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Let C be a smooth projective curve defined over the finite 
field Fq (q is odd) and let K = Fq(C) be its function field. 
Any finite set S of closed points of C gives rise to an integral 
domain OS := Fq[C − S] in K. We show that given an 
OS-regular quadratic space (V, q) of rank n ≥ 3, the set 
of genera in the proper classification of quadratic OS -spaces 
isomorphic to (V, q) in the flat or étale topology, is in 1 : 1
correspondence with 2Br(OS), thus there are 2|S|−1 genera. If 
(V, q) is isotropic, then Pic (OS)/2 classifies the forms in the 
genus of (V, q). For n ≥ 5, this is true for all genera, hence the 
full classification is via the abelian group H2

ét(OS , μ2).
© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Let C be a projective algebraic curve defined over a finite field Fq (with q odd), 
assumed to be geometrically connected and smooth. Let K = Fq(C) be its function field 
and let Ω denote the set of all closed points of C. For any point p ∈ Ω let vp be the 
induced discrete valuation on K, Ôp the complete discrete valuation ring with respect to 
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vp and K̂p its fraction field. Any Hasse set of K, namely a non-empty finite set S ⊂ Ω, 
gives rise to an integral domain of K called a Hasse domain:

OS := {x ∈ K : vp(x) ≥ 0 ∀p /∈ S}.

This is a Dedekind domain, regular and one dimensional. Schemes defined over SpecOS

are denoted by an underline, being omitted in the notation of their generic fibers.
As 2 is invertible in OS , the OS-group μ2 := SpecOS [t]/(t2 − 1) is smooth, whence 

applying étale cohomology to the Kummer sequence:

1 → μ2 → Gm
x�→x2

−−−−→ Gm → 1

gives rise to the long exact sequence of abelian groups:

H1
ét(OS ,Gm)

[L]→[L⊗OS
L]

−−−−−−−−−→ H1
ét(OS ,Gm) → H2

ét(OS , μ2) → H2
ét(OS ,Gm)

[A]→[A⊗OS
A]

−−−−−−−−−−→ H2
ét(OS ,Gm).

Identifying H1
ét(OS , Gm) with Pic (OS) by Shapiro’s lemma (cf. [SGA3, XXIV,

Prop. 8.4]), and H2
ét(OS , Gm) with the Brauer group Br(OS), classifying Azumaya 

OS-algebras (cf. [Mil, §2]), we deduce the short exact sequence:

1 → Pic (OS)/2 ∂−→ H2
ét(OS , μ2)

i2∗−→ 2Br(OS) → 1, (1.1)

in which the right non-trivial term is the 2-torsion part in Br(OS). We analyze some 
properties related to this sequence in Section 2, which will be used to classify regular 
quadratic OS-spaces.

Let (V, q) (not to be confused with q = |Fq|) be a quadratic OS-space of rank n ≥ 3, 
namely, V is a projective OS-module of rank n and q : V → OS is a 2-order homogeneous 
OS-form. Since 2 is a unit, q corresponds to the symmetric bilinear form Bq : V ×V → OS

such that:

Bq(u, v) = q(u + v) − q(u) − q(v) ∀u, v ∈ V.

We assume it to be OS-regular, namely, the induced homomorphism V → V ∨ :=
Hom(V, OS) is an isomorphism ([Knu, I. §3, 3.2]). Two quadratic OS-spaces (V, q) and 
(V ′, q′) are isomorphic over an extension R of OS , if there exists an R-isometry between 
them, namely, an R-isomorphism T : V ′ ⊗OS

R ∼= V ⊗OS
R such that q ◦ T = q′. The 

notation of the OS-isomorphism class [(V, q)] is sometimes, when no ambiguity arises, 
shortened to [q]. The [proper] genus of (V, q) is the set of classes of all quadratic OS-spaces 
that are [properly, i.e., with det = 1 isomorphisms] isomorphic to (V, q) over K and over 
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Ôp for any prime p /∈ S. This [proper] genus bijects as a pointed-set with the class set
[ClS(SOV )], ClS(OV ).

The results generalize the ones in [Bit], in which S is assumed to contain only one 
(arbitrary) point ∞ ∈ Ω, thus giving rise to an affine curve Caf = C − {∞}, for which 
Br(O{∞}) = 1 (cf. [Bit, Lemma 3.3]). The quadratic O{∞}-spaces that are locally prop-
erly isomorphic to (V, q) for the flat or the étale topology belong all to the same genus, 
and are classified by the abelian group H2

ét(O{∞}, μ2) 
∼= Pic (O{∞})/2. Here we show 

more generally for any finite set S that, as ClS(SOV ) is the kernel of what we call the 
relative Witt-invariant H1

ét(OS , SOV ) wV−−→ 2Br(OS), the latter abelian group bijects to 
the set of 2|S|−1 proper genera of (V, q) (Proposition 4.5).

