackets 〈 , 〉 to denote two 
different (but strictly related) objects, but the clash of notations shouldn’t confuse the 
reader.
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The contribution at infinity to the Arakelov intersection pairing is given by the 
∗-product between Green functions, so the next step in our theory is to find an idelic 
description of it. The part at infinity of the full adelic ring AX ⊕

∏
σ∈Bσ

(AXσ
⊕ AXσ

)
is given by AXσ

⊕ AXσ
(for each σ), so we want to find a surjective map:

(A×
Xσ

⊕ A×
Xσ

) ⊇ S → ZG(Xσ)

where S is an adequate subset of A×
Xσ

⊕A×
Xσ

still to be determined and ZG(Xσ) is the 
vector space of Green functions on Xσ with integer orders.

Remark 6.1. First of all let’s introduce a notation. For any a = (ax) ∈ AXσ
, with a(x)

we denote the projection of ax onto the residue field C (when it is well defined).

Let F(Xσ, R)′ be the set of functions f : U ⊆ Xσ → R whose domain U is the whole 
Xσ minus a finite set of points, then we have the following map:

Θ : A×
Xσ

× A×
Xσ

→ F(Xσ,R)′

(a, b) �→ − log(baa) := [x �→ − log
(
b(x)a(x)a(x)

)
]

where a(x) denotes the complex conjugate. Note that ZG(Xσ) ⊂ F(Xσ, R)′, then put

G(A×
Xσ

) := {(a, b) ∈ Θ−1(ZG(Xσ)) : vx(ax) = ordG
x (Θ(a, b)), ∀x ∈ Xσ} .

We get the map:

πσ := Θ|G(A×
Xσ) : G(A×

Xσ) → ZG(Xσ) .

Proposition 6.2. The map πσ is surjective.

Proof. Let g ∈ ZG(Xσ), by Proposition B.6, there exist a C∞ hermitian invertible sheaf 
(L , h) on X and a meromorphic section s = {(sj , Uj)} of L such that we can write:

g = − log(h(s, s)) .

We can choose a ∈ A×
Xσ

such that a(x) = s(x) (when s(x) is well defined) and vx(ax) =
ordx(s) for any x ∈ Xσ. Now we can write

g(x) = − log(hx(a(x), a(x))) .

Since z �→ hx(zz) is a complex absolute value, we have hx(zz) = wxzz with wx ∈ C. 
Let’s choose b = (bx) ∈ A×

Xσ
such that b(x) = wx, then

g(x) = − log
(
b(x)a(x)a(x)

)
.
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The fact that vx(ax) = ordG
x (g) follows directly from the fact that for any hermitian 

metric h and meromorphic section s we have the equality:

divG(− log(h(s, s))) = div(s) .

(See Proposition B.3.) �
So far, we have the idelic description of Green functions with integer orders thanks 

to the projection πσ. Now let’s fix a (normalized) Kähler fundamental form Ωσ on Xσ

and consider GΩσ
0 (A×

Xσ
) := π−1

σ (ZGΩσ
0 (Xσ)), GΩσ (A×

Xσ
) := π−1

σ (ZGΩσ (Xσ)). For pairs 
(α, β) ∈ GΩσ(A×

Xσ
) ×GΩσ (A×

Xσ
) such that divG(πσ(α)) and divG(πσ(β)) have no com-

mon components we want to find a product α∗iβ such that the following equality holds:

(α, β)

(πσ(α), πσ(β)) α ∗i β = πσ(α) ∗ πσ(β)

As a consequence of the symmetry of the ∗-product we will get also the symmetry of ∗i. 
For any α = (a, b) ∈ GΩσ (A×

Xσ
) let’s put:

ξ(α) := e
∫
Xσ

log(baa)Ωσ .

Definition 6.3. Let α = (a, b), β = (c, d) ∈ GΩσ (A×
Xσ

), then the idelic ∗-product is defined 
as:

α ∗i β := −
∑
x∈Xσ

vx(cx) log
(
b(x)a(x)a(x)ξ(α)

)
+ log(ξ(α)) ideg(c) + log(ξ(β)) ideg(a) ,

where ideg is the idelic degree map defined as:

ideg : A×
Xσ

→ Z

(αx)x �→
∑
x∈Xσ

vx(αx) .

