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0. Introduction
0.1. Background

Adelic theory for global fields was introduced for the first time by Chevalley in the
1930’s as a tool for studying the completions of a number field with respect to all possible
absolute values at the same time. This is a great expression of “local-to-global” principles
as well as an example of geometric approaches to number theory which have proven to
be very powerful. One of the principal applications of adelic theory for number fields was
published in John Tate’s thesis [23] which presented a proof of meromorphic continuation
and functional equation of ¢ functions of number fields in clearer and more compact way
than the proof given before by Hecke. When C' is a curve over a perfect field, one can
also define the adelic ring A associated to C as the restricted product of the complete
discrete valuation fields K. for any closed point ¢ € C' with respect to their valuation
rings O.. It is possible to obtain a very elegant proof of the Riemann-Roch theorem for
curves by using adeles (see [24, 3.] for a sketch of a proof).

Adelic approach has been generalized for higher dimensions by Beilinson in [3] where
he defined adelic structures as functors on the category of quasi-coherent sheaves. An
explicit theory of 2-dimensional adelic cohomology and dualities for algebraic surfaces
was outlined in [20], where hope for proving adelic Riemann-Roch theorem for a surface
over a finite field was expressed. However, the explicit adelic structures introduced in
[20] are not equivalent to Beilinson’s, since [20] worked with objects that now are called
rational adeles. The gap on the definitions was partially fixed in [21], but a complete
account of 2-dimensional explicit adelic theory was given by Fesenko in [10], where he
also proved an adelic Riemann-Roch theorem for an algebraic surface over a perfect
field by using properties of adelic cohomology. In particular, Fesenko showed that the
function field of an algebraic surface X can be seen as a discrete subspace inside the ring
of 2-dimensional adeles attached to X. Such a result generalizes the classical result of
[23] which shows that a global field is a discrete object inside the ring of adeles.
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The non-cohomological part of (explicit) adelic theory for algebraic surfaces can be
summarized in the following way: fix a nonsingular algebraic surface (X, Ox) over a
perfect field k, then to each “flag” x € y made of a closed point x inside an integral
curve y C X we can associate the ring K, , which will be a 2-dimensional local field
if y is nonsingular at x, or a finite product of 2-dimensional local fields if we have a
singularity. Note how the geometric dimension of X matches the “dimension” of the
ring K, ,, and this happens roughly speaking because for a flag € y (assuming that
z is a nonsingular point of y) we have two distinct levels of discrete valuations: there
is the discrete valuation associated to the containment z € y and the discrete valua-
tion associated to y C X. K, , is obtained through a process of successive localizations
and completions starting with Ox , and by the symbol O, , we denote the product
of valuation rings inside K, ,. The step to the global theory is obtained by perform-
ing a “double restricted product” of the rings K, ,: first over all points ranging on a
fixed curve and then over all curves in X, in order to obtain the 2-dimensional adelic
ring:

Ax =[] Koy € [] Kew-

TEY TEY

yCcX ycX
The topology on K, , can be defined canonically thanks to the construction by comple-
tions and localizations, and by starting with the standard mg-adic topology on Ox ;.
The topology on A x is obtained after a process of several inductive projective limits by
starting from the local topologies on all K, ,. In [10] it is shown that Ax is self-dual
as k-vector space. For 2-dimensional local fields with the same structure of K, , there
is a well known theory of differential forms and residues (e.g. [25]); one can globalize
the constructions in order to obtain a k-character £¥ : Ax — k associated to a rational
differential form w € Qi( X[k and the differential pairing:

do:Ax X Ax = k
(o, B) = & (af).

Fesenko in [10] proves that the subspace Ax/k(X)' is a linearly compact k-vector
space (orthogonal spaces are calculated with respect to d,) and the function field k(X)
is discrete in A x. It is possible to define some important subspaces of A x denoted
as: k(X) = Ao, 41, Aa, Ao1, Aoz, A12, Ap12 = Ax which generate an idelic complex
assuming the following form:

2, dy,
A% Af DAL © A — = AF ® A ® A, —— Ay,

It can be shown that the space ker(dl) is a generalization of the group Div(X) since
there is a surjective map ker(dL) — Div(X) and the intersection pairing on Div(X) can
be extended to a pairing on ker(dk) (cf. [7, 3.]).
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The main aim of our work is to obtain a two-dimensional adelic theory, for arith-
metic surfaces i.e. objects of the form ¢ : X — Spec O where K is a number field. The
problem is motivated by Fesenko’s “analysis on arithmetic schemes programme”. The pro-
gramme develops a two-dimensional generalization of Tate’s thesis, i.e. two-dimensional
measure, integration and Fourier analysis. Fesenko’s work reveals relationships between
geometry and analysis not visible without adelic tools (see also [6] for an alternative
presentation).

In [16] and [18] Morrow, develops an explicit approach to residues and dualizing
sheaves of arithmetic surfaces. In particular he defines the residue map for 2-dimensional
local fields arising from an arithmetic surface and he formulates and proves reci-
procity laws around a point and along a curve of an arithmetic surface. To have a
reciprocity law along a horizontal curve, he completes horizontal curves with points
at infinity, i.e. real or complex embeddings of the function field of the horizontal
curve.

0.2. Results in this paper

At the center of our considerations there is an adelic object for an arithmetic surface
¢ : X — B = SpecOg. One expects that one has to take into account (archimedean)
“data at infinity” of the arithmetic surface. Such an adelic space completed by data at
infinity was proposed for the first time in [9]. In section 2 we present a simpler and
slightly different version of it. Already at the level of local theory, adelic geometry for
arithmetic surfaces is quite interesting, in fact the rings K, , can be equal characteristic
or mixed characteristic 2-dimensional local fields depending whether y is horizontal or
vertical. Over each point at infinity o € By, i.e. an embedding ¢ : K — C, we obtain,
by a base change, a Riemann surface X, that can be thought as a fiber at infinity. The
completed adelic ring A will then contain the one dimensional adelic rings A x,_, relative
to the fibers at infinity X, but counted twice:

As=Axo [] (Ax, ®@Ax,).
oc€B

The arithmetic counterparts Az of the fundamental subspaces A, are also defined. There
is a specific geometric reason that suggests why we should count adeles at infinity twice,
and it involves the interpretation horizontal curves on X in terms of Arakelov geometry
i.e. we have to consider their “intersection” with fibers at infinity.

By slightly generalizing the local theory of residues for two dimensional local fields
developed in [16], in section 3 we define a global adelic residue

¢ Ae—T

(w is a fixed nonzero rational differential form and T is the unit complex circle) and we
show that £“ is sequentially continuous.

Please cite this article in press as: W. Czerniawska, P. Dolce, Adelic geometry on arithmetic surfaces II:
Completed adeles and idelic Arakelov intersection theory, J. Number Theory (2019),
https://doi.org/10.1016/j.jnt.2019.10.010




YJINTH:6419

W. Czerniawska, P. Dolce / Journal of Number Theory see (ssee) sso—see 5
recip. around a point = Ag; C A(% recip. along curves = Agy C A%
Y
X

Fig. 1. The sum of local two-dimensional residues is zero when a point is fixed and curves passing through
it vary. The sum of local two-dimensional residues is zero when a curve is fixed and the points sitting on it
vary.

Section 4 is entirely dedicated to the proof of the self-duality of A as topological
additive group. In particular we show that A &= K}\? as topological groups and moreover
that there is a character ¢ : A — T such that any other character of A+ is of the
form 1 (a-) for a € Ag.

We define the arithmetic differential pairing

dy: Aj(\ X Af(\ — T
(a, B) = €¥(ab) .

We improve the reciprocity laws proved in [18] by giving a set of “completed” reciprocity
laws, i.e. taking into account all flags coming from points at infinity. We show that
both Az and Ag; (adelic subspaces corresponding to curves and points respectively)
are self-orthogonal with respect to d, i.e. Ag = A(% and Az = A(%. The inclusions
Agi C Aé and Ag; C Agé are a direct consequence of the completed reciprocity laws,
thus the self-orthogonality of Ag; and Ag; can be interpreted as “strong reciprocity laws”
for arithmetic surfaces. The “strong reciprocity laws” for surfaces over a perfect field were
proved in [10]. (See Fig. 1.)

The problems of finding proofs of the discreteness of the function field & (X) inside A 5
and of the compactness of the quotient A)?/ K (X)* are still open, but we plan to publish
a solution in a forthcoming paper. Finally, in analogy with the case of algebraic surfaces
we show that the Arakelov intersection pairing can be lifted to the idelic group A% . The
schematic part of the lifting was already proved in [8], so here we solve the problem of
the data carried by Green functions on fibers at infinity. It is worth remembering that
Arakelov theory is the only known theory that provides consistent intersection theory
on arithmetic surfaces, therefore we would expect that a theory of adeles on arithmetic
surfaces should resonate with Arakelov geometry.

The text contains also two appendices which are indispensable for the understanding
and moreover prerequisites for this paper are [8] and a basic knowledge of the theory of
higher local fields (e.g. [17]).
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1. Preliminaries
1.1. Basic notions

General notations All rings are considered commutative and unitary. Let (A, m) be
a Noetherian local ring and let M be an A-module, then we put MSP := M/ Nj>1
m’/ M. When we pick a point z in a scheme X we generally mean a closed point if not
otherwise specified, also all sums zex are meant to be “over all closed points of X”. The
cardinality of a set T" is denoted as #(T). If F is a discrete valuation field, then F' doesn’t
denote the algebraic closure but its residue field. In particular if a € Op then @ is the
image of a in F. For morphisms of schemes f : X — S, the schematic preimage of s € S
is X,. Sheaves are denoted with the “mathscr” late x font; in particular the structure
sheaf of a scheme X is Ox (note the difference with the font O). With the symbol T
we denote the unit circle in the complex plane. The superscript ~ is used several times
in this paper to denote completely different objects: the dual of a topological group,
the completion of a local ring or a “completed structure” in the framework of Arakelov
geometry. This superposition of notation is harmless because the specific meaning of ~
will be clear from the context.

Topological groups 1If not otherwise specified we assume that any topological group is
abelian and Hausdorfl. The dual of a topological group G is the group of (unitary)
characters:

G := Homeon (G, T).

It is a topological group endowed with the compact-to-open topology. Moreover for a
compact subset C' C G and an open U C T neighborhood of 1 we denote

W(C,U) = {Xeé: X(C) cU} cq.

The sets of the type W(C,U) form an open base at 1 for the compact-to-open topology
in G.

If G is algebraically and topologically isomorphic to @, then we say that G is self-dual.
If G is also a ST ring (here ST means semi-topological, see appendix A for details) and
& e G is a nontrivial character, then for any a € G the map
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& :G—T
x — &(ax)

is a character. If the map

O:G— G

a— &,

is an algebraic and topological isomorphism for any a € G, we say that £ is a standard
character. For any subsets S C G and R C G we put:

Sti={xeG:x(S)=1}C@,
Rt :={geG:x(g)=1,VxER}CG.

If H is a subgroup of G, we say that H is dually closed if for every element g € G \ H,
there is a character 1) € H* such that ¢(g) # 1.
We will often use the following simple general result:

Proposition 1.1. Let G be a topological group such that G = lim, _, H; where H; C G is
a subgroup and H; D H;1q for any i € Z. Then any compact subset C C G is contained
in some H;.

Proof. Clearly G = J; H;. Assume that the claim is false, so we can construct a sequence
of points {x;};cz in G such that z; € C'N (H; \ Hi+1). Consider now the index n = —¢
and put A = {z,},>0. If B C A, then BN H, is finite for each n, so since points are
closed in H,,, BN H, is closed in H,,. This means that B is closed in G. In particular,
A is a closed subset of GG, and every subset of A is closed so it has the discrete topology.
But a closed subset of a compact space is compact, and a compact discrete space must
be finite. This is a contradiction with the construction of A. O

1.2. Geometric setting

Let’s fix the main objects and notations that we will use throughout the whole paper.
Some of the material contained in this section can be found with more details in [8]. In
particular we assume that the reader is familiar with the notion of 2-dimensional local
field. Moreover, topological aspects of this section rely on appendix A.

Let K be a number field with ring of integers Ok . Fix the arithmetic surface ¢ : X —
B = Spec Ok which is a B-scheme with the following properties:

¢ X is two dimensional, integral, and regular. The generic point of X is n and the
function field of X is denoted by K (X).
e p is proper and flat.
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e The generic fiber, denoted by X, is a geometrically integral, smooth, projective
curve over K. The generic point of B is denoted by &.

It is well known that ¢ is a projective morphism, so in particular also X is projective
(see [13, Theorem 8.3.16]). Let’s recall a useful result which characterizes all points of
dimension 1 on X:
Proposition 1.2. If x is a closed point of the curve X, then m is a horizontal (prime)
divisor in X . Vice versa if D is a prime divisor on X, then either D C X3 for a closed
point b € B or D = {x} where x is a closed point of Xk.
Proof. See for example [13, Proposition 8.3.4]. O

Let By be the set of field embeddings o: K < C up to conjugation, then #B,, <
[K : Q] and the completion of B is the set B := B U B,. For any point (i.e. nonzero
prime ideal) b = p € B we put:

e Oy := 537. It is a complete DVR.

o Kj := FracOy. It is a local field with finite residue field. The valuation is denoted

by vp.