Another consequence of passing to |S| > 1 is that O×
S �= F×

q , whence OS-regularity 
imposed on (V, q), no longer guarantees its isotropy. Requiring (V, q) to be isotropic, we 
show that Pic (OS)/2 still classifies the quadratic spaces in the genus ClS(OV ) being 
equal to proper genus in this case (Lemma 4.4), for any S (Theorem 4.6). In particular 
in case n ≥ 5, in which all classes are isotropic, any proper genus in H1

ét(OS , SOV ) – 
corresponding as aforementioned to an element of 2Br(OS) – is isomorphic to Pic (OS)/2, 
whence their disjoint union H1

ét(OS , SOV ) is isomorphic to the abelian group H2
ét(OS , μ2)

(as for |S| = 1 and n ≥ 3), fitting into the sequence (1.1) (Corollary 4.8).
In Section 5, we refer to the case in which V is split by a hyperbolic plane H(L0), 

and provide an isomorphism ψV : Pic (OS)/2 → ClS(OV ). In case C is an elliptic curve 
and S = {∞} where ∞ is Fq-rational, an algorithm, producing explicitly representatives 
of classes in H1

ét(OS , SOV ), is given (1).

2. A classification of Azumaya algebras

A faithfully flat projective (right) OS-module A is an Azumaya OS-algebra if the map

A⊗Aop → EndOS
(A) : a⊗ bop �→ (x �→ axb)

is an isomorphism. It is central, separable and finitely generated as an OS-module. 
Two Azumaya OS-algebras A, B are Brauer equivalent if there exist faithfully projective 
modules P, Q such that:

A⊗ EndOS
(P ) ∼= B ⊗ EndOS

(Q).

The tensor product induces the structure of an abelian group Br(OS) on the equivalence 
classes, in which the neutral element is [OS] and the inverse of [A] is [Aop] (cf. [Knu, 
III. 5.1 and 5.3]).

Let V ∼= O2
S . Consider the following exact and commutative diagram of smooth 

OS-groups:
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1 1

1 μ2 SL(V ) PGL(V ) 1

1 Gm

x�→x2

GL(V ) π

det

PGL(V ) 1

Gm Gm

1 1.

(2.1)

The generalization of the Skolem–Noether Theorem to unital commutative rings, applied 
to the Azumaya OS-algebra A = EndOS

(V ), is the exact sequence of groups (see [Knu, 
III. 5.2.1]):

1 → O×
S → A× → AutOS

(A) → Pic (OS).

This sequence induces by sheafification a short exact sequence of sheaves in the étale 
topology (cf. [Knu, p. 145]):

1 → Gm → GL(V ) → Aut(EndOS
(V )) → 1

from which we see that: PGL(V ) = Aut(EndOS
(V )). In this interpretation, étale coho-

mology applied to the diagram (2.1), plus the sequence (1.1), give rise to the exact and 
commutative diagram:

Pic (OS)

∂

H1
ét(OS , SL(V )) H1

ét(OS ,PGL(V )) ∂1

H2
ét(OS , μ2)

H1
ét(OS ,Aut(V ))

π∗

Δ=det∗

H1
ét(OS ,Aut(EndOS

(V ))) Br(OS)

Pic (OS)

(2.2)



JID:YJNTH AID:5728 /FLA [m1L; v1.218; Prn:26/05/2017; 10:43] P.5 (1-19)
R.A. Bitan / Journal of Number Theory ••• (••••) •••–••• 5
in which H1
ét(OS , Aut(V )) classifies twisted forms of V in the étale topology, while its im-

age in H1
ét(OS , Aut(EndOS

(V )) classifies these OS-modules up to scaling by an OS-line, 
i.e., by an invertible OS-module. Explicitly, π∗ : [P ] �→ [EndOS

(P )] (cf. [Knu, III. 5.2.4]).

Corollary 2.1. In diagram (2.2): ∂([L]) = ∂1([EndOS
(OS ⊕ L)]).

Proof. By chasing diagram (2.2) we may deduce the following reduced one:

Pic (OS)/2

∂

H1
ét(OS ,Aut(V ))

∂1◦π∗

Δ

0

H2
ét(OS , μ2)

2Br(OS)

(2.3)

which shows that: ∂([L]) = ∂(Δ([OS ⊕ L])) = ∂1(π∗([OS ⊕ L])) = ∂1([EndOS
(OS ⊕

L)]). �
Lemma 2.2. |2Br(OS)| = 2|S|−1.

Proof. Let rp : Br(K) → H1(kp, Q/Z) ∼= Q/Z be the residue map at a prime p. The 
ramification map a := ⊕prp yields the exact sequence from Class Field Theory (see [GS, 
Theorem 6.5.1]):

1 → Br(K) a−→
⊕
p

Q/Z

∑
p

Corp−−−−−−→ Q/Z → 1 (2.4)

in which the corestriction map Corp for any p is an isomorphism induced by the Hasse-
invariant Br(K̂p) ∼= Q/Z (cf. [GS, Proposition 6.3.9]). On the other hand, as all residue 
fields of K are finite, thus perfect, and OS is a one-dimensional regular scheme, it admits 
due to Grothendieck the following exact sequence (see [Gro, Proposition 2.1] and [Mil, 
Example 2.22, case (a)]):