Proposition 6.4. (α, β) ∈ GΩσ (A×
Xσ

) ×GΩσ (A×
Xσ

) such that divG(πσ(α)) and divG(πσ(β))
have no common component; then α ∗i β = πσ(α) ∗ πσ(β).

Proof. Put g1 = πσ(α) and g2 = πσ(β), then by Proposition B.8 we can write g1 =
g1,0 + c1 and g2 = g2,0 + c2 for, g1,0, g2,0 ∈ GΩσ

0 (Xσ), c1 = log(ξ(α)) and c2 = log(ξ(β)). 
An easy calculation shows that:

g1 ∗ g2 =
∑

ordG
x (g2,0)g1,0(x) + c1

∑
ordG

x (g2,0) + c2
∑

ordG
x (g1,0) .
x∈Xσ x∈Xσ x∈Xσ
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Then it is enough to note the following equalities:

ordG
x (g1,0) = ordG

x (g1) = vx(ax) ,

ordG
x (g2,0) = ordG

x (g2) = vx(cx) ,

g1,0(x) = g1(x) − log(ξ(α)) = − log(b(x)a(x)a(x)) − log(ξ(α)) . �
Let’s write an element α ∈ A×

X̂
= A×

X ⊕
∏

σ∈B∞
(A×

Xσ
⊕ A×

Xσ
) in the following way:

α = αX × (ασ)σ

with αX ∈ A×
X and ασ ∈ A×

Xσ
⊕ A×

Xσ
, then we have a surjective map:

p̂ : ker(d1
×) ⊕

∏
σ

G(A×
Xσ

) → Div(X) ⊕
⊕
σ

G(Xσ)

α = αX × (ασ)σ �→
(
p(αX),

∑
σ

πσ(ασ)Xσ

)

where p : ker(d1
×) → Div(X) is the usual projection on usual divisors and πσ : G(A×

Xσ
) →

G(Xσ) is the projection on Green functions.

Definition 6.5. Let’s put

Div
(
A×

X̂

)
:= p̂ −1 (DivAr(X,Ω)) ,

and let α, β ∈ Div
(
A×

X̂

)
such that (p̂(α), ̂p(β)) ∈ ΥAr then the idelic Arakelov intersec-

tion pairing is given by

α.β := deg (〈αX , βX〉i) + 1
2
∑
σ

εσ ασ ∗i βσ

where deg is the usual degree of line bundles, 〈 , 〉i is the idelic Deligne pairing and 
ασ ∗i βσ is the idelic ∗-product.

We have to check that Definition 6.5 gives the correct extension of the Arakelov 
pairing.

Theorem 6.6. Let α, β ∈ Div
(
A×

X̂

)
such that p̂(α) = D̂ and p̂(β) = Ê, with (D̂, Ê) ∈

ΥAr, then α.β = D̂.Ê. In other words the idelic Arakelov intersection pairing extends to 
a pairing:

Div
(
A×

X̂

)
× Div

(
A×

X̂

)
→ R

and the following diagram is commutative:
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Div
(
A×

X̂

)
× Div

(
A×

X̂

)

DivAr(X) × DivAr(X) R

p̂×p̂

Proof. It follows easily from the definitions. �
Appendix A. Semi-topological algebraic structures

A.1. Basic notions

Definition A.1. A topological abelian group (G, τ) is linearly topologised (or has a linear 
topology) if there is a local basis at 0 made of subgroups. A morphism between linearly 
topologised groups is a continuous homomorphism. The category of linearly topologised 
group is denoted by LTAb.

Proposition A.2. Let G be an abelian group and fix a non-empty collection of subgroups 
F = {Ui}i∈I . If G is endowed with the topology τ generated by {x + Ui}i∈I,x∈G, then it 
becomes a linearly topologised group.

Proof. First we show that G is a topological group: we want the inversion ι : G → G and 
the sum σ : G ×G → G to be continuous. We check this for the subbase {x +Ui}i∈I,x∈G. 
Obviously ι−1(Ui + x) = Ui − x ∈ τ . Then we prove that the following equality holds:

σ−1(Ui + x) =
⋃
y∈G

(Ui + y) × (Ui + x− y) .

The inclusion ⊇ is evident, so let (z, z′) ∈ σ−1(Ui + x), then z = u + (x − z′) for 
u ∈ Ui. If we write z′ = 0 + x − (x − z′) and we put y = x − z′ we finally get (z, z′) =
(u + y, 0 + x − y) ∈ (Ui + y) × (Ui + x − y).
For the last statement consider the family

B := {U ∈ τ : U is finite intersection of elements of F} .