From now on, we always fix a set of representatives in B,,. Therefore B, is simply a

finite set of embeddings viewed as points at infinity of B. For the non-archimedean place
associated to b =p € B, on K we choose the absolute value

| o =9 (p) V)
where 1(p) is the cardinality of O /p. Moreover:

e For any real embedding 7 : K — R we consider the absolute value:

where on the right hand side we mean the usual absolute value on R. In this case we
define the real valuation associated to 7 as

UT(') = _10g| : |7'

e For any couple of conjugate embeddings ¢,7 : K — C we choose:
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where on the right hand side we have the usual absolute value on C." Note that |- |,
doesn’t depend on the choice between o and @, since they give the same absolute
value. The associated real valuation is

0o () i= —log] - -

For 0 € B, K, is the completion of K with respect to | - |,, thus K, = C or K, = R.
Furthermore, let’s introduce a constant, associated to each o € B:

€y 1=
2 if o is complex .

{1 if o is real

The adelic ring of B (or equivalently of the number field K') is denoted by A 5 or more
classically also by Ak, whereas Ap := A zN]],c 5 Ky is the ring of finite adeles. Another
notation for the ring of finite adeles is A};. For any o € B, consider the base change
diagram:

X, =X xgSpecC —— SpecC

l‘ﬁa lSpec o (1)

X L B.

By the properties of the fibered product, it turns out that X, — SpecC is a com-
plex integral (integrality is a consequence of the geometrical integrality of X ), regular
projective curve. We denote the function field of X, by the symbol C(X,).

Remark 1.3. Diagram (1) arises from the following rather obvious commutative diagram:

X, —— SpecC

J{ﬁ lSpec o

vo| Xgg — Spec K

[

X — B

where ¢ : O — K is the natural embedding and the map 5 is surjective. In other words
o maps surjectively X, onto the curve Xg. Since the morphisms ¢ and o are both flat
and flatness is preserved after base change, we can conclude that ¢, is flat.

L Many authors in this case take the square of the complex absolute value to keep track of the fact that
point at infinity induced by |- |, is “complex”, so roughly speaking “of order two”. We will fix this by using
the coefficient 2 when necessary.
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With the notation X , we define the “completed surface”

X=xulJ x,.
oc€B,

A curve Y on X will always be an integral curve and its unique generic point will be
denoted with the letter y. For simplicity we will often identify Y with its generic point
y, which means that by an abuse of language and notation we will use sentences like “let
y C X beacurve on X..". A flag on X is a couple (z,y) where x is a closed point sitting
on a curve y C X, it will be denoted simply as z € y.

Definition 1.4. Fix a closed point x € X, then:

e 0, := 6/’;-(\3: It is a Noetherian, complete, regular, local, domain of dimension 2 with
maximal ideal m,,.

o K| :=FracO,.

e K, :=K(X)O, CK..

For a curve y C X we put:

e O, = gx\y It is a complete DVR with maximal ideal m,.
o K :=FracO,. It is a complete discrete valuation field with valuation ring O,. The
valuation is denoted by v,.

For a flag x € y C X, we have a surjective local homomorphism Ox , — 0y ., with
kernel p,, ., induced by the closed embedding y C X (note that p, ., is a prime ideal
of height 1). The inclusion Ox , C O, induces a morphism of schemes ¢: Spec O, —
Spec Ox , and we define the local branches of y at = as the elements of the set

y(l‘) = (p_l<py,w) = {3 € Spec Oy 3N ﬁX,m = py,a:} .

If y(z) contains only an element, we say that y is unbranched at z. Fix a flagx € y C X
with 3 € y(x), then we have the 2-dimensional local field

K, ; ;= Frac (@)

explicitly obtained in the following way: we localize O, at the prime ideal 3, complete it
at its maximal ideal and finally we take the fraction field. The ring of integers of K, ; is
denoted by O, ; := Ok, , = @ All the needed material about higher local fields is
contained in [8, 1.1], whereas for a deeper study the reader can consult [11]; see also a
more recent introduction in [17].
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Definition 1.5. Let € y C X be a flag and let 3 € y(z), then the first residue field of

K, is B, = Kilg and the second residue field is k;(z) = KQ(CQZ,) The valuation on K ;

is vy ; and the valuation on E, ; is U&lg, whereas Oga)w ={a€0,;:a€0g,,}

Key D 0p,=0x,, > 02

\
\
\
\
\
N

S 1
~ By, = KN ) Og,

\
\
\
\
N

S k() = K

Moreover we put:

Il Koo Owyi= ]I Ous:

3€y(w) 3€y(z)
= I[ B, H ky (
3€y(z) s€y(z

Let’s endow Ox , with the m;-adic topology with respect to its maximal ideal, then
K, ; can be endowed with a canonical topology by using the following steps explained
in appendix A.2:

(©) (L)

—_—
ﬁXmMOx:ﬁX,xW}

) Ay (D) AN
7 (O2); =5 (O1); ~ Koy =Frac ((02),) . (2)
Then K, , is endowed with the product topology and it is a ST ring (see appendix A
for an introduction to semi-topological structures). Here it is very important to point
out that K, , is not a topological ring, since it turns out that the multiplication is not
continuous as function of two variables.

Remark 1.6. This is one of the several ways to topologise K ,; see for example [5, 1.]
for a survey. It is not the most explicit topology for K, ,, but it is independent from
the choice of the uniformizing parameter since it is obtained by a general process of
localizations and completions.

If y is a horizontal curve then K, ; is of equal characteristic and isomorphic to E, ;((t))
where E, ; is a finite extension of Q, and ¢ is (the image of) a uniformizing parameter.
If y is a vertical curve then K, ; is of mixed characteristic and isomorphic to a finite
extension of K,{{t}} where K, is a finite extension of Q, (see [8, example 1.7] for the
definition of K,{{t}}). In this case ¢ it is not (the image of) a uniformizing parameter,
but it is (the image of) a uniformizing parameter for E, ; = K,((t)). It is always possible
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to choose a uniformizing parameter ¢ = t, of K, to be also the uniformizing parameter
of K, ; for all x € y, this will be our canonical choice if not otherwise specified.

If ¢(z) = b we have an embedding Kj — K, ;, and we say that K, ; is an arithmetic
2-dimensional local field over Kj;. The module of differential forms relative to x and
3 € y(x) is the K, ;-vector space:

sep
1 . 1
;= (Qow,ﬂob) ®0,., Koy,

where Q}DI,ZIO;; is the usual module of Kéhler differential forms and the operator “sep”
was defined at the end of section 1.1 in the “General notations” paragraph. Then, lem
is endowed with the vector space topology over K, ;. In [16] and [18] it is defined the
residue map:

. .0l
resg ; - Qw,z — Ky

with the following properties:

e It is Kp-linear.
e It is continuous (this is shown in [18, Lemma 2.8, Remark 2.9]).

A more detailed description of Qi,a and res, ; will be given in section 3.

The global adelic theory for the projective scheme X is described in [8; 1.2]. We obtain
the adelic ring Ax as a “double restricted product” of the rings K, , performed first
over closed points ranging on curves, and then over all curves in X. Fix any curve y C X
and denote by J;,, the Jacobson radical of O, ,; we put

(Ozy)acy € H Opy: Vs >0, azy € Oy +3j‘,’y
0) ._ T
Al = €y - J

for all but finitely many x € y =€y

Then for any 7 € Z and for any choice of uniformizing parameter ¢,

Clearly Ag(f) 2 Ag(fﬂ) and A_,(f) = 0; moreover we define

reZ

Ay = J Al

reZ
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Definition 1.7. The ring of adeles of X is

Ax =< (By)ycx € H Ay: By € Aéo) for all but finitely many y » C H Ky y.

yCX zE€Y,
yCX

Finally we recall the definitions of some important subspaces of A x. Consider the
following diagonal embeddings:

Ky C [[ Kay» Ky C[] Kew,

ysx rey

SO we can put:

I %ec 1] Koy 11 5o T Ko

zeX zey yCcX €Y
yCX yCX

then we define

Apiai=Ax; Ap:=AxnN H Opy = H Az(zo);

TEY yCX
yCX

Agr :=Ax N H K,; Ay:=Axn H O,; Ao :=AxnN H Ky
reX zeX yCX

A :=AxnN H 0,; Ap:=K(X).
yCX

The subspaces satisfy a series of inclusion relations depicted in the following diagram:
Ao
Agr —— Aoz & Ao2

A‘/AT \\A.

When X is an algebraic surface over a perfect field k, the algebraic and topological
properties of the subspaces A, were studied in [10].
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1.3. Topology on adelic structures

In this crucial subsection we explain how to put a topology on all adelic structures
introduced so far. We point out that all categorical limit considered here are in the
category linear topological groups (so linear direct/inverse limits). For more details see
appendix A.

e For any s > 0 let’s put:

AZ(/O){S} = {(agy)eey € H Ory: azy € Op + 35, for all but fin. many z € y}.
rE€y

Endow A( {s} with the restricted product topology (i.e. linear direct limit).

. A(O) Ns>o0 A( ){s} so we put on A( ) the hnear inverse limit topology.

e The topology is transferred from A(O) to A ) for any r € Z, by the multiplication

by ty,.

Each A(T /A(Hj for j > 0, is endowed with the quotient topology.

* We endow A, = hm A(r) U, A(T) with the linear direct limit topology.

e Ax is the restrlcted product (seen as linear direct limit) of the topological groups
A, with respect to A(O)

Since Oy + Js,y surjects onto E, ,, it is easy to see that the natural projection (which is
continuous and open)

(0) f
A — Ak( )

(az,y)zey = (Tzy)vey

induces an algebraic and topologic isomorphism between Al(jo) /Azgl) and the ring of the
one dimensional finite adeles Ak(q Consider the exact sequence:

0— AM/AR — AL /AR — A0 /AL — 0
Since Aél)/Az(f) and AZ(,O)/AZ(,D are locally compact and self-dual, then Az(,o)/Aéz) is locally
compact. We conclude that for any j > 0 the quotient A?(f) /A?(fﬂ )is a locally compact
topological group (hence complete).

Proposition 1.8. The following two fundamental topological properties hold:

(1) A(T) is complete for any r € Z (but z'n general is not locally compact).
(ii) For each open neighborhood U C A of() there is s > r such that A(S) U.
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Proof. (i) is true since O, is complete and O, + J; , is closed in O, ,. (ii) can be
checked directly from the above definition of the topology. O

Proposition 1.9. There is an algebraic and topological isomorphism

Agf) o liLnA?(f)/A?(f-s-j)
>0

Proof. Thanks to Proposition 1.8, we can apply directly [4, IIT §7.3, Corollary 1]. O

In particular Ag(f) % t;A?(,O) [[ty]] and any Laurent power series in t;Ag(IO) [[t,]] is a truly
convergent series. The open subgroups of A, that form a local basis at 0 can be described
in the following way: fix a sequence {U, };cz of open sets in Ag(jo) with the property that

there exists k € Z such that U; = Aéo) for i > k. Then we consider the open set
/ . .
Z Uity := {Laurent series Zajtg} such that a; € Uj} .
Each open neighborhood U C A, of 0 contains some A?(f).
2. The ring of completed adeles A 5 and its subspaces

We want to define adeles for arithmetic surfaces in a way that preserves the most
fundamental properties of the adelic theory and is compatible with Arakelov geometry.
In particular, we have to consider points at infinity of the base and, corresponding to
them, infinite fibers. When we add a fiber at infinity X, to the picture, we have to take
in account all possible flags on the completed surface X:a point p on a fiber at infinity
X, originates a flag p € X, but it can be seen also as an “intersection point” between
a completed horizontal curve g and X,. (See Fig. 2.)

Let y be a curve on X, if y is vertical then we put y = y, if y is horizontal, then by ¥
we mean:

7=yU |J v
c€B

where

Yo = 5 (y) € Div(X,).

By simplicity we also put yso := UseB. Ys, 50 We have the decomposition ¥ = y U yoo-
Any point p € X, lies on a completed horizontal curve 3 because we have the map
Yo : Xo = Xg C X and points of the generic fiber Xg are in bijective correspondence
with horizontal curves. From now on, a curve on X will be always a completed curve
7, and a point x € § can be also a point lying on some “part at infinity” y, (when y is
horizontal), if not explicitly said otherwise.
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X
XK Xa
y é
dy
B
3 ']
n g

Fig. 2. A visual example where y, is made of two points (marked on the curve X,). The generic point of
the curve y here is denoted by q,.

The local data of the completed adelic ring will be the following ones:

e For any flag at infinity p € X, we put
K, - := Frac (ﬁ/)(:,) .

In other words K, , is a local field isomorphic to C((¢)). The valuation ring of K, ,
is Oy = C[[t]] and E, , = C is the residue field.
e If peyand p €y, for some o € By, we put

Kp,y = Kp’o‘7 Opyy = Op,a‘7 Ep,? = Epﬂ— .
e For any other point x € y we have:
Koy =Koy, Oayi=O0sy, FEoyi==Eyy k@)=>k(z).

When p is a point at infinity we want to consider the fields K, , and K, 5 as 2-dimensional
local fields, but if we use a completion/localization topology as described in equation
(2), we obtain the usual one dimensional valuation topology. Therefore we fix some iso-
morphisms K, , = K, 7 = C((t)) (parameterizations), we consider C with the standard
topology given by its archimedean norm, and we endow C((t)) with the ind/pro-topology
(see appendix A.2). Then we carry such a topology on K, , and K, 3 through the param-
eterizations. The ind/pro-topology on C((t)) is coarser than the 1-dimensional valuation
topology. Let’s emphasize the fact that in order to define a topology on the 2-dimension
local fields at infinity we need to fix an isomorphism with C((¢)), so from now on we
assume that such a choice has been made.
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Remark 2.1. In [9] the construction of local fields at infinity is slightly different, indeed
K, - is R((t)) or C((t)), depending whether o is a real or complex embedding. This might
seem a very natural choice, but in the framework of Arakelov geometry X, is always a
Riemann surface, even if o is real. We want to build deep link between Arakelov geometry
and adelic geometry, therefore we prefer to put K, , = C((¢)).