1 → Br(OS) → Br(K)
⊕p/∈Srp−−−−−→

⊕
p/∈S

Q/Z, (2.5)

which means that Br(OS) is the subgroup of Br(K) of classes that vanish under 
rp at any p /∈ S. Thus omitting these rp, p /∈ S in the sequence (2.4), results in 

Br(OS) = ker
[⊕

p∈S Q/Z

∑
p∈S Corp−−−−−−−→ Q/Z

]
, whence the cardinality of its 2-torsion part 

is 2|S|−1. �
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Lemma 2.3. Let G be an affine, flat, connected and smooth OS-group. Suppose that its 
generic fiber G is almost simple, simply connected and K̂p-isotropic for any p ∈ S. Then 
H1

ét(OS , G) = 0.

Proof. The proof, basically relying on the strong approximation property related to G, 
is similar to that of Lemma 3.2 in [Bit], replacing {∞} by S. �
3. Standard and relative invariants

Let OV be the orthogonal group of (V, q) defined over SpecOS , namely, the functor 
assigning to any OS-algebra R the group of self-isometries of q over R:

OV (R) = {A ∈ GLn(R) : q ◦A = q}.

Since 2 ∈ O×
S and q is regular, OV is smooth as well as its connected component, namely, 

the special orthogonal group SOV := ker[OV
det−−→ μ2] (see Definition 1.6, Theorem 1.7 

and Corollary 2.5 in [Con]). Thus the pointed set H1
fl(OS , SOV ) – properly (i.e., with 

det = 1 isomorphisms) classifying OS-forms that are locally everywhere isomorphic to 
q in the flat topology – coincides with the classification H1

ét(OS , SOV ) for the étale 
topology (see [SGA4, VIII Corollaire 2.3]).

Let C(V ) := T (V )/(v⊗v−q(v) ·1 : v ∈ V ) be the Clifford algebra associated to (V, q)
(see [Knu, IV]). The linear map v �→ −v on V preserves q, thus extends to an algebra 
automorphism α : C(V ) → C(V ). As it is an involution, the graded algebra C(V ) is 
decomposed into positive and negative eigenspaces: C0(V ) ⊕C1(V ) where Ci(V ) = {x ∈
C(V ) : α(x) = (−1)ix} for i = 0, 1. Since (V, q) is projective and OS-regular, C(V ) is 
Azumaya over OS (cf. [Bas, Theorem, p. 166]).

The Witt-invariant of (V, q) is:

w(q) =
{

[C(V )] ∈ Br(OS) n is even
[C0(V )] ∈ Br(OS) n is odd.

As C(V ) and C0(V ) are algebras with involution, w(q) lies in 2Br(OS) ([Knu, IV. 8]).
The Clifford group associated to (V, q) is

CL(V ) := {u ∈ C(V )× : α(u)vu−1 ∈ V ∀v ∈ V }.

The group PinV (OS) := ker[CL(V ) N−→ O×
S ] where N : v �→ vα(v), admits an underlying 

OS-group scheme, called the Pinor group denoted by PinV . It is a double covering of OV

and its center μ2 is smooth. So applying étale cohomology to the Pinor exact sequence
of smooth OS-groups:

1 → μ → PinV → OV → 1 (3.1)
2
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gives rise to the coboundary map of pointed-sets

δV : H1
ét(OS ,OV ) → H2

ét(OS , μ2). (3.2)

Let O2n and O2n+1 be the orthogonal groups of the hyperbolic spaces H(On
S) and 

H(On
S)⊥〈1〉, respectively, equipped with the standard split form which we denote by 

qn (see [Con, Definition 1.1]). The pointed set H1
ét(OS , On) classifies regular quadratic 

OS-modules of rank n ([Knu, IV. 5.3.1]). It is identified with the pointed set H1
ét(OS , OV )

simply obtained by changing the base point to (V, q) (cf. [Knu, IV, Prop. 8.2]). We denote 
this identification by θ. One has the following commutative diagram of pointed sets (cf. 
[Gir, IV, Prop. 4.3.4]):

H1
ét(OS ,On) θ

∼=

δ

H1
ét(OS ,OV )

δV

H2
ét(OS , μ2)

rV

∼=
H2

ét(OS , μ2)

(3.3)

in which δ := δqn and rV (x) = x − δ([q]).

Definition 1. We call the composition of maps of pointed sets:

wV : H1
ét(OS ,OV ) δV−−→ H2

ét(OS , μ2)
i2∗−→ 2Br(OS)

(see sequence (1.1) for i2∗) the relative Witt-invariant. It is a “shift” of the Witt-invariant 
w = i2∗ ◦ δ, such that the base-point [(V, q)] is mapped to [0] ∈ Br(OS).

Remark 3.1. The δ-image of a class represented by (V ′, q′), being a regular OS-module, 
is its second Stiefel–Whitney class, denoted w2(q′) (cf. [EKV, Definition 1.6 and Corol-
lary 1.19]).

