期刊论文详细信息
JOURNAL OF NUMBER THEORY | 卷:177 |
Factors of alternating sums of powers of q-Narayana numbers | |
Article | |
Guo, Victor J. W.1  Jiang, Qiang-Qiang2  | |
[1] Huaiyin Normal Univ, Sch Math Sci, Huaian 223300, Jiangsu, Peoples R China | |
[2] East China Normal Univ, Dept Math, Shanghai 200241, Peoples R China | |
关键词: q-binomial coefficients; q-Narayana numbers; q-Catalan numbers; | |
DOI : 10.1016/j.jnt.2017.01.009 | |
来源: Elsevier | |
【 摘 要 】
The q-Narayana numbers N-q (n, k) and q-Catalan numbers C-n(q) are respectively defined by N-q (n, k) =1 - q/1 - q(n) [(n)(k)] [(n)(k - 1)] and C-n(q) = 1 - q / 1 - q(n+1) [(2n)(n)], where [(n)(k)] = Pi(k)(i=1) 1-q(n-i+1) / 1-q(i) .We prove that, for any positive integers n and r, there holds Sigma(n)(k=-n) (-1)(k)q(jk2+(2k)) N-q(2n + 1, n + k + 1)(r) equivalent to 0 (mod C-n(q)), where 0 <= j <= 2r - 1. We also propose several related conjectures. (C) 2017 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jnt_2017_01_009.pdf | 242KB | download |