Remark 2.2. In the product ] vy, K, 5 we find three different types of 2-dimensional
7CX
local fields: K,((t)), finite extensions of K,{{t}} and C((¢)).

We are going to define a new ring A x which will be a subspace of the big product

[lzey, Ky Let’s first extend the spaces Ay) for completed curves:
gCX

Definition 2.3. For any completed curve g let’s put:

Ay :=A, @ H Kpy,

PEYoo
AL = A0 & [[ Oy
y - Yy b,y >
PEYoo
(r) ._ T T
Ay’ = A?(/ ‘o H Pic, s Opa>
PEYoo

and endow them with the finite product topology.

Again each A(yr) is closed in Ay and the latter can be thought as a first restricted
product performed on the completed curve . We can use the formal notation:

Ay =] Ko

€Y

Let’s assume by simplicity that y is a regular horizontal curve, then K., = E; ,((t))
where E , is a finite extension of Q, and it is the completion of the field k(y) with
respect to the valuation induced by the inclusion x € y. Moreover y = Spec Oy, where
L is a finite extension of K. In general if y is any horizontal curve admitting singular
points, then y = Spec R where R is an order of L. For any curve y we put

Ay= [ kw.e ] C.

TEY d€Yoo

where the restricted product is with respect to the complete discrete valuation rings
corresponding to the points x € y. In other words Ay is in general slightly bigger than the
classical 1-dimensional adelic ring of 7. If the point ¢ € yoo is present (recall that in the
case of vertical curves there is no archimedean data) and corresponds to a real embedding
o, then the “g-component” of Ay is C and not R, i.e. we take C for all archimedean places.
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The finite part of Ay, denoted by A%, and the finite part of classical 1-dimensional adeles
coincide. This of course descends from our choice of data at infinity (see Remark 2.1),
but all adelic properties of Ay are clearly the same of the one dimensional adeles. In
particular all results of [23] hold for Ay.

Lemma 2.4. Let y be a regular horizontal curve and let t be a uniformizing parameter
of Ky. For anyr € Z, A@(f) is equal to the following ring:

E;T) = {(ax7y)$ey € H K,y oy satisfies the following conditions (x) and (**)}

rey

(%) aqy € 1" Eq y[[t]].
(%) Assume that:

Gy = 1" Toatt  with Ty € By,
i>0

then for any fized index i the sequence (I'y;)zey € A%. In other words for all but
finitely many x € y we have that I'y; € Op, .

Proof. Inclusion Az(f) C Ez(f). Let’s start with » = 0, the general case will follow trivially.
Consider an element (o 4 )zcy, then clearly (k) is true because Oy, = E, [[t]]. Suppose
that ag, = >, [sit?, then there exists a decomposition:

Apy = Z @z,iti + Z Am’iti €O, + Ow’y

i>0 i>0

where ©,; € O
then the set

Api € B, y\Opg, ,,and 'y ; = O, ; 4+ A, ;. Now fix an index h > 0,

z,y? z,y?

Spi={z €y: Ay #0}

is finite, indeed note that O, + 35 , = Og, [[t]] + t°E, [[t]], thus if A, # 0, then
Opy & Op + Jh:gl. In other words if for infinitely many = € y we had that A, # 0,

x
then for the same points oy ¢ Oy +J Z'Zl against the definition of AZ(JO). We have shown
that for all but finitely many z € y, I';; = ©,; € Op, , which is equivalent to say that
(Fz,i)mEy S A%

The case when r # 0 follows easily from the fact that ﬁ;El(,O) = ES]”).

=(r

Inclusion Zy ) ¢ AZ(,T). As above it is enough to write the proof for 7 = 0. Let (az,y)zey €

EZ(JO), then for any index i > 0 define:

Ti:={rey:Ts; ¢ Og, [t} ;
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by the property (xx) T; is a finite set. Now fix an index h > 0 then for all z € y\ U?;llTh
(i.e. for all but finitely many = € y) it holds that I'; ; = ©,,; when i < h, which means
that

Oy y = Z @x,iti + Z Ar,iti €0, + :‘z)y . u

i>0 i>h

Proposition 2.5. Let y be a reqular horizontal curve and let t be a uniformizing parameter
of Ky. For anyr € Z, A(gr) = " Ag[[t]]. In particular Ay = Ay((t)) and Aq(jo) = Ag[[t]].
Proof. By Lemma 2.4 we have the equality Ag(f) = EZ(,T) and the map = — trAg[[t]] is
given in the following way and it is well defined:

(@wy)oey = | 5D Taith | =17 Y (Taioeyt'-

>0 zey >0

It is routine check to show that is a ring isomorphism. 0O

Remark 2.6. Proposition 2.5 is true also when y is a singular curve. The proof is based
on a slightly modified version of Lemma 2.4; the only difference consists in the fact that
if € y is singular then K, , = HaEy(r) K, ; is a sum of 2-dimensional valuation fields
and J;y is the sum of the maximal ideals of K, ;. Here we restricted the proof to the
case of non-singular curves just by simplicity of notations.

Definition 2.7. The modified version of A x which takes in account the completed curves
is:

Ay = (ﬂﬂ)ycf € H Ay: By € A%O) for all but finitely many 5 p C H K.y.
ycf(\ €Y,
FCX

We also introduce the formal notation

Ax =[] Key-
c

8
<|

<
b

The topology on Ay is the restricted topology of the additive groups Ay with respect
to ALY
7

Definition 2.8. The completed adelic ring attached to X is

A)? = KX D H AXU
0€B
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where each Ay, is the adelic ring of the Riemann surface X,. The topology on A+ is
the product topology.

Let T be the collection of all finite sets of completed curves of X , then for S € T we
define

Ac(S) =T Aasx [TAY x T Ax,
yeSs y¢s 0€B
then:

UAaz®) =45, NAz®=]]ax ] Ax..

Sex ser FCX 0€Bos
The following proposition establishes a nice relationship between A+ and A x.

Proposition 2.9. The following equality holds:

As=Axo [] (Ax, ®Ax,).
oc€B

Proof. Let oo € Ay, then it can be decomposed in the following way:

a = (ay)ycx X (apo)pex,,
oc [oS)

where:

e ay €Ay forally C X and ay € Aéo) for all but finitely many .
o For any fixed o we have ap » € K, and ap, » € O, for all but finitely many p € X,.

This means that « € Ax C Ax @ I A x_, so obviously

oc€Bo

Ay CAx® H (Ax, ®Ax,).
oc€EB,

Vice versa, let @« € Ax @[] A x, then:

oc€Bo

a = (ay)ycx X (ap,o)pex,,
oc€B

where a, and a, ., satisfy the conditions listed above. Since each ¢, : X, — Xk is
surjective and points of X correspond to horizontal curves on X, we can write easily:

o = (ay)ycx x (ap,o)pgém = (ay)ycx X ((ap,o)pEycc)ymcxm = (aﬂ)gc)? €Ax. O
o oo
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Remark 2.10. The above definition of A ¢ is new, but the object is very similar to the ring
of completed adeles given in [9]. One difference was already emphasized in Remark 2.1;
moreover in [9, 25.] the spaces Ag(f) are obtained through some local lifting maps of E, ,
to Oy,y.

Remark 2.11. At first glance, one might think that a reasonable definition of the adelic
ring A can be just Ax & [[,cp_
about the flags of the type p € ¥ C X where y is horizontal and p € X.. So, we only

A x,. With such a definition of A we totally forget
add the flags of the type p € X, C X to the usual geometric picture.

Now we give the definitions of the completed spaces Az: denote by Ky the diagonal

embedding of K, inside [[, .. K, 7, then we put:

TEY
ZOI = KX N H Ky.

yCcX

Moreover for any o let Ag(o) be the diagonal embedding C(X,) — [[,cy, Kp,o, then:

Aﬁ Z:Z()l@ H Ao(U).

c€B

If 2 € X we have the natural embedding K, — [,
the diagonal A, , C K3 x K, where ¥ is the unique horizontal curve containing p
(remember that K, 3 = K, ). Thus we define:

K, 5; if p € X, then we consider

Az =AgN H K, x H Ap.o
rzeX peXs,
o€B

Ay is the diagonal embedding of K(X) in Ax and:

Ag=Ago [] Aolo).

ocE€B
Note that: A(/ﬁ N A@ = Aa.

Remark 2.12. On a completed arithmetic surface we have a “generalized version” of the
function field, it is not just K (X) because we have fibers at infinity. It should be intended
as K(X) @[], C(X,) and note that this coincides with Ag.
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The other adelic subspaces are the followings:

Ag =Ax0 | [] Oeyx [] Ovo | Ar=A4nA5, Ayi=ApnAg,
€Y, pEXs,
?GY 0€Bs

and the containment relations are the same as the geometric case:

Ap

1

Az — As ¢ A5

] T

A T A T A

3. Residue theory
3.1. Local multiplicative residues
For any b € B we choose a (standard) character v: K — T such that

H’L/Jb:AE—>T

beB

is a character which is trivial on the diagonal embedding of K inside the adeles (see [23,
Lemma 4.1.5]).
Fix a completed curve § C X, by considering all local branches in y(x) we also define:

QL= EB Qb

3€y(z)

The structure of Qi,y and the explicit expression of the res, ; depend on the nature of ¥:

§ horizontal The local field E, ; is the constant field of K, ; i.e. Ky ; = E, ;((t)) and
[Ey; : K] < oo.In [16, 2.2] it is shown that there is an isomorphism

0y, = Ery((1))dt (3)

where ¢ is a uniformizing parameter and moreover the local residue assumes the following
form independently from the choice of the isomorphism (3)
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.0l
resg ; - me5 — Ky

adt — Trg, |k, (a-1)

where a = > .. a;t! € E; ;((t)). Moreover we put:

jzm
resy y = g resy ; - Q}m — Ky,

3€y(x)
Cres, gz :=1poresy y : Qif — T

g
where 9, : K, — T is the standard character.
y = y vertical K, ; is a finite extension of the standard field L = K,{{t}} where

[K, : Kp] < oo and ¢ is a uniformizing parameter for the residue field L = K,((t)).
Thanks to [16, 2.3] we have an isomorphism

sep
i, = (,10,)  ®o, L= Kp{{thdt (4)
and a local residue independent from isomorphism (4):
resy, : Q‘ithb — K
adt — — Ter\Kb (a_l)

where a = 3, 7 ajt’ € Ky{{t}}. By [16, Remark 2.6], we know that €} , = Q‘itlst ®r
K, ;, so we obtain a well defined trace map

cts

.ol
Ter,5|L : Qx73 — QL\K[,
At this point we define:

resy ; = resy, OTI"KI’3|L: 9;73 — Ky,
res, y 1= E resy ; - Q;’y - K,
3€y(z)

— .ol
Cresp gz :=1tporesyz:Q, 5 — T,

Y
where ¢, : K — T is the standard character.
When 7 is a completed horizontal curve and x = p € y, C Yoo is a point at infinity,
then:
1 1
Q5= Q, o = Ky odt;

N e . el!
Cresgz :=1s0resp, : 2, , = T.

Please cite this article in press as: W. Czerniawska, P. Dolce, Adelic geometry on arithmetic surfaces II:
Completed adeles and idelic Arakelov intersection theory, J. Number Theory (2019),
https://doi.org/10.1016/j.jnt.2019.10.010




YJNTH:6419

24 W. Czerniawska, P. Dolce / Journal of Number Theory ess (ssss) sse—see

Where in the last line, res, , is the one dimensional residue on the Riemann surface X,
at the point p and ¥, : C — T is the standard character of C.
Finally for a flag at infinity p € X,:

1
Cresp o =15 0 (—respq) 1€, = T.

The detailed proofs of the independence of the various local residues maps from the
parameterizations and standard fields can be found in [16].

Remark 3.1. The choice of the minus sign in the definition of Cres, , is coherent with
the main theory since X, is vertical curve on X in our geometric construction.

The following proposition is the extension of [18, Lemma 3.3] to the adelic case. It
says that it makes sense to take the product of residues along vertical curves; moreover
by looking at its proof one immediately realizes that in the definition of two dimensional
adeles, “the first restricted product” along a fixed curve is a crucial operation.

Proposition 3.2. Let o € Ax and fix a vertical curve y C Xy,. Then the series

Z resy 4 (o, dt)

rey

converges in Ky. In particular res, (ag 4 dt) € Oy for all but finitely many x € y.

Proof. For simplicity let’s assume that y is nonsingular. We know that (o y)zey € Ay(f)

for some r € Z, it means that (au,y)scy = (¢,Be,y)zey Where (Bzy)ecy € AZ(,O). Now we
use the definition of AZ(JO) to say that for any s > 0 we have res; ,(8s,y) € p;;;m(’)b at
almost all = € y. It follows that for any s > 0, res, () € 3™ Oy at almost all

z € y. This shows that > . resy y(ag,,dt) converges in Kp. O

By the universal property of the module of differential forms we have a canonical
map Q}((X)‘K -0l

2,5 therefore by abuse of notation, we can consider an element w €

Q}((X)‘K as an element lying in Qi,g. Moreover, by base change we know that Q(%Z‘(XU)VC s
Q}K(X)‘K ®k(x) C(Xs), so we have a canonical composition map:

Qkxyx = Wxe = Yo

and when clear from the context we can consider w € Q}(( X)|K @S an element lying in
Q) ,. In other words, it always makes sense to take a residue of a “rational” differential

form w € Q}((X)‘K for flags in X and in X.