The connected component Spin
V

of PinV is smooth, and it is the universal covering 
of SOV :

1 → μ2 → Spin
V

π→ SOV → 1. (3.4)

Then étale cohomology gives rise to the exact sequence of pointed sets:

H1
ét(OS , Spin

V
) → H1

ét(OS , SOV ) sδV−−−→ H2
ét(OS , μ2) → 1 (3.5)

in which the right exactness comes from the fact that OS is of Douai-type, thus 
H2

ét(OS , Spin ) = 1 (see Definition 5.2 and Example 5.4(iii) in [Gon]). The inclusion 

V



JID:YJNTH AID:5728 /FLA [m1L; v1.218; Prn:26/05/2017; 10:43] P.8 (1-19)
8 R.A. Bitan / Journal of Number Theory ••• (••••) •••–•••
i : SOV ⊂ OV with the map i2∗ from sequence (1.1) induces the commutative diagram 
(cf. [Knu, IV, 8.3])

H1
ét(OS , SOV )

i∗

sδV

H1
ét(OS ,OV )

wV

δV

H2
ét(OS , μ2) i2∗

2Br(OS).

(3.6)

Remark 3.2. The map i∗ does not have to be injective, yet any form q′, properly isomor-
phic to q, represents a class in H1

ét(OS , On), so the restriction of w to H1
ét(OS , SOn) is 

well-defined. Similarly, we may write the restriction wV |H1
ét(OS , SOV ) as i2∗ ◦ sδv, being 

surjective, as both i2∗ and sδV are such (see sequences (1.1) and (3.5)).

Remark 3.3. Unlike over fields, the Stiefel–Whitney class w2 for quadratic OS-spaces, 
referring to their Clifford algebras not only as Azumaya algebras but as algebras with 
involution, is richer than the Witt-invariant w lying in 2Br(OS). For example, if L is an 
invertible OS-module and H(L) = L ⊕ L∗ is the corresponding hyperbolic plane, then 
C(H(L)) is isomorphic as a graded algebra to EndOS

(∧L) = EndOS
(OS ⊕L) ([Knu, IV, 

Prop. 2.1.1]) being Brauer-equivalent to M2(OS), thus w(H(L)) = [0] ∈ Br(OS), while:

δ([H(L)]) = ∂([L]) Corollary 2.1= ∂1([EndOS
(OS ⊕ L)]) ∈ H2

ét(OS , μ2)

(see the left equality in the proof of the Proposition in [EKV, §5.5]), does not have to 
vanish as we shall see in Proposition 5.1.

4. A classification of quadratic spaces via their genera

Consider the ring of S-integral adèles AS :=
∏

p∈S K̂p ×
∏

p/∈S Ôp, being a subring of 
the adèles A. Then the S-class set of an OS-group G is the set of double cosets:

ClS(G) := G(AS)\G(A)/G(K)

(where for any prime p the geometric fiber Gp of G is taken) and it is finite (cf. [BP, 
Prop. 3.9]). If G is affine and finitely generated over SpecOS , it admits according to 
Nisnevich ([Nis, Theorem I.3.5]) the following exact sequence of pointed sets:

1 → ClS(G) → H1
ét(OS , G) → H1(K,G) ×

∏
p/∈S

H1
ét(Ôp, (G)p). (4.1)

If G admits, furthermore, the property:

∀p /∈ S : H1
ét(Ôp, Gp) ↪→ H1(K̂p, Gp), (4.2)
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then Nisnevich’s sequence for G reduces to (cf. [GP, Corollary A.8]):

1 → ClS(G) → H1
ét(OS , G) → H1(K,G). (4.3)

Remark 4.1. Since SpecOS is normal, i.e., is integrally closed locally everywhere (due to 
the smoothness of C), any finite étale covering of OS arises by its normalization in some 
separable unramified extension of K (see [Len, Theorem 6.13]). Consequently, if G is a 
finite OS-group, then H1

ét(OS , G) is embedded in H1(K, G). This is not true for infinite 
groups like the multiplicative group Gm, for which H1

ét(OS , Gm) ∼= Pic (OS) clearly does 
not have to embed in H1(K, Gm) = 1.

Remark 4.2. In case G = OV , the left exactness of sequence (4.1) reflects the fact that 
ClS(OV ) is the genus of the base point (V, q), namely, the set of classes of quadratic 
OS-forms that are K and Ôp-isomorphic to it for all p /∈ S. Furthermore, being connected, 
SOV admits property (4.2) by Lang’s Theorem (recall that all residue fields are finite), 
so the proper genus can be described as:

ClS(SOV ) = ker[H1
ét(OS , SOV ) → H1(K,SOV )]. (4.4)

As OV /SOV is the finite representable OS-group μ2 (cf. [Con, Theorem 1.7]), OV admits 
property (4.2) as well (see in the proof of Proposition 3.4 in [CGP]), so we may also write:

ClS(OV ) = ker[H1
ét(OS ,OV ) → H1(K,OV )]. (4.5)

As a pointed set, ClS(SOV ) is bijective to the first Nisnevich cohomology set 
H1

Nis(OS , SOV ) (cf. [Nis, Theorem I.2.8] and [Mor, 4.1]), classifying SOV -torsors in the 
Nisnevich topology. But Nisnevich covers are étale, so it is a subset of H1

ét(OS , SOV ). 
Similarly, ClS(OV ) ⊆ H1

ét(OS , OV ).