Then B is a local basis at 0 made of subgroups. �
Definition A.3. The linear topology on an abelian group G obtained from a family of 
subgroups {Ui}i∈I , as it is described in Proposition A.2, is called the linear topology 
generated by {Ui}i∈I .

In this setting, concepts like initial and final topologies are well defined. Let G be 
an abelian group and consider some homomorphisms of groups {ϕα : G → Hα}α and 
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{ψβ : Hβ → G}β , where the Hα and Hβ are all linearly topologised. The initial linear 
topology on G with respect to {ϕα}α is the linear topology generated by

{
ϕ−1
α (Vα) : Vα ⊆ Hα is an open subgroup

}
α
.

This is the coarsest linear topology which makes all the ϕα continuous. The final linear 
topology on G with respect to {ψβ}β is the linear topology generated by

{
U ⊆ G : U is a subgroup and ψ−1

β (U) is open for any β
}

.

This is the finest linear topology which makes all the ψβ continuous.

Proposition A.4. LTAb is an additive category and moreover it admits inverse and direct 
limits.

The nontrivial statements are those involving the categorical limits. In particular 
lim←−−i

Gi and lim−−→j
Gj are the usual limits in the category of groups, endowed respectively 

with the initial and final linear topology.

Remark A.5. By commodity, in the category of linearly topologised groups, we call the 
limits lim←−−i

Gi and lim−−→j
Gj respectively linear inverse limit and linear direct limit.

Definition A.6. A ST ring (ST stands for semi-topological) is a ring A endowed with a 
topology satisfying the following two properties:

� (A, +) is a linearly topologised abelian group.
� For any a ∈ A the map λa : A → A, such that λa(x) = ax, is continuous.

A morphism of ST rings is continuous homomorphisms of rings. The category of ST rings 
is denoted as STRing. Moreover B is a ST A-algebra if there is a morphism of ST rings 
ϕ : A → B. The category of ST A-algebras is A-STAlg.

Proposition A.7. STRing and A-STAlg admit inverse and direct limits.

Proof. We show it only for rings. Let A = lim←−−i
Ai be the usual inverse limit in the 

category of rings and topologise its additive structure by taking the linear inverse limit 
topology. Thus we have the coarsest linear topology on (A, +) such that the projections 
πj : A → Aj are continuous. Assume that Λ(ai) is the multiplication by (. . . , ai, ai+1, . . .)

in A and consider the composition: A 
Λ(ai)−−−→ A 

πj−−→ Aj , given by

x = (. . . xi, xi+1, . . .) �→ (. . . aixi, ai+1xi+1, . . .) �→ ajxj .
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Since πj ◦ Λ(ai)(x) = λaj
◦ πj(x), we can conclude that πj ◦ Λ(aj) is continuous. Finally 

if π−1
j (Vj) ⊂ A is an element in the subbase of A, then Λ−1

(ai)(π
−1
j (Vj)) is open in A.

Let A = lim−−→i
Ai be the usual direct limit in the category of rings and topologise its 

additive structure by taking the linear direct limit topology. Thus we have the finest 
linear topology on (A, +) such that the maps φi : Ai → A are continuous. Let’s denote 
with μij : Ai → Aj the continuous homomorphisms in the directed set {Ai}i; moreover 
Λ[(j,a)] is the multiplication in A = (�iAi) /∼ for the fixed element [(j, a)] where a ∈ Aj . 

Note that the composition: Ai
φi−−→ A 

Λ[j,a]−−−−→ A, given by

x �→ [(i, x)] �→ [k, μjk(a)μik(x)]

is continuous. Thus if U ⊂ A is open, then φ−1
1

(
Λ−1

[j,a](U)
)

is open and by definition of 
final linear topology we can conclude that Λ−1

[j,a](U) is open in A. �
Definition A.8. Let A be a ST ring. A ST A-module is an A-module satisfying the 
following properties:

� M is a linearly topologised abelian group.
� For any a ∈ A and any m ∈ M the maps λM

a : M → M and ρm : A → M such that 
λa(x) = ax and ρm(x) = xm are continuous.

A morphism of ST modules is a continuous homomorphism of A-modules. If A is a ST 
field then M is called a ST vector space.