Theorem 3.3 (2D arithmetic reciprocity laws). Let w € Q}((X)\K and nonzero, then:

(1) Let x € X, then >,
curves J containing x. In particular [

resy y(w) = 0 and resy y(w) = 0 for all but finitely many

gz Cresyg(w) = 1 and Cres, z(w) =1 for all

but finitely many x € y.
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(2) Letp € X,, and let g, be the only completed horizontal curve containing p, then

Cresp,o(w) - H Cres, y(w) = Cres) x, (w) Cres, z-(w) = 1.

yop

(3) Lety C X be a vertical curve or§ = X, for some 0 € Boo, then Y-, coresy y(w) = 0.
Cres, z(w) = 1 and Cres, 3(w) = 1 for all but finitely many x € y.

Cres, y(w) = 1.

In particular [,

(4) Letj € X be a horizontal curve, then [Ley
Proof. See [18, 2.4], [18, 5] and [18, 3] for (1), (4) and the non-archimedean part of (3)
respectively. For the archimedean case of (3) see [24, Corollary of Theorem 3]. (2) Follows
basically from the definitions of the local residues. 0O

Remark 3.4. Note that statements (1) and (2) of Theorem 3.3 describe reciprocity laws
around a point, whereas statements (3) and (4) describe reciprocity laws for a fixed
curve. Archimedean data are taken in account without any special treatment: points on
X, are considered as points of X and achimedean fibers are considered as vertical curves
on X. We point out that statement (2) is new and it hasn’t been published anywhere
before.

3.2. Adelic residue
In this subsection we globalize the local residues in order to get a residue at the level

of completed adeles. Fix a nonzero rational 1-form w € Q}((X)‘ > then we define the
adelic residue map:

gw: Aj(\ T
\ w
(a0,g)zey. X (apo)pex,, H Cress,5(waa g) H Cresy,o (wap,o)
? yCX\ oc€B mey,\ peX,,
yCcX oc€B

()

Let’s explain why & is well defined (i.e. the product (5) is convergent): along all
but finitely many curves y C X the local residue is zero due to the restricted product
with respect to the spaces A?(,O). For the remaining curves we use the following argu-

ments

o If y is horizontal it is enough to look at property (%) of Lemma 2.4. It follows that
the residue is 0 at all but finitely many points of y.

o If y is vertical we use Proposition 3.2.

e For curves at infinity it is enough to appeal to the 1-dimensional adelic restricted
product.
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X— 4

Y2 X,
P
n
T

/\_/

resy o T

T/Jb '¢U

_

Jresm,y1 +resg .y,

b g

Fig. 3. A graphic representation of the action of the adelic residue on 3 different flags: z € y1, * € y2 and
p € Xs.

In [18, Lemma 2.8, Remark 2.9] it was proved that the local residues res, ,, : Q. , — Kp
are continuous, moreover it is clear that the local residues at infinity res, , : €, = C
are continuous (remember that here C has the archimedean topology and K, , the
2-dimensional topology). We are interested in the global theory of residues and we will
show that the adelic residue £“ is sequentially continuous. (See Fig. 3.)

Proposition 3.5. The adelic residue £“ is sequentially continuous.

Proof. To prove the sequential continuity of £“ it is not necessary to consider the
residues along curves at infinity because we have only a finite number of them and
the 1-dimensional adelic residue is continuous. So, it is enough to discuss the schematic
part of £ which will be denoted as £¢ : Ax — T. Note that we can write £§ = 15 0 0¥
where g : Ap — T is the schematic part of the 1-dimensional standard character
and

0“ = (05 )ven : Ax = Ap
with

6y - H K., — K,
zey,
yCX,
b

(4) (#1)
07 ((az,y)) = Z resg y(Wo ) = Z resy y (Wog ) + Z resg y(wog ) € Ky .

z€Xp, yC Xy, z€Xp,
Bk TEY Yo,
y horiz.
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For any n €N, let o™ = (aég)z y € Ax such that lim, ag(m} = 0. Moreover put

x,ydt = wagc& Just for simplicity of notations we can assume that all curves involved

in are nonsingular. We want to show that

(n)
Jm 5 (o) =1
Let’s analyze carefully the summations (i) and (i3):
(¢) We know that K, , is a finite extension of L = K,{{t}} and we can write

Trre, i (BU9) = D AU for B € K, -

i=—00

Then
resy (ﬂé?y)do =—Trg, K, (5; y)( 1)) .

Since lim,, o0 ﬂi ¢ = 0, there exists ng € N such that for n > ng, we have ,Bmy( 1) €
Ok,, i.e. Tes; ( xvydt> € Op. This means that

Tim 3 res,, (BU)dt) € O,
yCXy,
rey

(79) We know that 5(") =3 J(Eny)( ) ¢ where ﬁ(n)( ) € E;, and Eg, is a finite

i>m

extension of Kj. Furthermore lim,, .o Bm .y = 0. We have:

dim Y res,, (BUYd) = lim Y Tep, ik, (B (1)) (6)
r€Xyp, r€Xy,
Y3z, Yoz,
y horiz. y horiz.

Due to the adelic restricted product, for all n > ny we have that res, , (,656723) = 0 along
all but a fixed finite set of curves y C X, therefore we can exchange the summation and
the limit in equation (6). So we get:

lim Z resLy(ﬂgzdt): Z nli_)II;OTrEmJ,\wa;@(_l)):

n—00
zeXy, z€Xy,
Yoz, Y3z,
y horiz. y horiz.
E i (n)(_ —
Trg, , K, (Jl_}rr;oﬂm’y( 1)) =0.
z€Xy,
Y3,
y horiz.

We can write:

lim £5(a®™) = lim ws(6°(a™)).

n—oo
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For each b € B we have

Tlgn) =0 (a™) = Z resz,y(ﬁgly)dt) + Z resm’y(ﬁggdt)

yCXp, rzeXy,
TEY yox,
y horiz.

and by (i) and (i4) we can conclude that:
lim Tb(n) e Oy.

n—oo

Finally:

: wi (n)\ _ 1; (n) _ : (n) —
€5 (o >—Jﬂeﬂs((% )beB)—ws((Jzﬁ:ﬂ )beB>—1- .

From the sequential continuity of the adelic residue we can deduce a stronger version
of reciprocity laws:

Proposition 3.6. Fiz a rational differential form w € Q}((X)|K' Then the following state-
ments hold:

(1) Fiz a point x € X; For any o € K, we have [[,
(2) Fir a curvey C X. For any oo € Ky we have []

Cres, y(aw) = 1.
rey Cress y(aw) = 1.
Proof. (1) K, = K(X)O,, but Ox,  is sequentially dense into its completion O,.
Then the claim follows from the sequential continuity of the adelic residue and The-
orem 3.3(1).

(2) Again It follows from the fact that K(X) is sequentially dense in its completion
(with respect to y) K, the sequential continuity of the adelic residue, and Theo-
rem 3.3(3)-(4). O

4. Self-duality of completed adeles

This section is entirely dedicated to the proof that the additive group A ¢ is self-dual.
We will reduce the problem to show the self-duality of A, and Ax, .
The following two lemmas characterize the characters of A<:

Lemma 4.1. Let x € K}, then x (A(go)) =1 for all but finitely many curves y C X. In
particular if 8 := (ﬁg)y X (Bs)s € A5 we have that

x(8) =TI x) 1] xB-)-

?CS(\ 0€B

(In the above formula we clearly embedded each By and B, naturally in As.)
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Proof. Let U C T be an open neighborhood of 1 which contains no subgroups of T
other than {1} and let V' C Ag be an open subset such that x(V) C U. By the
definition of restricted product as direct limit with the final topology, we know that for
any finite set S of completed curves in X the subset V N A 5(S) is open in A(S).
In particular by the definition of product topology, it contains an open subset of the
following form:

w=T[aYx [Twyx I] W,

y¢s’ yes’ 0€Bxo

where S’ is another finite set of completed curves in X and Wy C Ay, W, C Ax, are
open. It follows that H := (Hy¢S’ Afjo)) C U, but H is a subgroup of T, thus H = {1}

by the choice of U. In particular x (A(go)> =1 for any § ¢ S’. The last assertion of the
lemma is straightforward. O

Lemma 4.2. Let x5 € z&\g and let x, € XX\U If x7 (A(yo)) =1 for all but finitely many
curves y C )?, then

=[x II weas

?C)/(\ 0E€EB

Proof. The only thing that is not straightforward is the continuity of x, and there is no
need to consider the fibers at infinity since they are finitely many. Let U C T be an open
neighborhood of 1 and choose V' C U such that? II,,v c U. Now pick a finite set of
completed curves S C T of cardinality m, and for any § € S take Wy C x5 (V). Then

[Tes Wy x Ies A(yo) is contained in the preimage of [[; xz. O

The following proposition is basically the “reduction argument” that allows us to
restrict our attention to Ay and Ax, .

Proposition 4.3. The following isomorphism of topological groups holds:

— !~ ——
Y
AX\: I | Ag X I | AX‘7
yCX 0€Bo

where on the right hand side the restricted product is taken with respect to the subgroups

(A%O))L - Zk\y

2 By II we denote the actual complex multiplication of all elements in the open sets. In this particular
case we are taking the “m-th power of V.
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Proof. Consider the map:

F5CX 0€B

(X7)yex X (Xo)oeBa = Xy Xo
Yy
jcX  0€Bw

/

where clearly we naturally considered x, o € K} From Lemmas 4.1 and 4.2 it follows
immediately that ¥ is an isomorphism of groups, so we have to prove that it is continuous
and open. Let U be an open neighborhood of 1 and consider the compact of A:

c=1]cx[[aY < I] ¢

yeS yéSs 0E€B~

where C,, Cy are compacts, and we assume that S has cardinality m. Then W(C,U) is
a basic open neighborhood of A4 around the identity character. Take now V' C U such
that Hm+#3w V C U and consider:

w = [[wcev) < [[ (Axg”)L < [ wc..v).

7eS 7¢S 0€Boo

Then clearly ¥(W) C W(C,U). The proof of openness is similar. O

Remark 4.4. So in order to show the self-duality of K} we are reduced to show two
things:

e The self-duality of Ax, .
* There are topological and algebraic isomorphisms 0y : Ay — Ay mapping homeo-
(0)

1
morphically Az onto (A(yo)> for all but finitely many completed curves.

For the self-duality of Ax_ we will use the following general results about Laurent
power series over a self-dual group.

Lemma 4.5. Let G be a ST ring and suppose that (G, +) is endowed with a standard char-
acter. Then G((t)) has a standard character with conductor equal to 0 (see appendiz A.2
to see how G((t)) is topologised and for the definition of conductor).

Proof. Let £ be a standard character of G. First of all let’s find explicitly a nontrivial
character of G((t)) which has conductor equal to 0. Consider:
PP G((t) =T
Z aiti — f(a,l)

>m

Please cite this article in press as: W. Czerniawska, P. Dolce, Adelic geometry on arithmetic surfaces II:
Completed adeles and idelic Arakelov intersection theory, J. Number Theory (2019),
https://doi.org/10.1016/j.jnt.2019.10.010




YJINTH:6419

W. Czerniawska, P. Dolce / Journal of Number Theory see (ssee) sso—see 31

—

Let ¢ € G((t)), we want to show that there exists a uniquely determined o € G((t))
such that ¢ = 2. Assume that ¢, = 4, for any b € G the map b — ¢(bt'~!) defines a
character on G that by hypothesis is equal to &,, for a uniquely determined ay € G. So
consider the character:

()

1/1 ($) = ql)o(xaot,i)

for z € G((t)),

it is easy to verify that ¢! (¢ ~'G[[t]]) = 1. By iterating the above argument, for any
J > 1 one finds a uniquely determined a; € G such that

W) b(a)
1/)0 (:mjt_i‘*‘j) 1/}0 (x Z;L:O aht_i+}L)

P (@) =

is a character trivial on t*~1=JG[[t]]. By taking the limit for j — oo we obtain:

1= lim ¢/ (z) = ¥(z) : .
j—o0 wo (33 tho aht—z+h)

So we put =3, 5 apt~"" and it follows that ¢ (z) = ¢°(za).

Now we show the continuity and the openness of the map G((¢)) — G((t)) defined by
a +— 0. It is enough to prove the following simple things:

(a) Given a compact C' C G((t)) and an open U > 1 in T, there exist an open set V'3 0
in G((t)) such that: a € V = aC C ¢~ 1(U).

(b) Given an open U 3 0 in A there exist a compact C C G((t)) and an open V 3 1 in
T, such that: aC C =1 (V)= acU.

The explicit proofs of (a) and (b) are a respectively a very special case of the proofs
of continuity and openness assertions of Theorem 4.7, so they are omitted here. 0O

Proposition 4.6. The additive group Ax, is self-dual for every o € B.