Lemma 4.3. If (V, q) is isotropic then OV (OS) det−−→ μ2(OS) is surjective.

Proof. Consider the following exact and commutative diagram that arises by applying 
étale cohomology to the short exact sequences related to the smooth OS-groups PinV

and OV :

H1
ét(OS , Spin

V
)

sπ∗

H1
ét(OS ,PinV )

π∗

OV (OS) det
μ2(OS)

∂0
H1

ét(OS , SOV ) h

sδV

H1
ét(OS ,OV )

δV

H2
ét(OS , μ2) H2

ét(OS , μ2).
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Denote [γ] = ∂0(−1). Then sδV ([γ]) = δV (h([γ]) = [0]) = [0], hence [γ] ∈ Im(sπ∗). But 
as q is isotropic, H1

ét(OS , Spin
V

) vanishes by strong approximation (cf. Lemma 2.3), so 
[γ] = [0], which means that ∂0 is the trivial map and det(OS) surjects on μ2(OS). �
Lemma 4.4. If n is odd, or (V, q) is isotropic, then ClS(SOV ) = ClS(OV ).

Proof. Any representative (V ′, q′) of a class in ClS(OV ), being K isomorphic to q, is 
regular and isotropic as well, whence OV ′(OS) → μ2(OS) is surjective by Lemma 4.3. 
When n is odd, this surjectivity is retrieved by the fact that OV ′ ∼= SOV ′ ×μ2 (cf. [Con, 
Thm. 1.7]), and so applying étale cohomology to the exact sequence of smooth groups

1 → SOV ′ → OV ′ → μ2 → 1

we get that ker[H1
ét(OS , SOV ′) ψ′

−−→ H1
ét(OS , OV ′)] = 1 for any [(V ′, q′)] ∈ ClS(OV ), 

which means that the restricted map ClS(SOV ) ψ−→ ClS(OV ) is injective. Together with 
Remark 4.2, this amounts to the existence of the following exact and commutative dia-
gram:

ClS(SOV )
ψ

i

ClS(OV )

i′

1 H1
ét(OS , SOV )

ψ′

m

H1
ét(OS ,OV )

m′

d
H1

ét(OS , μ2)

m′′

1 H1(K,SOV ) h
H1(K,OV ) d′

H1(K,μ2)

in which as m′′ is injective due to Remark 4.1, ψ is also surjective, thus is the identity. �
Proposition 4.5. Let (V, q) be a regular quadratic OS-space of rank n ≥ 3 with proper 
genus ClS(SOV ). The relative Witt-invariant (cf. Definition 1 and Remark 3.2) induces 
an exact sequence of pointed sets

1 → ClS(SOV ) h−→ H1
ét(OS , SOV ) wV−−→ 2Br(OS) → 1

in which h is injective and 2Br(OS) bijects to the set of 2|S|−1 proper genera of q.

Proof. Consider the short exact sequence induced by the double covering of the generic 
fiber

1 → μ2 → SpinV → SOV → 1.
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As SpinV is simply connected, we know due to Harder that H1(K, SpinV ) = 1 (cf. [Hard, 
Satz A]). This is true for all twisted forms of SpinV , whence Galois cohomology implies 
the embedding H1(K, SOV ) ↪→ H2(K, μ2). Due to Hilbert’s Theorem 90, applying Galois 
cohomology to the Kummer’s exact sequence related to μ2 over K gives an isomorphism 
H2(K, μ2) ∼= 2Br(K). Moreover, as shown in the sequence (2.5), Br(OS) is a subgroup 
of Br(K). All together, the relative Witt-invariant applied to classes in H1

ét(OS , SOV )
and on their generic fibers, yields the following exact and commutative diagram:

H1
ét(OS , SOV )

wV

2Br(OS)

H1(K,SOV )
wV

2Br(K)

(4.6)

which justifies the left exactness in the asserted sequence:

ClS(SOV ) (4.4)= ker[H1
ét(OS , SOV ) → H1(K,SOV )] = ker[H1

ét(OS , SOV ) wV−−→ 2Br(OS)].

(4.7)

The surjectivity of wV : H1
ét(OS , SOV ) → 2Br(OS) (cf. Remark 3.2) completes the proof.

The first equality in (4.7) suggests that for any [q′] ∈ H1
ét(OS , SOV ), q′ ∈ ClS(SOV )

if and only if q′ is K-isomorphic to q while the second equality claims that this holds if 
and only if wV (q′) = wV (q). This is true for any choice of base point, being regular as 
well. So as H1

ét(OS , SOV ) is a disjoint union of the proper genera of q, together with the 
surjectivity of wV , we deduce that the set of proper genera bijects with 2Br(OS), whose 
cardinality is computed in Lemma 2.2. �
Theorem 4.6. Let (V, q) be a regular quadratic OS-space of rank n ≥ 3. Then there exists 
a surjection of pointed-sets: ClS(SOV ) � Pic (OS)/2. If (V, q) is isotropic, then this is 
a bijection, so the abelian group Pic (OS)/2 is isomorphic to ClS(SOV ) = ClS(OV ).