Given a ST A-module M , the subset {0} is a submodule because of the continuity of 
λa, therefore we define

M sep := M/{0}

which is again a ST A-module if endowed with the quotient topology.

Proposition A.9. Let A be a ST ring, and M an A-module. If M is endowed with the 
final linear topology with respect to the group homomorphisms ρm : A → M , then M is 
a ST A-module.

Proof. See [25, p. 17]. �
Definition A.10. The topology on M described in Proposition A.9 is called the fine 
A-module topology.
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A.2. Ind/pro topologies

Now we present the crucial part of this very general theory. Given a ST ring A, we 
describe two procedures called (C) and (L) that give canonical topologies of ST rings 
respectively on lim←−−r

A/pr and Ap for any prime ideal p ⊂ A. We need the following 
lemma:

Lemma A.11. Let ϕ : A → B be a ring homomorphism where A is a ST ring. Consider 
B as an A-module endowed with the fine A-module topology, then B is a ST ring.

Proof. [25, Proposition 1.2.9.(b)]. �
(C) For any r > 0 we put on A/pr the fine A-module topology, so by Lemma A.11 A/pr

is a ST ring. By Proposition A.7 we can endow lim←−−r
A/pr with a structure of ST 

ring.
(L) Ap is naturally an A-module, so we endow it with the fine A-module topology. Again 

by Lemma A.11 we conclude that Ap is a ST ring.

Let R be a ST ring and put on A = R[t] the fine R-module topology. Consider the 
ring of formal Laurent power series R((t)), then as linear projective limit we have:

R[[t]] = lim←−−
r

R[t]
trR[t] .

Therefore we consider on R((t)) the topology induced in the following way:

A = R[t] R[[t]] R((t)) .(C) (L) (A.1)

This is called the ind/pro-topology. We have an isomorphism of ST R-modules

R((t)) ∼=
(⊕

n∈N
R

)
⊕
∏
n∈N

R

and each subgroup of the form trR[[t]], for r ∈ Z, is closed in R((t)).

Remark A.12. If we start with a discrete field K = R, then the ind/pro-topology on 
R((t)) is the discrete valuation topology.

Let ξ ∈ ̂R((t)) be a nontrivial character. The conductor of ξ is

cξ := min
{
i ∈ Z : ξ ∈

(
tiR[[t]]

)⊥}
.
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Appendix B. Arakelov geometry

This section is just a collection of basic results about Arakelov geometry for arithmetic 
surfaces, a more detailed exposition of Arakelov geometry can be found for example 
in [15]. We will maintain the same notations used so far for the arithmetic surface 
ϕ : X → B. Moreover we assume the reader to be familiar with complex analytic 
geometry for Riemann surfaces.

B.1. Green functions and ∗-product

Let’s fix a connected Riemann surface C.

Definition B.1. A Green function on C is a map g : U ⊆ C → R satisfying the following 
properties:

(1) U = C \ {x1, . . . , xr} for r ∈ N.
(2) g is a C∞ function on U .
(3) For any point x ∈ {x1, . . . , xr} there exist a real number a ∈ R and a C∞ function 

u on an open neighborhood of x such that the equality:

g = a log |z|2 + u

holds in an open neighborhood of x contained in a holomorphic chart (V, z) centered
in x.

The number a ∈ R arising in condition (3) of Definition B.1 depends only on the point 
x and it is uniquely defined.

Definition B.2. Let g be a Green function on C such that around a point x ∈ C it can 
be written as g = a log |z|2 + u. Then we put ordG

x (g) := −a and we call it the Green 
order of g at x. If x is a point in the domain of g, then ordG

x (g) := 0.

Clearly ordG
x (g) �= 0 only at a finite number of points. The Green functions on C form 

a real vector space G(C), and for any g, g′ ∈ G(C)

ordG
x (λg) = λ ordG

x (g) for any λ ∈ R ,

ordG
x (g + g′) = ordG

x (g) + ordG
x (g′) .

Let’s denote with Div(C)R := Div(C) ⊗Z R the vector space of R-divisors on C, then 
we have a R-linear map:
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divG : G(C) → Div(C)R
g �→
∑
x∈C

ordG
x (g)[x].

For any Green function g ∈ G(C) and any R-divisor D =
∑

x λx[x], we put g̃(D) :=∑
x λxg(x) when the values g(x) are well defined.