Proof. For any point p € X, we have K, , = C((t)), therefore we can apply Lemma 4.5
to conclude that K, , is self-dual and that a standard character with conductor equal
to 0 is given by a — Cres, ,(adt). At this point it is enough to follow line by line the
argument in Tate’s thesis that shows that adeles over a number field are self-dual (see for
example [22, 5.1]) to prove that Ax is self-dual. Actually one needs the 1-dimensional
version of Lemmas 4.1, 4.2 and 4.3, but recall that we have a 2-dimensional topological
structure on K, , and Ax, . O

When 7 is horizontal one can apply Lemma 4.5 and the explicit expression of Ay to
show that Ay is self-dual, but when ¥ is vertical, the proof is more problematic because
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we don’t have any nice expression of Ay in terms of one dimensional adeles. A deeper
analysis of the proof of Lemma 4.5 unravels that the only real advantage of having the
expression A = G((t)), is the ind-pro structure of A over a self-dual group G with a
standard character. In general also A, has such property, and the following theorem is a
generalization of Lemma 4.5, where Aé_l) / AS” plays the role of G and A?(,O) plays the role
of G[[t]]. We will heavily employ the topological properties described in subsection 1.3.

Theorem 4.7. The additive group Ay is self-dual with a standard character 0. Moreover
1 i
w0e (A7) and 0y (4) = (A7)

Proof. It is enough to work with A,. For simplicity of notations let’s put A, := Al(f),
A=A, and t := t,. Let’s summarize some properties (all categorical limits are in the
category of linearly topologised groups):

1) A, is complete and A, = lim._ A./A.4;.
>
2) A, /A1 is locally compact and self-dual with a standard character.

4) A=lim A, =, A, and N, A, = {0}.

(1)
(2)
(3) A/A,4; is locally compact for every j > 0.
(4)
()

Any open neighborhood of 0 in A contains some A,..

Fix a standard character £ € A_1/Ap. Then consider the following commutative diagram
of topological groups with exact short sequences:

0 0 0
I I I
0 —— A 1/Ag —— A 9/Ag —— A o/JA 1 —— 0

Lo
I
C

Since the dual functor is exact on the category of LCA groups, we get the following
diagram with exact short sequences:
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0 0 0

l l l

0<—A:/\Ao<—Af2/\AO<—A_/2/I_1<—O

Ay Ao Ay
[ 1
Ao Ag Ay

In other words & lifts to a character ¢! € Z_\l which is trivial on Ag, then we can lift &
to a character £2 € A_y which extends ¢!. By iterating this process we clearly construct
a character £" € A_,, extending &'. Now we can define a character 1) : A — T in the

following way:
Ya) :=€"(a) if a€A,\Anyr-

By construction 9° is trivial on Ag. A more explicit expression of ¥/° can be given by
using the identification A, = t"Ao[[t]]: if a = 3,5, ait’ € A, then ¥(a) = (a1t~ 1)
where a_1t~1 is the natural projection of a_1¢~* onto A_;/Ay. We want to prove that
1Y is a standard character for A, so that the map:

@wo A — 121\
a—P)
is an algebraic and topological isomorphism.
Surjectivity. Since € is a standard character of A_;/Ap, any other character in A~!
which is trivial on Ay is of the form &!(g-) for g € A_;. Consider any ¢ € A and let

i = ¢y the minimum integer ¢ € Z such that ¥/(A4;) = 1, note that this integer always
exists thanks to (5) and the fact that T has no small subgroups. Then:

'@[J\A,i,l (t_l) :fl(°a0t_i) for ag € Afl.
Let’s define the following character

1y v0)
P = gt
then for any t'='b € A;_1 (b € Ap):

YD) ¢ (aot™'b)

= (a5 PO(agt-1b)

Yia,_, (t'71D)
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In other words ! is trivial on A;_;. By iterating the above process for j > 1, we find
elements a;, € A_; and characters:

¥()

YO(- LO aht*iJrh)

1/}]() =
which are trivial on A;_;_;. Now for g € A take the limit:

1= lim ¢’ (g) = ¥(9)

j—oo ¥O(a > ys0 apt=ith)

We conclude that ¢(-) = °(- @) for a := Y, -, ant” """, The partial sums defining o
form a Cauchy sequence in A_1, which is complete, so « is actually an element of A_;.

Injectivity. For every a € A\ 0, there exists r € Z such that ker), is trivial on A,
but not on A, _1.

Continuity. We have to show that given a compact K C A and an open U 5 1in T,
there exist an open set V' 5 0 in A such that: ¢ (VK) C U. Since K is contained in some
A,,, by simplicity we can “shift” K thanks to the multiplication by ™! and assume
K c A_q. Then K = LiLnj K; with K; € A_1/A;. Now, since ¢ is a standard character
for A_1 /Ay, it is not difficult to show by induction that the multiplication in A and the
character 1° induce an algebraic and topological isomorphism A_;/A; & A:/\Al for
any j > 0. Thus we induce perfect pairing of LCA groups:

€j: Afl/Aj X A,]‘/A1 —T.
Consider the orthogonal complement W; = Kj‘ ={a€ A_;/A: ¢;(Kj,a) = 1}, then
W, is open in A_;/A;. Let V; C A_; be the lift of W, it follows that the open set

V' =1J,V; is the open set we were looking for.

Openness. We have to show that given an open U 3 0 in A there exist a compact
K C Aand an open V > 1in T, such that aK C ¢~1(V) = a € U. The open set

o
U is contained a basic open subgroup Z U;t" where we assume that U; = Ag for
i > m. Since A_1/Ap has a standard character, for any i < m there exists a compact
C; C A_1/Ap and an open pen V; 3 1 in T such that:

&aC) cVi=acUt ' C A /A.

Since T has no small subgroups, we can actually choose V; in a way that

£@C;) =1=acUt!.
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Now, since for any r > 1 we have surjective homomorphisms of LCA groups A_;/A, —
A_1/Ag, we can lift C; to CI € A_;/A, which in turn gives C; = lim C7 compact in
A_1. We put K; = C;t € Ag. For i > m we choose K; = 0, so we construct the compact
set K =5, K;t~%in A. It is easy to show that K and a small enough V C T containing
1 satisfy the requirements needed to show openness.

Clearly ©y0(Ag) C (Ag)*. Let 90 ¢ (Ag)*, then there exists b € Ay such that
1(ab) # 1, but this means that a ¢ Ay otherwise we would have 1°(ab) =1. O

Corollary 4.8. A+ is self-dual.

Proof. The proof follows directly from Propositions 4.3, 4.6 and Theorem 4.7. For more
clarity, see also Remark 4.4. O

5. Properties of the adelic differential pairing

Fix a nonzero rational differential form w € Q}(( X) then the adelic differential

| x>
pairing (associated to w) is defined as:

dy: A)A( X A)A( — T
(o, B) = &% (af).

For any subset S C A& we define the orthogonal complement of S with respect to d.,:

Sti={B€Az:d.(SB)=1}. (7)

The operator L in this section shouldn’t be confused with the one for topological groups
and their duals.

Proposition 5.1. The map d,, has the following properties:

(1) It is symmetric and sequentially continuous.
(2) For any couple of subgroups Hy, Hy € A we have Hi- N Hy = (Hy + Ha)™*.

Proof. (1) Symmetry is obvious, sequential continuity follows easily from the fact that
&“ and the product are sequentially continuous.

(2) If h € Hi- N Hy, then d,,(h, H; + Hy) = d(h, Hy) + d(h, H2) = 1, so one inclusion
is proved. Vice versa assume that h € (Hy + Hy)*, then d(h, H;) = 0 for i = 1,2, so we
have also the other inclusion. O

Now we show that the spaces Ag; and Ag; are equal to their orthogonal complements.
Compare these results with the “geometric counterpart” in [10].

1 _
Theorem 5.2. A01 = A(ﬁ .
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Proof. We show the equality by showing two inclusions. First we prove that A5; C Aéxl.

It is essentially a consequence of our reciprocity laws for completed arithmetic surfaces.
We have to show that for any «, 8 € A=, d,(«a, 5) = £“(af) = 1. Let a = a3, then

o1

&¥(a) = H Cres, y(wag z) H Cres, o (wap,o) -
ZEY, PEXs,
@C? 0€B

The first product is equal to 1 thanks to Proposition 3.6(2); the second product is 1
thanks to the one dimensional reciprocity law.

Next we show the inclusion A(Jﬁ C Ag;. We take an element a = (ay) X (a5) € Aé*l'
We need to show that ay € Ky and a, € Ag(c). We consider 3 cases.

Curves at infinity. Pick any g € Ag(o) C Ag;

. 1
g7, then since a € A(ﬁ

dy(a,g) = H Cresp o (ap,ogw) = 1.
PEXs

If 4 is the standard character of C, it follows that

1
Z resp o (ap o gw) € ker¢p = §Z +Ri, Vg€ Ao(o). (8)
peXo

By equation (8) for any A € R we have

1
Z resy o (ap o Aw) = A Z res, o (ap ow) € §Z +Ri.
peXo PEX,

It follows that >° y res; o (apow) = 0. We can replace a, with ash for any h € Ag(o)
to get > cx, resp,o(apohw) = 0. In other words a, lies in the orthogonal complement
of Ag(o) with respect to the pairing:

’Tw:zA)Q7 XAXG%(C
(p0)s (Bpo)) = Y 1€8p,0 (0 Bpot)

pPEXs

But we know that Ag(o) is equal to its orthogonal complement (with respect to T,).
Such a result was proved for number fields in [23, Theorem 4.1.4], but see for exam-
ple [7, Theorem 2.21] for the function field case. Therefore we conclude that a, €

Ao(O').

7 horizontal. We know that Ay = Ay((t,)), where ¢, is a local parameter for Ky C Ag;
and therefore any ay has the following expression:

i>m
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We can also take w = fdt,. Then for any r € Z and any c € k(y):

dy, (az, cffltr H Cres; y(az ytycdt,) = gty (agtyc) =1. (9)

TEY

Then ¢t (agtyc) is a standard character of the one dimensional adeles Ay calculated
at ca_,_1. Since equation (9) holds for every r € Z, and k(y) is equal to k(y)* in Ay
(again [23, Theorem 4.1.4]), we can conclude that a; € k(y) for every 4. This means that
Qg S Ky

y =y vertical. Let t € k(y) be a uniformizing parameter and consider a lift ¢ € Ox .
Put w = fdt and let L = K,{{t}} a standard subfield of K, ,. We know that there exists
an integer s such that Try \Kb (rk,) € Pk, Fix 7 € Z such that Trg, 1 (p"az,y) € p7-

For any m € Z we have f~1p"t™ € K, C Ags, so since a € A(Ji we obtain that

(U

d(a, f1pt™) = ZresLy(praz,y -t™dt) € Oy.

TEY

Since Ter,y|L(p”ax,y) €py and Trg |k, (p‘}(p) Cpk,:

Z res; y (p"az,y - t"dt) =0

TEY

Now we apply [16, Corollary 2.23] to write

0= Zresm,y(pram,y -tmdt) = Zresz,y(pramyy -tmdt) =

TEY TEY
— Z €.y ress z)/(p Agy - ML) Z res y(ex yP gy )
TEY TEY

where:
. resgg, : Ey 4 — k(D) is the one dimensional residue on E, .
o ey = €e(K; | Kp) is the ramification degree.

The above relation holds for any m € Z, and moreover we apply the same one-
dimensional argument used in the case of the curves at infinity to conclude that k(y) is
equal to k(y)* in A,. It follows that (@ )zey € k(y), therefore a, € K,,. O

Before proving that Ag; is self-orthogonal we need to study with more detail the
structure of a neighborhood of a point x € X such that ¢(z) = b. Let’s denote with
Spec! O, the set of prime ideals of height 1 in O, then a curve y passing by x corresponds
to the set of local branches y(x) C Spec! @,. But there might be some elements q €
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Neighborhood of x Spec! O,
o
o
o
T
T(x)

Fig. 4. A visual representation of the correspondence between prime ideals of O, and curves passing by x.
For simplicity we assumed that the curves are nonsingular at x, hence y(x) is exactly a point in Spec O,
for any y.

Spec' O, which don’t correspond to any curve passing by z, those are exactly those
ideals:

T(x) :={q € Spec’ O,: qN Ox . = (0)}.

The elements of T(z) are called transcendental curves (passing by x). (See Fig. 4.)

Also for any q € %(z) it is possible to construct a 2-dimensional local field K, 4 and
the residues res, q : ;¢ — Kj, Cres, g : {0, ¢ — T in the usual way. But transcendental
curves have the following pathological behavior:

Lemma 5.3. Fizw € Q}((X”K and let q € T(z), then Cres, q(w) = 1. Moreover if g € K,
then Cresg ¢(gw) = 1.

Proof. The first claim follows immediately from the fact that K(X) C (O,)q. For the
second one it is enough to notice that K, = K(X)O, is sequentially dense in K/ and
use the first part of the lemma. O

The presence of transcendental curves is a subtlety in the adelic theory. In fact, in
general K, is obviously a proper subring of K, but the following result from commuta-
tive algebra ensures that K, and K/ coincide if and only if there are no transcendental
curves passing by x.

Proposition 5.4. Let A be a Noetherian, regular, local domain and let A be the completion
with respect to its maximal ideal. Then the product AFrac A is a field if and only if for
any nonzero prime q C A, qN A # (0).