Proof. Consider the following exact and commutative diagram derived from sequences 
(1.1) and (3.5):

1 H1
ét(OS , SOV )

sδV

H1
ét(OS , SOV )

wV

1

1 Pic (OS)/2 ∂
H2

ét(OS , μ2)
i2∗

2Br(OS) 1.

(4.8)

We imitate the Snake Lemma argument (though the diagram terms are not all groups): 
according to Proposition 4.5 ClS(SOV ) = ker(wV ), hence for any [q′] ∈ ClS(SOV ) one 
has i2∗(sδV ([q′])) = [0], i.e., [q′] has a ∂-preimage in Pic (OS)/2 which is unique as ∂ is a 
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monomorphism of groups. Moreover, any element in Pic (OS)/2 arises in this way, since 
sδV is surjective. As a result we have an exact sequence of pointed sets:

1 → K1 → ClS(SOV ) sδV−−−→ Pic (OS)/2 → 1.

If (V, q) is isotropic, then sδV is also injective. Indeed, let SOV ′ be a twisted form of 
SOV , properly stabilizing a form q′, and let Spin

V ′ be its Spin group. The lower row in 
the following exact diagram is the one obtained when replacing the base point q by q′, 
as described in [Gir, IV, Proposition 4.3.4]:

K1 ClS(SOV )

⊂

sδV Pic (OS)/2

H1
ét(OS , Spin

V
) H1

ét(OS , SOV )
sδV

H2
ét(OS , μ2)

H1
ét(OS , Spin

V ′) H1
ét(OS , SO′

V )
sδV ′

∼=θ

H2
ét(OS , μ2)

r ∼=

(4.9)

If [q′] ∈ ClS(SOV ), then q′, being K-isomorphic to q, is also K-isotropic, as well as 
the generic fiber SpinV ′ . Then by the Hasse–Minkowsky Theorem (cf. [Lam, VI.3.1]), 
q′ is K̂p-isotropic everywhere, in particular in S. Hence H1

ét(OS , Spin
V ′) is trivial by 

Lemma 2.3 for any class in ClS(SOV ) (SOV is not commutative for n ≥ 3 thus 
H1

ét(OS , SOV ) does not have to be a group, so the triviality of H1
ét(OS , Spin

V
) does 

not imply the injectivity of sδV , i.e., there still might be distinct anisotropic classes 
in H1

ét(OS , SOV ) whose images in H2
ét(OS , μ2) coincide). So ClS(SOV ), being equal in 

the isotropic case to ClS(OV ) by Lemma 4.4, embeds in Pic (OS)/2 and the assertion 
follows. �
Definition 2. We say that the local-global Hasse principle holds for a quadratic OS-space 
(V, q) if |ClS(OV )| = 1.

Corollary 4.7. The Hasse principle holds for a regular isotropic quadratic OS-form of 
rank ≥ 3 if and only if |Pic (OS)| is odd.

Corollary 4.8. Let (V, q) be an OS-regular quadratic space of rank ≥ 5. Then the 
pointed-set H1

ét(OS , SOV ) is isomorphic to the abelian group H2
ét(OS , μ2), i.e., any 

OS-isomorphism class in the proper classification corresponds to an Azumaya OS-algebra 
with involution. There are 2|S|−1 genera, each of them is isomorphic to Pic (OS)/2.

Proof. In rank ≥ 5, any quadratic OS-space is isotropic; indeed, for any such (V ′, q′), the 
generic fiber q′K := q′⊗K is isotropic (cf. [OMe, Theorem 66:2]), i.e., there exists a non-
zero vector v0 ∈ V ′⊗K such that q′k(v0) = 0. Since K is the fraction field of the Dedekind 
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domain OS , there exists a non-zero vector v0 ∈ Kv0 ∩ OS for which q(v0) = 0. Hence 
according to Theorem 4.6, we deduce that the genus of any [(V ′, q′)] ∈ H1

ét(OS , SOV ) is 
isomorphic to the abelian group Pic (OS)/2 and injects into H1

ét(OS , SOV ). Looking at 
the obtained exact and commutative diagram:

1 ClS(SOV )

∼=

H1
ét(OS , SOV )

wV

sδV

2Br(OS) 1

1 Pic (OS)/2 ∂
H2

ét(OS , μ2)
i2∗

2Br(OS) 1

we see that the cardinality of H1
ét(OS , SOV ), being the disjoint union of its genera, 

equals the one of its sδV -image H2
ét(OS , μ2), hence it is isomorphic to it. We have seen 

in Proposition 4.5 that 2Br(OS) bijects with the set of proper genera of q. Here, as any 
twisted form of q is isotropic, its proper genus is equal to its genus (Lemma 4.4), thus 
there are 2|S|−1 such genera (Lemma 2.2). �
Remark 4.9. Since as we have seen any integral quadratic form of rank ≥ 5 is isotropic, 
according to Lemma 4.4, ClS(SOV ) might not be equal to ClS(OV ) (for rank(V ) ≥ 3) 
only when (V, q) is anisotropic of rank 4.