Proposition B.3. Let (L , h) be a C∞ hermitian invertible sheaf on C, and let s be a 
nonzero meromorphic section of L , then the map − log(h(s, s)) is a Green function on 
C such that divG(− log(h(s, s))) = div(s).

Proof. See [15, lemma 4.8]. �
The following result is an immediate consequence of Proposition B.3:

Proposition B.4. The map divG : G(C) → Div(C)R is surjective.

Let’s define a very important subspace of ZG(C):

Definition B.5. The vector space of Green functions with integer orders on C is:

ZG(C) :=
{
g ∈ G(C) : ordG

x (g) ∈ Z ∀x ∈ C
}
.

The next result shows that any Green function which induces a divisor on C is actually 
of the form − log(h(s, s)) for some meromorphic section s of a C∞ hermitian invertible 
sheaf (L , h).

Proposition B.6. Let g ∈ ZG(C), then there exist a C∞ hermitian invertible sheaf (L , h)
on C and a meromorphic section s of L such that g = − log(h(s, s)).

Proof. See again [15, lemma 4.8]. �
From now on, in this subsection we fix a Kähler fundamental form Ω on C such that ∫

C
Ω = 1. Let’s define some subsets of G(C):

GΩ(C) := {g ∈ G(C) : Δ∂̄(g) is constant} ,

GΩ
0 (C) := {g ∈ GΩ(C) :

∫
C

gΩ = 0} ,

ZGΩ(C) := ZG(C) ∩GΩ(C) ,

ZGΩ
0 (C) := ZG(C) ∩GΩ

0 (C) .

Theorem B.7. The map divG |GΩ(C) : GΩ
0 (C) → Div(C)R is an isomorphism.
0
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Proof. See [15, Theorem 4.10]. �
Proposition B.8. For any g ∈ GΩ(C) there exists a unique decomposition g = g0 + c for 
g0 ∈ GΩ

0 (C) and c ∈ R.

Proof. See again [15, Theorem 4.10]. �
Definition B.9. The inverse map of divG |GΩ

0 (X) is denoted as:

GΩ : Div(X)R → GΩ
0 (X)

D �→ GΩ(D)

and we can define the following function:

gΩ : (X ×X) \ ΔX×X → R

(p, q) �→ gΩ(p, q) := GΩ([p])(q)

where ΔX×X denotes the diagonal subset of X ×X.

By construction gΩ is C∞ in the variable q, but, as we will see soon (Corollary B.14), 
gΩ turns out to be symmetric, therefore it is C∞. Since gΩ(p, ·) ∈ GΩ

0 (X) ⊂ GΩ(X), 
then ddc(gΩ(p, ·)) = αΩ for a constant α ∈ C, but

1 = degG(gΩ(p, ·)) =
∫
X

ddc(gΩ(p, ·)) =
∫
X

αΩ = α .

Hence α = 1 and

ddc(gΩ(p, ·)) = Ω. (B.1)

Thus, amongst all Green functions, those of the form gΩ(p, ·) satisfy the Poisson differ-
ential equation (B.1). this feature will be very useful for intersection theory.

Another important property is that for any fixed p ∈ X:∫
X

gΩ(p, ·)Ω =
∫
X

GΩ([p])Ω = 0 (B.2)

because GΩ([p]) ∈ GΩ
0 (X).

Remark B.10. gΩ can be defined as the unique function on (X×X) \ΔX×X with values 
in R satisfying the following properties:
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(1) Around any point p ∈ X we can write gΩ(p, ·) = − log |z|2 + u, where z is a chart 
centered in p and u is C∞.

(2) ddc(gΩ(p, ·)) = Ω.
(3)
∫
X
gΩ(p, ·)Ω = 0.

This is how Arakelov defined gΩ in [2] and [1]. In the literature gΩ is usually called 
the Green function of X (with respect to Ω).3 Here we used a different approach (and 
notations), indeed gΩ was constructed directly by using the isomorphism Div(X)R ∼=
GΩ

0 (X).

Definition B.11. Let g1, g2 ∈ G(C) such that divG(g1) and divG(g2) have no common 
components then the ∗-product between g1 and g2 is the real number:

g1 ∗ g2 := g̃1(divG(g2)) +
∫
C

ddc(g1)g2 ,

where ddc = 1
2π∂∂.

Remark B.12. It is necessary to assume that divG(g1) and divG(g2) have no common 
components otherwise g̃1(div(g2)) wouldn’t be well defined.