Proof. Since A is regular and local, also Ais regular and local, which implies that A and
AFrac A are integral domains as well. It follows that A ® 4 Frac A & AFrac A. Then it
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is well known (e.g. [14, p. 47]) that we have an homeomorphism:
Spec(A @4 Frac A) =2 § := {qGSpecg:qﬁA:(O)} . (10)

(=) A 4 Frac A contains only a prime ideal, the trivial one, so by the homeomorphism
(10), S contains only one element, which is (0). («) If S contains only (0), then by
the homeomorphism (10) the only prime ideal of A@, FracA is (0), which means that
//1\®A Frac A is a field. O

Corollary 5.5. Fiz a closed point © € X, then K, = K. if and only if there are no
transcendental curves passing by x.

Proof. By definition K, = K(X)O, is the smallest ring containing K(X) and O,, so
the claim follows from Proposition 5.4. O

Now let’s put

Axe=AxN ][] Kew,

yo

/
Ay, = H K. q with resp. to Oy q,
qE€Spect O,

and note that A’y | O Ax ;. Lemmas 5.8 and 5.9 below will be used to show the inclusion
AO£2 C Ags- The first one will be a modified version of [12, Lemma 3.3], so we present a
proof. The second one will be just [12, Lemma 3.4] rewritten with our notation, so for
its proof we remand the reader to the appropriate reference.

Remark 5.6. The paper [12] shows only some local calculations regarding residues on the
space A’y . Moreover the space denoted as K, in [12] is exactly our K.

Lemma 5.7. Let R be a ring, then

Frac (R[[t]) = F := { Y a;t' € Frac(R)((t)): 3r € R such that a; € R[1/7] ,Vi

i>m
In particular, we deduce that in general Frac (R[[t]]) is strictly contained in Frac(R)((t)).

Proof. Since F is a field containing R[[t]], we have to show only the inclusion
Frac (R[[t]]) € F. Let ¢(t) = L8 € Frac (R[[t]]) with f(1),0 # g(t) € R[[t]]. Write
g(t) = tF(r — ty(t)) = t*r(1 — Ly(t)) with k > 0, 0 # r € R and y(t) € R[[t]]. Then
ﬁ =175 L (y(t)" and ¢(t) = 3, ¢;t’ where m € Z depends on ¢ and each ¢; is
of the form ¢; = iji with p; € Rand v; e N. O
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The morphism ¢ : X — B sending z to b induces a finite ring extension Op|[[t]] < O,,
therefore from now on we can always identify Op[[¢]] with its image in O, when ¢(z) = b.

Lemma 5.8. Assume that O, = Op[[t]]. Fiz a rational differential form w € Q}((X”K and
let a = (as,q) € Ay, such that:

H Cresy q(gag,qw) =1 for any g € K, , (11)
q€Spec! O,

then a € K7,.

Proof. There is a well known classification result for the elements q € Spec' Oy[[t] =
Spec! O, (see for example [19, Lemma 5.3.7]):

e q = qy = Oy, where m, is the uniformizing parameter of O,. This is the only
prime ideal such that K, 4, is of mixed characteristic.

e q = hqO, where hy € Op[t] is an irreducible Weierstrass polynomial, i.e. hq =
td + altd_l + ...+ aq with a; € PK,-

Without loss of generality we may assume that a, q € O, 4 for any q # q,, since multiply-
ing (ay,q) by any nonzero element in K’ amounts to an equivalent problem. Moreover,
for the same reason we can also assume for simplicity that w = 1dt.

For any q # q, and any uniformizing parameter 7 for the 2-dimensional local fields
K, 4, we can choose the following isomorphism:

E, ((hq))
hq

In other words ¢ can be identified with a root of the polynomial equation hq(t) = m4. By
Hensel’s lemma we deduce that such a root exists and it is integral, thus we can write:

t= Zciﬂ-é with ¢; € Ex,q .
i>0

The following two easy results are fundamental:

(i) hq € OF , for any q" # q,q,. This is obvious from the definition of O,
(i1) t € Ogyq for any q' # g. Assume by contradiction that ¢t ¢ O, 4 and let hy =
t4 + a1t + ...+ aq, then by (i):
0=vp,q (" + a1t + ...+ aq) = min {vg ¢ (t7), 05, (a1t 1), ..., vz g (aq) } =
= min {dvg, ¢ (t), (d — 1)vg,q(t),...,0} = dvg q(t) <0

which cannot be true.

Please cite this article in press as: W. Czerniawska, P. Dolce, Adelic geometry on arithmetic surfaces II:
Completed adeles and idelic Arakelov intersection theory, J. Number Theory (2019),
https://doi.org/10.1016/j.jnt.2019.10.010




YJINTH:6419

W. Czerniawska, P. Dolce / Journal of Number Theory see (ssee) sso—see 41

If for any q’ # q, we write

i
Ogp,q" = E :ai,q’ﬂq’v iq € Eg g,
>0

by (i)—(i%) and equation (11), for any n > 0 we have

H Cresg, g (hy 1" ag,¢w) = Cresy q(hg 1" ag qw) - Cresg q, (g 't"ap,q,w) = 1.
q’ESpec! O,

Therefore, we have the equality

Cresx,q(hglt”a$7qw) = Clres,c,q,u(hqfltnagc,%w)*1 ) (12)

but by definition
Cresm,q(hq_lt"az,qw) =1y (TIEM|K& (cgaqu)) . (13)
Since we can take 1, co, ..., cgeg 171 as a basis of E, q over K;, equations (12) and (13)

imply that Trg, |x,(Aao,q) is determined by a, 4, for any A € E, 4. By using non-
degeneracy of the trace pairing

Erq X Epq— Ky

(u’ S) = TrEm,q [ Kb (us)

we conclude that the element ag 4 is uniquely determined by a; q4,. We can conduct the
same calculations for hq’iflt"am,q, to see that a; 4 is determined by a, q, for any positive
integer 4. It leads us to a conclusion that a, 4 is uniquely determined by a; q, for any
47 9o

So, we are reduced to show that a, g, is in K. Recall that K, 4, = Kp{{t}}, so we
can write

7
az.q, = Za’i,%t , Qig, € K.
iE€EZ

Now, by putting po = tO, and reasoning similarly as above we obtain
Cresy,q, (' ag,q,w) " = Cresy p, (1 tag pow) =1, foralli>1.

It means that a:},qv € Oy for any i > 1. By definition of Ky{{t}}, we know that there
exists N > 0 such that a_; 4, € Oy for i > N. In other words if > N and a_; 4, # 0,
then a_; 4, € O;. Since lim; ,_ a;jq, = 0, we conclude that it has to exist M > 0
such that a_; 4, = 0 for ¢ > M. This proves that a, 4, € Ky((t)). Again thanks to the
definition of Kj{{t}}, we know that there exists m € Z such that vy(a;,q,) > m, which

means that for any choice of uniformizing parameter s € Oy, then a; 4, = s™"/g with
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j>0and g€ ObX. We distinguish two cases:

e If m <0, then a; 4, = (1/5)"™ - s7g € Oy[1/3]
o If m >0, then a; 4, = (1/5) - s™THlg € Oy[1/5]

Thanks to Lemma 5.7 we conclude that a, 4, € K. O

Let € X such that p(z) = b, then we put OF := Oy[[t]] € O, (recall that Oy[[t]] is
canonically embedded in O,). For any prime u € Spec' O we have the 2-dimensional
local field K fu obtained by the usual process of completion/localization. In general we
can construct all local adelic objects relative to the flags = € u € Spec? O7. Such objects
arising from the special ring O7 will be marked with the symbol # to distinguish them
from the usual ones. Let q € Spec' @, be a prime sitting over u, then we have a finite
field extension K, | K#, and a trace map Tr K. o|k#, Which extends directly at the level

of differential forms: K

Tr QLo

fdt — Terkqle’u(f)dt

Kol KZu

Such a map is exactly the abstract trace map for differential forms defined in [16] and

mentioned in section 3. We recall that in [16] it is also proved that the residue is functorial

with respect to the trace, which in our case means that res, q = res#, o Tr |k, - The
) x,q u

local trace map defined above can be further generalized to an adelic trace:

Tr.: Aly, = (Ak,)”

(@z,q)q = Z TfKM |KZ ., (az,q)

qlu “
where with the notation q|u we denote all ideals q € Spec' O, sitting over u.
Lemma 5.9. Let f € Aly  such that Tr,(fg) € (K,)* for any g € K}, then f € K.
Proof. See [12, Lemma 3.4]. O
Theorem 5.10. Aéé = Ag -

Proof. First of all let’s prove that Ag; C Aé. We have to show that for any a, 3 € Ag,
dy(a, B) = €“(af) = 1. Let a = af3, then

&¥(a) = H Cres, y(waz z) H Cres, o (wap o) =

ﬂfeg,\ pe€Xs,
yCX o€B

= [] Cressy(wasy) [] Crespo(wapo)Cres,y(wayy).
gr:_EX7 I)_GXm
yo T Y>D,
0€B~
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We can conclude £¥(a) = 1 thanks to Proposition 3.6(1) and from the explicit definition
of Ag; at infinity.

. . 1 . . _ -~ L
Now we show the inclusion A% C Ag. Fix a = (az35) X (ap,0) € A7; and assume
w = fdt, we consider two cases:

x = p is a point on X,. For any g € C((t)) we consider the element (f~1g, f~1g) € A, .,
then if 7 is the unique horizontal curve containing p we obtain

Cres,, 5 (ap5f 'gw) - Cres, o (ap o f tgw) = 1.
This means
resp 3(ap zgdt) — res, o (ap o gdt) € ker 1, = %Z + Ri. (14)
Since equation (14) holds for any g € C((t)), it is clear that it must be (ap3, ap,s) € Ap o

x is a point on X. Recall that O, is a finite ring extension of Op|[[t]].

We first treat the case where there are transcendental curves passing by x; let’s extend
the element (a; y)ys: to an element (a;, ;)q € Ay, in the following way: for a transcen-
dental curve q € T(x) let’s insert a , € K,; at all other primes nothing changes. Now
let g € K, then:

H Cresy q(ay, q9w) = H Cres, 3(az ygw) H Cresy q(ay q9w) = 1 (15)

q€Spec! O, PEE qe%(x)

(%) (i4)
where (i) = 1 because (az3) X (aps) € Aéé and (i7) = 1 thanks to Lemma 5.3. Since K

is sequentially dense in K, equation (15) implies that for any h € K/,

H Cresy q(ay, ghw) = 1. (16)
qeSpect O,

Now we use equation (16) and the functoriality of the residue with respect to the trace
map:

Op > Zresmﬁq(a;’qhw) = ZZresﬁu (’IYKI qlKﬁum;’qhw)) =
q

u  qlu

:Zresﬁu ZTer,q‘Kfu(a;)qhw) :Zresjfu ZTTszqlKﬁu(a;M)hw
u

qlu u qlu

By Lemma 5.8 we can conclude that Tr, (a’%q)q € (K")# diagonally. By replacing a,.y

with ca;, 7 for any ¢ € K, we can again conclude that Tr, (ca;)q)q € (K")# diagonally.
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At this point we can use Lemma 5.9 to conclude that (a,

(@z,5)y5x € K, by the choice of (af, 4)q-
If there are no transcendental curves passing by z, then A’y = Ax , and K, = K

¢Ja € K. It means that

by Corollary 5.5. Then we can apply a simplified version of the argument used above to
conclude the proof. O

Remark 5.11. We were informed by I. Fesenko that there is an alternative proof of
Theorem 5.10 which uses an arithmetic version of his argument in [10].

6. Idelic interpretation of Arakelov intersection theory

A prerequisite for this section is the whole appendix B. In [g], it is described how
to get a lift of the Deligne pairing (i.e. the schematic part of the Arakelov intersection
number) at the level of ideles. Let’s summarize the result: first of all we consider the
idelic complex attached to the (uncompleted) surface X

d9 dy
Ax AF @A @AY —— AJ QAR DAL ——— Agp,
(a0, a1,a2) —— (aoar ', azaq" aray ") (17)

(a01,a02,a12) ——— Q01@02a12

and we note that we have a surjective map:

p: ker(dy) — Div(X)
(Oé7ﬁ704_16_1) = Z vy(am,y)[y] :

yCX

Then by globalizing the Kato’s symbol, we define ad idelic Deligne pairing (, ), :
ker(dl) x ker(dy) — Pic(B) which descends to the Deligne pairing (,) : Pic(X) x
Pic(X) — Pic(B). In turn, the Deligne pairing is strictly related to intersection theory
because for any two divisors D, E € Div(X), the class in Pic(B) of the divisor

(D, B) = ¢ui(D, E) = Y [k(x) : k(p())]i(D, E) [p(2)]

is equal to (Ox (D), Ox(D)). Note that we have used the brackets (, ) to denote two
different (but strictly related) objects, but the clash of notations shouldn’t confuse the
reader.
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The contribution at infinity to the Arakelov intersection pairing is given by the
x-product between Green functions, so the next step in our theory is to find an idelic
description of it. The part at infinity of the full adelic ring Ax ® [[,¢p, (Ax, © Ax,)
is given by Ax_ @ Ax, (for each o), so we want to find a surjective map:

(A%, @ A%) 2 S — ZG(X,)

where S is an adequate subset of A% @ A% still to be determined and ZG(X,) is the
vector space of Green functions on X, with integer orders.

Remark 6.1. First of all let’s introduce a notation. For any a = (a,) € Ax,, with a(z)
we denote the projection of a, onto the residue field C (when it is well defined).

