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The g-Narayana numbers Ng(n, k) and g-Catalan numbers
C,(q) are respectively defined by

—q M n 1—q 2n
Ny(n, k) = [ ] [ ] and C = — { },
a(n, k) T—gn ek —1 n(q) T—gtiln
where [7] = Bl 1=¢" "' \We prove that, for any positive
k1l =1 I,qi . P I y p

integers n and 7, there holds

i )R BN, 2n+ 1,n+ k+1)" =0 (mod Cu(q)),

k=—n

where 0 < j < 2r — 1. We also propose several related
conjectures.
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1. Introduction

1
n+1
[14]). It is well known that for any positive integer n,

The Catalan numbers C,, = (277) play an important role in combinatorics (see

Cn =Y N(n.k),

k=1

n

where N(n, k) = (})(,",) are called Narayana numbers (see [9]).
In the past few years, many congruences on sums or alternating sums of binomial co-
efficients and combinatorial numbers, such as Catalan numbers, Apéry numbers, central
Delannoy numbers, Schroder numbers, Franel numbers, have been obtained by Z.-W. Sun
[15-20] and other authors [4-6,8,11,12,21,22].
In this paper, motivated mainly by Z.-W. Sun’s work, we shall prove the following

congruence on alternating sums of powers of Narayana numbers.

Theorem 1.1. Let n and r be positive integers. Then

zn: (-1)*N@2n+1,n+k+1)"=0 (mod C,). (1.1)

k=—n

We know that some congruences may have nice g-analogues (see, for example, 7,10,
13]). This is also the case for the congruence (1.1). Recall that the g-shifted factorials
(see [1]) are defined by (a;q)o = 1 and (a;¢)n, = (1 —a)(1 —aq)---(1 — ag"~ ) for

n=1,2,..., and the g-binomial coefficients are defined as
(¢ 9)n :
B ifo<k<n
m — (@ D1(@ Dk h ’
0, otherwise.
For convenience, we let [n] = 111 " he a g-integer. It is natural to define the ¢-Narayana
q

numbers Ny (n, k) and the ¢g-Catalan numbers C,,(q) as follows:

Nq(n,k:):ﬁ{ﬂ LEJ and Cn(q):ﬁﬁ:].

It is not difficult to see that both g-Narayana numbers and ¢-Catalan numbers are poly-
nomials in ¢ with nonnegative integer coefficients (see [2,3]). Note that, the definition of
N,(n, k) here differs by a factor ¢*(*~1) from that in [2]. We have the following g-analogue
of Theorem 1.1.

Theorem 1.2. Let n and r be positive integers and let 0 < j < 2r — 1. Then
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n 2, (k
S (DR TEIN@2n+1n+k+1)" =0 (mod Cy(q))- (1.2)

k=—n

It is easily seen that when ¢ — 1 the g-congruence (1.2) reduces to (1.1). It seems
that (1.2) also holds for j > 2r (see (3.1) in Conjecture 3.4 for a more general form).

2. Proof of Theorem 1.2

Noticing that

{2n+1}[ 2n+1 }_ (4:9)3041 [ 2n }[ 2n + 2 } (2.1)
n+k]n+k+1 (GG )mee In+ k] [n+E+1] '

we can rewrite Theorem 1.2 in the following equivalent form.

Theorem 2.1. Let n and r be positive integers and let 0 < j < 2r — 1. Then

_1)]€qjk2+(§)|: 2n :|T|: 2n+2 :|T

n

(49541
(4 @)on (@3 D3y ==

n+k| n+k+1
=0 (mod [Qn N 1] [2n +1]771). (2.2)
n

In the paper [4, Theorem 4.7], Guo, Jouhet and Zeng proved the following result.

Theorem 2.2. For all positive integers ni,...,ny, and 0 < j < m — 1, the alternating
sum
i o 24 i 2n
nb+m+1 Jk 4
I SRt | (A
i=1 q)2n; k=—n1 Pl K k

where N1 = 0, is a polynomial in q with nonnegative integer coefficients.

In what follows, we will show that the congruence (2.2) can be deduced from combining
two special cases of Theorem 2.2.