Theorem B.13. Let g1, g2 ∈ G(C) such that divG(g1) and divG(g2) have no common 
components, then g1 ∗ g2 = g2 ∗ g1.

Proof. See [15, Proposition 4.12]. �
Corollary B.14. gΩ(p, q) = gΩ(q, p) for any p �= q.

Proof. By using the properties of the elements in GΩ
0 , it is easy to verify that

GΩ([p]) ∗ GΩ([q]) = gΩ(p, q); GΩ([q]) ∗ GΩ([p]) = gΩ(q, p) .

Hence the conclusion follows immediately from Theorem B.13. �
Note that for any three different points p, q, t ∈ X and coefficients a, b ∈ R we have 

that:

GΩ(a[p] + b[q]) ∗ GΩ([t]) = aGΩ([p]) ∗ GΩ([t]) + bGΩ([q]) ∗ GΩ([t]) .

3 Actually the conditions which uniquely define gΩ in [2] and [1] are slightly different from the ones listed 
here, and moreover they may vary in other references. For instance it is common to find different constants 
for the differential Poisson equation, or the Green function might be defined as G = exp(gΩ). Of course 
these discrepancies are fixed when the Green function is applied for intersection theory.
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Therefore if D =
∑

p∈X ap[p] and E =
∑

q∈X bq[q] are two real divisors of X with no 
common components, then it is customary to define:

gΩ(D,E) :=
∑
p�=q

apbqg
Ω(p, q) . (B.3)

Remark B.15. The important point to emphasize here is that for Green functions g1, g2 ∈
GΩ

0 , i.e. coming from some real divisors on X, the integral appearing in g1 ∗ g2 vanishes. 
This means that for such kind of Green functions, the nature of the ∗-product is “less 
analytic”, indeed it depends only on the value of g1 or g2 at a finite set of points.

B.2. Arakelov intersection pairing

On each Riemann surface Xσ we fix a Kähler form Ωσ such that 
∫
Xσ

Ωσ = 1, and 
we put Ω := {Ωσ}σ∈B∞ . For any divisor D ∈ Div(X), Dσ := ϕ∗

σD ∈ Div(Xσ) denotes 
its pullback through ϕσ. Consider the additive group G(X) := ⊕σ∈B∞G(Xσ) and its 
subgroup, depending on Ω, G(X, Ω) :=

⊕
σ∈B∞

GΩσ (Xσ). By commodity we write any 
element of G(X) (or of G(X, Ω)) as a finite formal linear combination 

∑
σ gσXσ for 

gσ ∈ G(X) (or gσ ∈ G(X, Ω)).

Definition B.16. The group of Arakelov divisors on X̂ is:

DivAr(X,Ω) :=
{(

D,
∑
σ

gσXσ

)
∈ Div(X) × G(X,Ω): divG(gσ) = Dσ

}
.

We often denote the element (0, Xσ) ∈ DivAr(X, Ω) simply with the symbol Xσ.

It is important to understand the geometry lying behind the above apparently mys-
terious definition. Fix an Arakelov divisor (D, 

∑
σ gσXσ), by Theorem B.7 and Proposi-

tion B.8 we can write

gσ = GΩσ (Dσ) + ασ (B.4)

where ασ ∈ R is uniquely determined. Fig. 5 highlights the fact that Dσ, which is a 
finite set of points on Xσ, can be interpreted as the “prolongation” of D on the curve 
Xσ; thus, it makes sense to define the Arakelov divisor

D :=
(
D,
∑
σ

GΩσ (Dσ)Xσ

)
∈ DivAr(X,Ω)

which will be called completion of D in X̂ (this is consistent with the notion of com-
pleted horizontal curve given before). By equation (B.4) we have the following unique 
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Fig. 5. A schematization of an arithmetic surfaces ϕ : X → B such that B∞ = {σ1, σ2} (for instance 
B = SpecZ[i]). Xb is a vertical divisor over the closed point b, D is a horizontal divisor such that Dσ1 and 
Dσ2 are prime divisors respectively on Xσ1 and Xσ2 .

decomposition of (D, 
∑

σ gσXσ) in DivAr(X):

(
D,
∑
σ

gσXσ

)
= D +

∑
σ

ασXσ (B.5)

where the linear combination 
∑

σ ασXσ can be evidently read as a “real divisor” on 
X̂ with support made of curves at infinity. In perfect analogy with the usual notion of 
divisor, equation (B.5) tells us that an Arakelov divisor can be interpreted as a formal 
linear combination of “curves” in X̂, such that the coefficients of the curves at infinity 
are in R. The presence of this real coefficients underlines once again the fact that the 
curves at infinity have an analytic nature. From the above discussion we recover the 
original definition of the group of Arakelov divisors given in [2] and [1]:

Proposition B.17. There is an isomorphism of groups:

DivAr(X,Ω) ∼= Div(X) ⊕R(B∞).