Let F(X,,R)’ be the set of functions f : U C X, — R whose domain U is the whole
X, minus a finite set of points, then we have the following map:

0: A% x A% — F(X,,R)

(a,b) = — log(ba) := [z — — log (b(x)a(x)m)]

where a(z) denotes the complex conjugate. Note that ZG(X,) C F(X,,R)’, then put
G(A%. ) :={(a,b) € 0 HZG(X,)): va(az) = ord$(0(a,b)), Vz € X,}.
We get the map:
To = Olgax ) G(AY,) = ZG(X,).
Proposition 6.2. The map mw, is surjective.

Proof. Let g € ZG(X,), by Proposition B.6, there exist a C° hermitian invertible sheaf
(Z,h) on X and a meromorphic section s = {(s;,U;)} of .Z such that we can write:

g = —log(h(s, ).

We can choose a € A% such that a(z) = s(x) (when s(z) is well defined) and v, (a.) =
ord,(s) for any = € X,. Now we can write

g(x) = —log(hs(a(z), a(z))).

Since z — hy(2%) is a complex absolute value, we have hy(2%Z) = w,2Z with w, € C.
Let’s choose b = (b;) € A such that b(x) = w,, then

g(z) = —log (b(z)a(z)a() )
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The fact that v,(a,) = ordS(g) follows directly from the fact that for any hermitian
metric h and meromorphic section s we have the equality:

div®(—log(h(s,s))) = div(s).
(See Proposition B.3.) O

So far, we have the idelic description of Green functions with integer orders thanks
to the projection 7,. Now let’s fix a (normalized) Kéhler fundamental form €, on X,
and consider Gl (Ax,) = T, (ZGY (X,)), G (A% ) == 7, (ZG (X,)). For pairs
(o, B) € G (A%) x G (A% ) such that div¥(m,(a)) and div® (7, (8)) have no com-
mon components we want to find a product « *; 8 such that the following equality holds:

I \
o —— ax; f=T7,(a) 75 (5)

(7o (v

As a consequence of the symmetry of the %-product we will get also the symmetry of ;.
For any a = (a,b) € G% (A% ) let’s put:

¢(a) := efx(, log(baa)ga.

Definition 6.3. Let o = (a,b), 8 = (c,d) € G (A%, ), then the idelic *-product is defined
as:

axifi=— Y vile)log (bw)a(x)a(@)(a) ) +log(§(a))ideg(c) +log(¢(8) ideg(a)

rzeX,

where ideg is the idelic degree map defined as:
ideg: A% — Z
(02)z = D valog).

r€X,

Proposition 6.4. (a, ) € G (A% )xG% (A% ) such that div® (m,(a)) and div® (7,(3))
have no common component; then a *; 8 = my(a) * s (B).

Proof. Put g; = m,(a) and g2 = 7,(8), then by Proposition B.8 we can write g1 =

910 +c1 and go = goo + c2 for, g1,0,920 € Gy7 (X,), €1 = log(£(a)) and ¢z = log(£(B)).
An easy calculation shows that:

gregs= Y ord7(g20)g10(x) +c1 > ordS (ga0) +e2 Y ordf(g10)-

reEX, reEXs reEX,
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Then it is enough to note the following equalities:

ordS (g1,0) = ordS (g1) = va(as),
ordS (g2,0) = ordS (g2) = va(ca)

2
g10(z) = g1(x) —log(&(@)) = —log(b(x)a(z)a(z)) —log(§(a)). O
Let’s write an element « € A)X( =A% ©[l,ep (AX, ® A% ) in the following way:
a=ax X (ay)e

with ax € A% and a, € A% @ A% _, then we have a surjective map:

P ker(dh) @ [[G(A%,) = Div(X) & P G(X,)

a=ax X (ay)s — (p(ax), Zﬂ'g(ozg)Xg>

where p : ker(d, ) — Div(X) is the usual projection on usual divisors and m, : G(AY ) —
G(X,) is the projection on Green functions.

Definition 6.5. Let’s put

Div (A;(\) =7~ (Divar(X, Q) ,

and let a, § € Div (A)X?) such that (p(«),p(8)) € Ta, then the idelic Arakelov intersec-
tion pairing is given by

O[.ﬂ = deg (<Oéx, BX>1) + % ZEU Qg *; Ba

where deg is the usual degree of line bundles, (, ),

;, is the idelic Deligne pairing and

Qo *; B is the idelic *-product.

We have to check that Definition 6.5 gives the correct extension of the Arakelov
pairing.

Theorem 6.6. Let «, 5 € Div (Aj?) such that p(e) = D and p(8) = E, with (D,E) €

YAy, then a.f = D.E. In other words the idelic Arakelov intersection pairing extends to
a pairing:

Div (A)X?) » Div (A}X?) SR

and the following diagram is commutative:
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Div (A)X?) » Div (A}X?)

Diva,(X) x DivAr(X)& R

Proof. It follows easily from the definitions. O
Appendix A. Semi-topological algebraic structures
A.1. Basic notions

Definition A.1. A topological abelian group (G, 7) is linearly topologised (or has a linear
topology) if there is a local basis at 0 made of subgroups. A morphism between linearly
topologised groups is a continuous homomorphism. The category of linearly topologised
group is denoted by LTAD.

Proposition A.2. Let G be an abelian group and fiz a non-empty collection of subgroups
F =A{U;}ier- If G is endowed with the topology T generated by {x + U, }icr zeq, then it
becomes a linearly topologised group.

Proof. First we show that G is a topological group: we want the inversion ¢ : G — G and
the sum o : G x G — G to be continuous. We check this for the subbase {z+ U, }icr zeq-
Obviously ¢~1(U; + x) = U; — x € 7. Then we prove that the following equality holds:

o Ui+a) = |JWUi+y) x Ui+z-y).
yeG

The inclusion D is evident, so let (z,2) € o= (U; + z), then z = u + (z — 2/) for
u € U;. If we write 2/ =0+ x — (x — 2’) and we put y = z — 2’ we finally get (z,2') =
(u+y,04+2—y) e U;+y) x (U;+z—y).

For the last statement consider the family

B:={U € 7: U is finite intersection of elements of F} .
Then B is a local basis at 0 made of subgroups. 0O
Definition A.3. The linear topology on an abelian group G obtained from a family of
subgroups {U; }icr, as it is described in Proposition A.2, is called the linear topology

generated by {U;}icr.

In this setting, concepts like initial and final topologies are well defined. Let G be
an abelian group and consider some homomorphisms of groups {yp, : G — Hy}, and
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{tp: Hg — G}ﬂ, where the H, and Hg are all linearly topologised. The initial linear

topology on G with respect to {(p,},, is the linear topology generated by

(03
{¢2'(Va): Vo C H, is an open subgroup} .

This is the coarsest linear topology which makes all the ¢, continuous. The final linear
topology on G with respect to {¢5} 5 is the linear topology generated by

{U C G: U is a subgroup and wgl(U) is open for any ﬁ} .
This is the finest linear topology which makes all the 15 continuous.

Proposition A.4. LTADb is an additive category and moreover it admits inverse and direct
limits.

The nontrivial statements are those involving the categorical limits. In particular
lim,G; and @jGj are the usual limits in the category of groups, endowed respectively
with the initial and final linear topology.

Remark A.5. By commodity, in the category of linearly topologised groups, we call the
limits LigliGi and @jGj respectively linear inverse limit and linear direct limit.

Definition A.6. A ST ring (ST stands for semi-topological) is a ring A endowed with a
topology satisfying the following two properties:

e (A, +) is a linearly topologised abelian group.
e For any a € A the map A, : A — A, such that A\,(z) = az, is continuous.

A morphism of ST rings is continuous homomorphisms of rings. The category of ST rings
is denoted as STRing. Moreover B is a ST A-algebra if there is a morphism of ST rings
@ : A — B. The category of ST A-algebras is A-STAlg.

Proposition A.7. STRing and A-STAlg admit inverse and direct limits.

Proof. We show it only for rings. Let A = lim, A; be the usual inverse limit in the
category of rings and topologise its additive structure by taking the linear inverse limit
topology. Thus we have the coarsest linear topology on (A, +) such that the projections
mj : A — Aj are continuous. Assume that A, is the multiplication by (..., a;, ajt1,...)

Aa, , )
in A and consider the composition: A SN RERN Aj, given by

T = ( Ly it 1y - - ) — ( QTG A 1T - - ) = a;T;.
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Since 7 0 Agq,)(7) = Aa; o mj(x), we can conclude that 7; 0 A(,,) is continuous. Finally
if 7r]_1(V]) C A is an element in the subbase of A, then A(_;L)(ﬁj_l(V])) is open in A.
Let A = lim, A; be the usual direct limit in the category of rings and topologise its
additive structure by taking the linear direct limit topology. Thus we have the finest
linear topology on (A, +) such that the maps ¢; : A; — A are continuous. Let’s denote
with p;; : A; = A; the continuous homomorphisms in the directed set {A;};; moreover
A[(j,a) is the multiplication in A = (U;A;) /~ for the fixed element [(j,a)] where a € A;.

Afj,a)

Note that the composition: A; Si, 4 LSy A, given by

@ = (i, 2)] = [k, pir(a) pir(2)]

is continuous. Thus if U C A is open, then ¢ (Agla]

final linear topology we can conclude that Agla](U) isopenin A. O

(U)) is open and by definition of

Definition A.8. Let A be a ST ring. A ST A-module is an A-module satisfying the
following properties:

e M is a linearly topologised abelian group.
e For any a € A and any m € M the maps AM : M — M and p,, : A — M such that

Aa(2) = azx and pp,(z) = zm are continuous.

A morphism of ST modules is a continuous homomorphism of A-modules. If A is a ST
field then M is called a ST wvector space.

Given a ST A-module M, the subset {0} is a submodule because of the continuity of
Ao, therefore we define

M = O]
which is again a ST A-module if endowed with the quotient topology.

Proposition A.9. Let A be a ST ring, and M an A-module. If M is endowed with the
final linear topology with respect to the group homomorphisms py, : A — M, then M is
a ST A-module.

Proof. See [25, p. 17]. O

Definition A.10. The topology on M described in Proposition A.9 is called the fine
A-module topology.
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A.2. Ind/pro topologies

Now we present the crucial part of this very general theory. Given a ST ring A, we
describe two procedures called (C) and (L) that give canonical topologies of ST rings
respectively on lim_ A/p” and A, for any prime ideal p C A. We need the following
lemma:

Lemma A.11. Let ¢ : A — B be a ring homomorphism where A is a ST ring. Consider
B as an A-module endowed with the fine A-module topology, then B is a ST ring.

Proof. [25, Proposition 1.2.9.(b)]. O

(C) For any r > 0 we put on A/p" the fine A-module topology, so by Lemma A.11 A/p"
is a ST ring. By Proposition A.7 we can endow lim A/p" with a structure of ST
ring.

(L) A, is naturally an A-module, so we endow it with the fine A-module topology. Again
by Lemma A.11 we conclude that A, is a ST ring.

Let R be a ST ring and put on A = R[t] the fine R-module topology. Consider the
ring of formal Laurent power series R((¢)), then as linear projective limit we have:

Rl = lim

T

Therefore we consider on R((t)) the topology induced in the following way:

(©)

A= Rit] s R ~Es R((1)). (A1)

This is called the ind/pro-topology. We have an isomorphism of ST R-modules

R((t)) = (@ R) o[[R

neN neN

and each subgroup of the form ¢"R][t]], for r € Z, is closed in R((¢)).

Remark A.12. If we start with a discrete field K = R, then the ind/pro-topology on
R((t)) is the discrete valuation topology.

-

Let & € R((t)) be a nontrivial character. The conductor of £ is

Ce := min {Z €Z: €€ (tiR[[t]])J_} .
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Appendix B. Arakelov geometry

This section is just a collection of basic results about Arakelov geometry for arithmetic
surfaces, a more detailed exposition of Arakelov geometry can be found for example
n [15]. We will maintain the same notations used so far for the arithmetic surface
¢ : X — B. Moreover we assume the reader to be familiar with complex analytic
geometry for Riemann surfaces.

B.1. Green functions and *-product

Let’s fix a connected Riemann surface C.

Definition B.1. A Green function on C'is a map g : U C C' — R satisfying the following
properties:

(1) U=C\{z1,...,2,} for r € N.

(2) g is a C* function on U.

(3) For any point = € {x1,...,z,} there exist a real number ¢ € R and a C*° function
u on an open neighborhood of x such that the equality:

g=alog|z]* +u

holds in an open neighborhood of x contained in a holomorphic chart (V, z) centered
in z.

The number a € R arising in condition (3) of Definition B.1 depends only on the point
x and it is uniquely defined.

Definition B.2. Let g be a Green function on C' such that around a point x € C' it can
be written as g = alog|z|? + u. Then we put ordS (g) := —a and we call it the Green
order of g at x. If x is a point in the domain of g, then ordf(g) = 0.

Clearly ordf(g) # 0 only at a finite number of points. The Green functions on C form
a real vector space G(C), and for any g,¢" € G(C)

ord9(\g) = AordS(g) forany A € R,
ordy (g +¢') = ord; (g) + ordg (¢)

Let’s denote with Div(C)r := Div(C) ®z R the vector space of R-divisors on C, then
we have a R-linear map:
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div® : G(C) — Div(C)g
g Y ord(g)lal.

zeC

For any Green function g € G(C) and any R-divisor D = > \;[z], we put g(D) :=
> Azg(r) when the values g(x) are well defined.

Proposition B.3. Let (£, h) be a C*° hermitian invertible sheaf on C, and let s be a
nonzero meromorphic section of £, then the map —log(h(s,s)) is a Green function on
C such that div®(—log(h(s, s))) = div(s).