Denote the left-hand side of (2.2) by S(n,r,7). By the relation (2.1), it is clear that
S(n,r,j) is a polynomial in ¢ with integer coefficients. Letting m = 2r, ny =ng=--- =
Nor_1 =n, and ngo =ng = --- =ng, = n + 1 in Theorem 2.2, we see that

—1 n

(6 0)n (@5 Q)1 (6 0)50 ) ol 20 17T 202 77
n 1)y +(2){ } [ } ’
(4 0)5n (4 D) (1) n+k| [n+k+1 lq],

k=—n
which can also be written as

{21@ - 1} _15(,“,]') € Zq).

n
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Namely, S(n,r,5) =0 (mod [***']), or

2 1
[2n 4+ 1]""'S(n,r,j) =0 (mod [ nt } [2n +1]771). (2.3)
n
On the other hand, letting m =2r, ny =ng =---=n, =n,and ny41 =nNyqo = -+ =
n9, = n + 1 in Theorem 2.2, we have
r—1

(05D (@ D1 (G D 2nt1(050) 50 (65 0)5m ks
(45 0)5,(@ @)bpyo

2, on 1" 2n+2 17
]k 7
8 Z LH—k] {n+k+1} € Zldl,

k=—n

which, by the relation (¢; q)2,(¢; ¢)2n+2 = (g; q)2n+1 {;Ziﬂ, can be rewritten as

o2n+1]" " [2n 4 2]} .
[ n ] Ws(n,m) € Z[q).
Namely,
[2n + 2]7"—15(71, r,7) =0 (mod [Qn;— 1} on + 1]T_1). o

It is easy to see that the polynomials [2n+ 1]"~! and [2n +2]"~! are relatively prime.
Therefore, by the Euclid algorithm for polynomials, there exist polynomials P(q) and
Q(q) in g with rational coefficients such that

P(@P2n+1]"""+Q(g)2n+2"' = 1. (2.5)
It follows from (2.3)—(2.5) that the congruence
S(n,r,j) =0 (mod [Qn: 1} [2n +1]"71)
holds in the ring Q[g]. In other words, there exists a polynomial R(q) € Q[g] such that

S(n,r, j) = anj 1] 2n + 171 R(q). (2.6)

Since the polynomials S(n,r,5) and [*"F'][2n + 1]"~! are in Z[g], and the leading coef-
ficient of the latter is one, the identity (2.6) means that R(q) € Z[q]. This completes the
proof.
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3. Some open problems

It seems that Theorems 1.1 and 1.2 can be further generalized as follows.

Conjecture 3.1. Let ny,...,n, be positive integers. Then
- v (i + 1 (ng 4 nig + 1
> GO, |
. n; +k n; +k+1
k=—n1 =1
ny+nm+ 1\ T
1 m
=0 (mod ( - ) 1_[1 (ni +nip1 + 1)),
=

where Ny, 11 = n1.

Conjecture 3.2. Let n and r be positive integers and let 0 < j < 2r — 1. Then

S (DR HEIN (20 4 14 k1)

k=—n

Cn(q)
is a polynomial in q with nonnegative integer coefficients.

Note that the upper bound 2r — 1 of j in Conjecture 3.2 seems to be the best pos-
sible. Numerical calculation implies that Conjecture 3.2 does not hold when j > 2r.
Furthermore, we have the following generalization of Conjecture 3.2.

Conjecture 3.3. For all positive integers ny,...,ny, and 0 < j < 2m — 1, the expression
[nl +nm+1}_1"ﬁ1 1
n i [nz + Nip1 + 1]
1 [ 4 i + 1] [0+ niga + 1
X jk + ) n +
kz 1_[1 n; +k n,+k+1 |
=—n 1=

where Ny, 11 =Ny, is a polynomial in q with nonnegative integer coefficients.
We end the paper with the following g-analogue of Conjecture 3.1.

Conjecture 3.4. Let nq,...,n,, be positive integers, and let f(k) be a polynomial in k
with integer coefficients. Then

i (—1)kgfB+() ﬁ [”l + i1+ 1} {ni + nip1 + 1]

W Pl n; +k n;+k+1
ny+nm, +1 mt
=0 (mod [ ! nm ] H[m+m+1+1])7
1 i=1
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where Ny,11 = n1. In particular, for any positive integer n, we have

S (-1)F PHEIN, 20+ 1n+k+1)" =0 (mod Cy(q)). (3.1)

k=—n
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