5. A splitting hyperbolic plane

In this section, we refer to regular quadratic OS-spaces being split by a hyperbolic 
plane P (thus being isotropic and so ClS(OV ) = ClS(SOV )). Such P contains a hyper-
bolic pair {v0, v1} of V , namely, satisfying: q(v0) = q(v1) = 0 and Bq(v0, v1) = 1, and 
it is of the form Pa = av0 + a−1v1 for some fractional ideal a of OS (cf. [Ger, Propo-
sition 2.1]). L. J. Gerstein established in [Ger, Theorem 4.5] for the ternary case the 
bijection:

ψ : Pic (OS)/2 ∼−→ ClS(OV ) : [a] �→ [Va] := [Pa⊥bλ]

where b is again a fractional ideal of OS and λ ∈ O×
S , for which V ∼= Va. The existence 

of ψ can be viewed as a particular case of our Theorem 4.6 (such a splitting does not 
necessarily exist). The following Lemma suggests an alternative bijection which resem-
bles the one of Gerstein, but does not, however, require finding and multiplying by a 
hyperbolic pair, and, more important, is valid for any rank n ≥ 3.

Proposition 5.1. Suppose V is split by a hyperbolic plane V = H(L0)⊥V0 where L0 is 
an OS-line. Then ψV : [L] �→ [VL = H(L0 ⊗ L∗)⊥V0] is an isomorphism of groups 
Pic (OS)/2 ∼= ClS(OV ).
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Proof. L∗ is locally free, thus VL obtained from V by tensoring H(L0) with L∗ remains 
in ClS(OV ). Due to Theorem 4.6, the groups Pic (OS)/2 and ClS(OV ) are isomorphic 
through diagram (4.8), so it is sufficient to show by its commutativity that sδV ◦ ψV

coincides with the groups embedding ∂. The i’th Stiefel–Whitney class wi(E) of a reg-
ular OS-module E, as defined in [EKV, §1], gets values in Hi

ét(OS , μ2) for i ≥ 1 and 
w0(E) = 1. Its basic axioms, namely, wi(E) = 0 for all i > rank(E) and for any direct 
sum of regular OS-modules of finite rank

wk(E ⊕ F ) =
∑

i+j=k

wi(E) · wj(F ),

imply that:

w1(E⊕F ) = w1(E)+w1(F ) and: w2(E⊕F ) = w2(E)+w2(F )+w1(E) ·w1(F ). (5.1)

If L is an OS-line and H(L) = L ⊕L∗ is the corresponding hyperbolic plane, this reads:

w1(H(L)) = w1(L) + w1(L∗) while w2(H(L)) = w1(L) · w1(L∗).

Moreover, w1 furnishes an isomorphism of abelian groups {OS-lines, ⊗}/ ∼∼= H1
ét(OS , μ2)

by

w1(L1 ⊗ L2) = w1(L1) + w1(L2), thus w1(L) = −w1(L∗),

hence

w1(H(L0 ⊗ L∗))−w1(H(L0)) = w1(L0 ⊗ L∗) +w1(L∗
0 ⊗ L)−w1(L0)−w1(L∗

0) (5.2)

= w1(L0) + w1(L∗) + w1(L∗
0) + w1(L) − w1(L0) − w1(L∗

0)

= 0

and:

w2(H(L0 ⊗ L∗)) − w2(H(L0)) (5.3)

= (w1(L0) + w1(L∗)) · (w1(L∗
0) + w1(L)) − w1(L0) · w1(L∗

0)

= w1(L∗) · w1(L∗
0) + w1(L0) · w1(L) + w1(L∗) · w1(L)

= w1(L∗) · w1(L∗
0) − w1(L∗

0) · w1(L) + w1(L∗) · w1(L)

= w1(L∗) · w1(L) = w2(H(L)).

In our setting (recall that δ = w2, see Remark 3.1), we get:
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δ([VL]) − δ([V ]) (5.1)= δ([H(L0 ⊗ L∗)]) + δ([V0]) + w1(H(L0 ⊗ L∗)) · w1(V0) (5.4)

−
(
δ([H(L0)]) + δ([V0]) + w1(H(L0)) · w1(V0)

)
(5.2)= δ([H(L0 ⊗ L∗)]) − δ([H(L0)])

(5.3)= δ([H(L)]).