Proof. Thanks to equation (B.5) we can define the isomorphism:

(
D,
∑
σ

gσXσ

)
�→ D +

∑
σ

ασ[σ] . �

Now we want to introduce the concept of principal Arakelov divisor, in other words 
we want to define an Arakelov divisor associated to an element of K(X). Recall that 
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K(X) is also the function field of XK , so the morphism ϕσ : Xσ → XK induces a field 
embedding

ϕ#
σ : K(X) ↪→ C(Xσ) .

For any rational function f ∈ K(X) we put by simplicity fσ := ϕ#
σ (f). Moreover let 

Oσ be the sheaf of regular functions on Xσ, then as usual fσ can be identified with a 
holomorphic map Xσ → C at all but finitely many points:

p �→ fσ,p �→ fσ,p ∈ k(p) ∼= C.

Then it is easy to see that − log |fσ|2 is a Green function on Xσ such that ∂∂̄(− log |fσ|2)
= 0, therefore − log |fσ|2 ∈ GΩσ(Xσ).

Proposition B.18. Let f ∈ K(X)×, then divG(− log |fσ|2) = (f)σ, where (f)σ is the 
pullback of the principal divisor (f).

Proof. Fix a point p ∈ Xσ, let x = ϕσ(p) and consider f as a rational function on XK . 
If �σ is a local parameter in Oσ,p and � is a local parameter in OXK ,x, then

fσ = �
vp(ϕ#

σ (�))vx(f)
σ u for u ∈ Oσ,p .

This implies that ordG
p (− log |fσ|2) = vp(ϕ#

σ (�))vx(f), but vp(ϕ#
σ (�)) is precisely the 

ramification index eϕσ,p, hence ordG
p (− log |fσ|2) = eϕσ,pvx(f). So, we finally have:

divG(− log |fσ|2) =
∑
p∈Xσ

eϕσ,pvϕσ(p)(f)[p] = (f)σ . �

Now the following definition makes sense:

Definition B.19. Let f ∈ K(X)× be a rational function. It induces an Arakelov divisor 
in the following way:

(̂f) :=
(

(f),
∑
σ

− log |fσ|2Xσ

)
∈ DivAr(X,Ω) .

The group

PrincAr(X,Ω) :=
{

(̂f) : f ∈ K(X)
}

is called the group of principal Arakelov divisor and CH1
Ar(X, Ω) := DivAr(X,Ω)

PrincAr(X,Ω) is the 
Arakelov Chow group. Two Arakelov divisor are said linearly equivalent if they are con-
tained in the same class in CH1

Ar(X, Ω).
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Moreover for any principal Arakelov divisor (̂f) we get the following decomposition:

(̂f) = (f) +
∑
σ

⎛⎝∫
Xσ

− log |fσ|2Ωσ

⎞⎠Xσ .

Proposition B.20. Let D, E be two finite divisors on X with no common components, 
then for any σ ∈ B∞ the divisors Dσ and Eσ on Xσ have no common components.

Proof. Omitted. �
Let’s denote as ΥAr ⊂ DivAr(X, Ω) × DivAr(X, Ω) the set of couples of Arakelov 

divisors with no common components on X, then we can define the Arakelov intersection 
pairing on ΥAr:

Definition B.21. Let D̂ := (D,
∑

σ gσXσ) , Ê := (E, 
∑

σ lσXσ) be two Arakelov divisors 
such that (D̂, Ê) ∈ ΥAr. Thanks to Proposition B.20 we can define an Arakelov divisor 
on B: 4

〈
D̂, Ê
〉

Ar
:= 〈D,E〉 +

∑
σ

gσ ∗ lσ [σ] ∈ DivAr(B)

where

〈D,E〉 := ϕ∗i(D,E) =
∑
x∈X

[k(x) : k(ϕ(x))] ix(D,E) [ϕ(x)]

and ∗ is the product between Green functions. If d̂ =
∑

p∈B np[p] +
∑

σ∈B∞
ασ[σ] is an 

Arakelov divisor on the base B, its degree is defined as:

degAr(d̂) :=
∑
p∈B

np logN(p) + 1
2
∑

σ∈B∞

εσασ .

