JOURNAL OF NUMBER THEORY | 卷:180 |
On the classification of quadratic forms over an integral domain of a global function field | |
Article | |
Bitan, Rony A.1,2  | |
[1] Bar Ilan Univ, Ramat Gan, Israel | |
[2] Tel Aviv Acad Coll Engn, Afeka, Tel Aviv, Israel | |
关键词: Quadratic forms; Number theory; Etale cohomology; Global function fields; | |
DOI : 10.1016/j.jnt.2017.03.007 | |
来源: Elsevier | |
【 摘 要 】
Let C be a smooth projective curve defined over the finite field F-q (q is odd) and let K = F-q(C) be its function field. Any finite set S of closed points of C gives rise to an integral domain O-s := Fq[C - S] in K. We show that given an O-s-regular quadratic space (V, q) of rank n >= 3, the set of genera in the proper classification of quadratic O-s-spaces isomorphic to (V, q) in the flat or etale topology, is in 1 : 1 correspondence with Br-2(O-s), thus there are 2(|s|-1) genera. If (V, q) is isotropic, then Pic (O-s)/2 classifies the forms in the genus of (V, q). For n >= 5, this is true for all genera, hence the full classification is via the abelian group H-et(2)(O-s,(mu) under bar (2)). (C) 2017 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jnt_2017_03_007.pdf | 971KB | download |