Proof. See [15, lemma 4.8]. O

The following result is an immediate consequence of Proposition B.3:
Proposition B.4. The map div® : G(C) — Div(C)g is surjective.

Let’s define a very important subspace of ZG(C):
Definition B.5. The vector space of Green functions with integer orders on C' is:

ZG(C) = {g € G(0): ordC(g) € Z Vx € C} .

The next result shows that any Green function which induces a divisor on C'is actually
of the form —log(h(s, s)) for some meromorphic section s of a C°> hermitian invertible
sheaf (£, h).

Proposition B.6. Let g € ZG(C'), then there exist a C°° hermitian invertible sheaf (£, h)
on C and a meromorphic section s of £ such that g = —log(h(s,s)).

Proof. See again [15, lemma 4.8]. O

From now on, in this subsection we fix a Kéhler fundamental form €2 on C' such that
Jo €0 = 1. Let’s define some subsets of G(C):

G(C) :={g € G(C): As(g) is constant}

G2(C) = {g € G¥(C): /gﬂ — 0,
C

7.G%(C) := ZG(C)N G¥(C),

Theorem B.7. The map div® leo oy G(C) — Div(C)R is an isomorphism.
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Proof. See [15, Theorem 4.10]. O

Proposition B.8. For any g € G*(C) there exists a unique decomposition g = go + ¢ for
go € G$(C) and c € R.

Proof. See again [15, Theorem 4.10]. O
Definition B.9. The inverse map of div® lag(x) is denoted as:
G : Div(X)r — GH(X)
D — GD)
and we can define the following function:

gQ:(XXX)\AxxxﬁR

(p.q) = ¢“(p.q) == G%([p))(q)

where A x«x denotes the diagonal subset of X x X.

By construction ¢g* is C°° in the variable ¢, but, as we will see soon (Corollary B.14),
g* turns out to be symmetric, therefore it is C*. Since ¢%}(p,-) € G&(X) C G¥(X),
then dd®(¢%}(p,-)) = af for a constant a € C, but

1 =deg®(¢"(p,")) Z/ddc(gﬂ(pw)) Z/aQZa-

Hence o = 1 and
dd®(g%(p,-)) = Q. (B.1)

Thus, amongst all Green functions, those of the form ¢**(p, -) satisfy the Poisson differ-
ential equation (B.1). this feature will be very useful for intersection theory.
Another important property is that for any fixed p € X:

[s*wn= [ gn=o (B.2)

X

because G([p]) € GE(X).

Remark B.10. ¢g* can be defined as the unique function on (X x X)\ Axyx with values
in R satisfying the following properties:
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(1) Around any point p € X we can write g*(p,-) = —log|z|?> + u, where z is a chart
centered in p and u is C*°.

(2) dd*(g(p,-)) = Q.
(3) [x g% (P, )2 =0.

This is how Arakelov defined ¢ in [2] and [1]. In the literature ¢ is usually called
the Green function of X (with respect to 2).> Here we used a different approach (and
notations), indeed g was constructed directly by using the isomorphism Div(X)g =

GHX).

Definition B.11. Let g1, g2 € G(C) such that div®(gy) and div®(gs) have no common
components then the x-product between g; and g, is the real number:

g1 % g2 := G1(divE(g2)) + /ddc(g1)g27
c

where dd° = %65.

™

Remark B.12. Tt is necessary to assume that div®(g;) and div®(gy) have no common
components otherwise ¢ (div(gs)) wouldn’t be well defined.

Theorem B.13. Let g1,g5 € G(C) such that div®(g1) and div®(gy) have no common
components, then g1 * go = go * g1.

Proof. See [15, Proposition 4.12]. O

Corollary B.14. ¢®(p, q) = g (q,p) for any p # q.

Proof. By using the properties of the elements in G{f , it is easy to verify that

G2 ([p]) *G%([a) = 9% (p,@);  G°([a)) * G ([p]) = 9" (q, D) -

Hence the conclusion follows immediately from Theorem B.13. O

Note that for any three different points p,q,t € X and coefficients a,b € R we have
that:

G%(alp] + blg]) = G2([t]) = aG"([p)) * G*([t]) + bG"([a]) * G*([¢]) -

3 Actually the conditions which uniquely define g% in [2] and [1] are slightly different from the ones listed
here, and moreover they may vary in other references. For instance it is common to find different constants
for the differential Poisson equation, or the Green function might be defined as G = exp(gQ). Of course
these discrepancies are fixed when the Green function is applied for intersection theory.
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Therefore if D = 3 v aplp| and E' = 3y bglg] are two real divisors of X with no
common components, then it is customary to define:

9" (D, E) = apbyg”(p,q) - (B.3)
PF#q

Remark B.15. The important point to emphasize here is that for Green functions g1, g2 €
ng, i.e. coming from some real divisors on X, the integral appearing in g * go vanishes.
This means that for such kind of Green functions, the nature of the *-product is “less
analytic”, indeed it depends only on the value of g; or g» at a finite set of points.

B.2. Arakelov intersection pairing

On each Riemann surface X, we fix a Kéahler form €, such that f X, Q, = 1, and
we put Q := {Qs},ep,,. For any divisor D € Div(X), D, := 95D € Div(X,) denotes
its pullback through ¢,. Consider the additive group G(X) := ®,ep,, G(X,) and its
subgroup, depending on Q, G(X,Q) := D, cp_ G% (X,). By commodity we write any
element of G(X) (or of G(X,Q)) as a finite formal linear combination ) g,X, for
go € G(X) (or g, € G(X,Q)).

Definition B.16. The group of Arakelov divisors on X is:

Diva, (X, Q) == { <D,Zggxg> € Div(X) x G(X,Q): div¥(g,) = DU} :

We often denote the element (0, X,) € Diva, (X, Q) simply with the symbol X, .

It is important to understand the geometry lying behind the above apparently mys-
terious definition. Fix an Arakelov divisor (D, g,Xs), by Theorem B.7 and Proposi-
tion B.8 we can write

9o = G (Dy) + g (B.4)
where «, € R is uniquely determined. Fig. 5 highlights the fact that D,, which is a

finite set of points on X, can be interpreted as the “prolongation” of D on the curve
X,; thus, it makes sense to define the Arakelov divisor

D= <D7Zg96(DJ)XJ> € Diva, (X, Q)

which will be called completion of D in X (this is consistent with the notion of com-
pleted horizontal curve given before). By equation (B.4) we have the following unique
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X Xoy KXoy
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Fig. 5. A schematization of an arithmetic surfaces ¢ : X — B such that B, = {o01,02} (for instance

B = Spec Z[i]). X is a vertical divisor over the closed point b, D is a horizontal divisor such that D, and
D,, are prime divisors respectively on X,, and X,,.

decomposition of (D, )" goXs) in Diva,(X):

D> 9:Xo | =D+ a.X, (B.5)

where the linear combination ) a,X, can be evidently read as a “real divisor” on
X with support made of curves at infinity. In perfect analogy with the usual notion of
divisor, equation (B.5) tells us that an Arakelov divisor can be interpreted as a formal
linear combination of “curves” in X , such that the coefficients of the curves at infinity
are in R. The presence of this real coefficients underlines once again the fact that the
curves at infinity have an analytic nature. From the above discussion we recover the
original definition of the group of Arakelov divisors given in [2] and [1]:

Proposition B.17. There is an isomorphism of groups:

Diva, (X, Q) = Div(X) @ RP=),
Proof. Thanks to equation (B.5) we can define the isomorphism:
D> 9:Xo | » D+> aso]l. O

Now we want to introduce the concept of principal Arakelov divisor, in other words
we want to define an Arakelov divisor associated to an element of K (X). Recall that
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K(X) is also the function field of X, so the morphism ¢, : X, — Xx induces a field
embedding

o K(X) <= C(X,).

For any rational function f € K(X) we put by simplicity f, := ¢¥(f). Moreover let
O, be the sheaf of regular functions on X, then as usual f, can be identified with a
holomorphic map X, — C at all but finitely many points:

P fop = fop € k(p) =C.

Then it is easy to see that —log | f,|? is a Green function on X, such that d9(— log | f,|?)
= 0, therefore —log |f,|> € G (X,).

Proposition B.18. Let f € K(X)*, then div¥(=log|fs?) = (f)e, where (f), is the
pullback of the principal divisor (f).

Proof. Fix a point p € X, let * = ¢, (p) and consider f as a rational function on Xg.
If w, is a local parameter in 0, , and w is a local parameter in Ox, ., then

fa — wgp(g’ﬁ(w))vm(f)u for u € ﬁmp'

This implies that ord$ (—log |f»[2) = v,(¢¥ (@))va(f), but v,(p# (w)) is precisely the
ramification index e, _ ,, hence ordf(— log | f+|?) = g, pvs(f). So, we finally have:

diVG(flOg |fcr|2) = Z e«pmpvcpa(p)(f)[p] = (f)a- d

PEX,

Now the following definition makes sense:

Definition B.19. Let f € K(X)* be a rational function. It induces an Arakelov divisor
in the following way:

(f) = ((f),z—loglfUQX(,) € Diva,(X,Q).

o

The group

Princa, (X, Q) == {(/f\) fe K(X)}
is called the group of principal Arakelov divisor and CH}, (X, Q) := %{% is the
Arakelov Chow group. Two Arakelov divisor are said linearly equivalent if they are con-
tained in the same class in CH}, (X, Q).
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Moreover for any principal Arakelov divisor (/\f) we get the following decomposition:

(/\f) :m—i_z (~/ _10g|f0|290 XO"

Proposition B.20. Let D, E be two finite divisors on X with no common components,
then for any o € By, the divisors D, and E, on X, have no common components.

Proof. Omitted. O

Let’s denote as Ta, C Diva, (X, Q) x Diva (X, Q) the set of couples of Arakelov
divisors with no common components on X, then we can define the Arakelov intersection
pairing on Y a,:

Definition B.21. Let D := (D,>, 9oX,),E = (E, > o leXs) be two Arakelov divisors
such that (D, E) € Ta,. Thanks to Proposition B.20 we can define an Arakelov divisor
on B:*

(D E>Ar = (D,E)+Y g, #ly[0] €Diva(B)
where

(D, E) :=¢.i(D,E) = Y _[k(x) : k(¢(x))] iz(D, E) [p(x)]
zeX

and x is the product between Green functions. If d = dpen Pl +2,cp. aolo] is an
Arakelov divisor on the base B, its degree is defined as:

~ 1
deg, (d) := Z ny log MN(p) + 3 Z €50 .

peEB 0€B

In particular we use the notation D.E := deg,,((D, E)), and the Arakelov intersection
number of D and E is:

~

S, _ 1
D.E = degy, <<D,E>Ar) =D.E+3 ;eg 9o ¥l, €R.

The following proposition summarizes some properties of the Arakelov intersection
pairing:

4 Note that we assume D and E to have no common components in order to ensure that the x-product
between green functions is well defined for any o € Boo.
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Proposition B.22. Let (D, E), (Z)\J,E;) € YTar with j =1,2, then

(2) (D1 + D).(Ey + E2) = 323 4y D; By, (Z-bilinearity).
(3) If D= (D, 9-X5) and f € K(X)* such that (D, (f)) € T, then

<ﬁ, (/f\)>A]r = (@(\f)) € Princa,(B).

In particular lA)(/f\) =0.
Proof. See [15, section 4.4]. O

The Arakelov intersection number can be extended to an intersection pairing on the
whole Diva, (X, Q) and induces a natural intersection pairing on CH}, (X, Q).

Proposition B.23. The Arakelov intersection number extends to any two Arakelov di-

visors in Diva, (X, Q) x Diva,(X,Q) and moreover descends naturally to pairing on
CHj, (X, 9) x CHj, (X, Q).

Proof. See [15, section 4.4]. O

Now we interpret the Arakelov intersection pairing in a more geometrlc way by using
the decomposition given in equation (B.5). Fix two Arakelov divisors D Eex Ar, then
we can write

D=D+) a,X, = (D,ZQQ“(DU)XU> + (o,za[,xg> ,

E=F+) B.X,= (EZQQU (EU)XU> + (o,ZmXa) :

In order to find explicitly ﬁE, by bilinearity and symmetry of the intersection pairing
it is enough to understand how calculate the following three terms:

(i) D.E; namely the intersection of two completed divisors.
(i) D.(0,, BsXo); namely the intersection between a completed divisor and a divisor
at infinity. Clearly (0, @, X,).E is obtained in the same way.
(213) (0,3, 2xX5).(0,>", BsX,); that is the intersection of divisors composed only by
curves at infinity.
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For (i) let’s evaluate G**» (D, )*G% (E,). By the bare definition of the *-product and g**=:

G (Do) * g (Es) = gQg (Do, Eq) + /ddC (gQU (Dcr)) el (Es),

Xo

but since G (D,),G% (E,) € G37(X,), it is straightforward to verify that the integral
on the right hand side is 0. Therefore we get:

— 1
DE=DE+; > g (Dy, Ey). (B.6)

[oa

In order to calculate (ii) we need G (Dy) * By:

G (D) % By = By + G2 (Dy) = B deg(Dy) + / 4d(8,)G% (Dy) = B deg(Ds).
X

o

thus we obtain
_ 1
D.(0, ZU: BeXy) = 3 Xa: €oy deg(Dy) . (B.7)

Finally (i4¢) is trivial since a, * B, = 0 and we have:

0,) asX5).(0,) " 8,X,) =0. (B.8)
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