In particular we use the notation D.E := degAr(〈D,E〉), and the Arakelov intersection 
number of D̂ and Ê is:

D̂.Ê := degAr

(〈
D̂, Ê
〉

Ar

)
= D.E + 1

2
∑
σ

εσ gσ ∗ lσ ∈ R .

The following proposition summarizes some properties of the Arakelov intersection 
pairing:

4 Note that we assume D and E to have no common components in order to ensure that the ∗-product 
between green functions is well defined for any σ ∈ B∞.
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Proposition B.22. Let (D̂, Ê), (D̂j , Êj) ∈ ΥAr with j = 1, 2, then

(1) D̂.Ê = Ê.D̂ (symmetry).
(2) (D̂1 + D̂2).(Ê1 + Ê2) =

∑2
j,k=1 D̂j .Êk (Z-bilinearity).

(3) If D̂ = (D, 
∑

σ gσXσ) and f ∈ K(X)× such that (D, (f)) ∈ Υ, then

〈
D̂, (̂f)

〉
Ar

= ̂(ND(f)) ∈ PrincAr(B) .

In particular D̂.(̂f) = 0.

Proof. See [15, section 4.4]. �
The Arakelov intersection number can be extended to an intersection pairing on the 

whole DivAr(X, Ω) and induces a natural intersection pairing on CH1
Ar(X, Ω).

Proposition B.23. The Arakelov intersection number extends to any two Arakelov di-
visors in DivAr(X, Ω) × DivAr(X, Ω) and moreover descends naturally to pairing on 
CH1

Ar(X, Ω) × CH1
Ar(X, Ω).

Proof. See [15, section 4.4]. �
Now we interpret the Arakelov intersection pairing in a more geometric way by using 

the decomposition given in equation (B.5). Fix two Arakelov divisors D̂, Ê ∈ ΥAr, then 
we can write

D̂ = D +
∑
σ

ασXσ =
(
D,
∑
σ

GΩσ (Dσ)Xσ

)
+
(

0,
∑
σ

ασXσ

)
,

Ê = E +
∑
σ

βσXσ =
(
E,
∑
σ

GΩσ (Eσ)Xσ

)
+
(

0,
∑
σ

βσXσ

)
.

In order to find explicitly D̂.Ê, by bilinearity and symmetry of the intersection pairing 
it is enough to understand how calculate the following three terms:

(i) D.E; namely the intersection of two completed divisors.
(ii) D.(0, 

∑
σ βσXσ); namely the intersection between a completed divisor and a divisor 

at infinity. Clearly (0, 
∑

σ ασXσ).E is obtained in the same way.
(iii) (0, 

∑
σ ασXσ).(0, 

∑
σ βσXσ); that is the intersection of divisors composed only by 

curves at infinity.
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For (i) let’s evaluate GΩσ (Dσ) ∗GΩσ (Eσ). By the bare definition of the ∗-product and gΩσ :

GΩσ (Dσ) ∗ GΩσ (Eσ) = gΩσ (Dσ, Eσ) +
∫
Xσ

ddc
(
GΩσ (Dσ)

)
GΩσ (Eσ) ,

but since GΩσ(Dσ), GΩσ (Eσ) ∈ GΩσ
0 (Xσ), it is straightforward to verify that the integral 

on the right hand side is 0. Therefore we get:

D.E = D.E + 1
2
∑
σ

εσg
Ωσ (Dσ, Eσ) . (B.6)

In order to calculate (ii) we need GΩσ (Dσ) ∗ βσ:

GΩσ (Dσ) ∗ βσ = βσ ∗ GΩσ (Dσ) = βσ deg(Dσ) +
∫
Xσ

ddc(βσ)GΩσ (Dσ) = βσ deg(Dσ) ,

thus we obtain

D.(0,
∑
σ

βσXσ) = 1
2
∑
σ

εσβσ deg(Dσ) . (B.7)

Finally (iii) is trivial since ασ ∗ βσ = 0 and we have:

(0,
∑
σ

ασXσ).(0,
∑
σ

βσXσ) = 0 . (B.8)
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