Altogether, we may finally conclude that for any [L] ∈ Pic (OS)/2:

(sδV ◦ ψV )([L]) = sδV ([VL]) (3.3)= (rV ◦ δ ◦ θ−1)([VL]) = (rV ◦ δ)([VL])

= δ([VL]) − δ([V ]) (5.4)= δ([H(L)]) Remark 3.3= ∂([L]). �
5.1. |S| = 1

If S = {∞} where ∞ is an arbitrary closed point, then Caf := C − {∞} is an 
affine curve whence Br(OS) = 1 (cf. Lemma 2.2), i.e., there is a single genus, and 
any OS-regular quadratic space (V, q) of rank n ≥ 3 is isotropic (cf. [Bit]). Suppose 
furthermore that C is an elliptic curve and ∞ is Fq-rational. For any place P on Caf we 
define the maximal ideal of OS

mP := {f ∈ OS : f(P ) = 0} .

Then we have an isomorphism of abelian groups (see [Hart, II, Proposition 6.5(c)] for 
the first map and p. 393 in [Bau] for the second one):

ϕ : C(Fq) ∼= Pic 0(C) ∼= Pic (OS) : P �→ [P ] − [∞] �→ mP .

Since OS is Dedekind, Steinitz’s Theorem (cf. [BK, Corollary 6.1.9]) tells us that for 
any fractional ideal a of OS there is an OS-isomorphism of OS-modules (though not of 
quadratic OS-spaces):

χ : a⊕ a−1 → OS ⊕OS .

Towards our purpose of finding representatives of twisted K-forms of q, we may choose 
such a K-isomorphism χK to be as in [Cla, Lemma 20.17]:

χK : (α, β) �→ (α, β) ·Aa, Aa =
(
b1 −a2
b2 a1

)

where a1b1 + a2b2 = 1, b1 ∈ a−1, b2 ∈ a. According to Proposition 5.1, the ma-
trix A−t

mP
BqA

−1
mP

represents, for any coset [P ] ∈ C(Fq)/2, a distinct class of quadratic 
OS-forms in ClS(OV ) = H1

ét(OS , SOV ).
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We summarize this procedure by the following algorithm:

Algorithm 1 Generator of classes representatives isomorphic in the flat topology to a 
regular quadratic space split by a hyperbolic plane, over the coordinate ring of an affine 
non-singular elliptic curve.
Input: C = elliptic projective Fq-curve, S = {∞ ∈ C(Fq)}, V = H(L0)⊥V0 = quadratic regular OS-space 
of rank n ≥ 3, H(L0) is represented by F0 ∈ GL2(OS).

Compute C(Fq) and OS := Caf(Fq) where Caf := C − {∞}.
for each [P ] ∈ C(Fq)/2 do

mP = {f ∈ OS : f(P ) = 0} for P �= ∞ and m∞ = OS .
Find a1, b2 ∈ mP and a2, b1 ∈ m

−1
P such that a1b1 + a2b2 = 1.

A−1
mP

=
(

a1 a2
−b2 b1

)
and: FP = A−t

mP
F0A

−1
mP

.

Output: ClS(OV ) = {[VP⊥V0] : [P ] ∈ C(Fq)/2}, where VP is the quadratic OS-form represented by FP .

Remark 5.2. If C is an elliptic curve and ∞ is Fq-rational, then for any OS-line L0, the 
special orthogonal group of H(L0), being split, of rank 2 and OS-regular, is a one dimen-
sional split OS-torus, i.e., isomorphic to Gm (see in the proof of [Bit, Theorem 4.5]), hence 
the proper classification is via H1

ét(OS , Gm) ∼= Pic (OS) ∼= C(Fq). Then the class repre-
sentatives are obtained by the above algorithm when replacing C(Fq)/2 by C(Fq). This 
means that invertible fractional ideals, corresponding to non-trivial squares in C(Fq), 
i.e., [L] ∈ 2Pic (OS)\{0}, and only they, induce spaces H(L0 ⊗ L∗) that are stably iso-
morphic to H(L0) in the proper classification, namely, become properly isomorphic after 
being extended by any non-trivial regular orthogonal OS-space. In other words, the Witt 
Cancellation Theorem fails over OS in this case for the proper classification.

Example 5.3. 1 Let C = {Y 2Z = X3 + XZ2} defined over F5. Then

C(F5) = {(0 : 0 : 1), (1 : 0 : 2), (1 : 0 : 3), (0 : 1 : 0)}.

Taking S = {∞ = (0 : 1 : 0)} we get the affine elliptic curve

Caf = {y2 = x3 + x} with: OS = F5[x, y]/(y2 − x3 − x).

The affine supports of the points in C(F5) −{∞} are: {(0, 0), (1/2, 0) = (3, 0), (1/3, 0) =
(2, 0)}. The y-coordinate of these points vanishes which means that they are of order 2
according to the group law and C(Fq) ∼= (Z/2)2. We get:

m(0:0:1) = 〈x, y〉, m(1:0:2) = 〈x− 3, y〉, m(1:0:3) = 〈x− 2, y〉, m(0:1:0) = OS .

Now consider the standard ternary quadratic OS-space V = H(OS)⊥〈1〉, i.e., with Bq =⎛
⎜⎝ 0 1 0

1 0 0
0 0 1

⎞
⎟⎠. For any [L] ∈ Pic (OS)/2 = Pic (OS), the quadratic space VL = H(L)⊥〈1〉

1 I take this opportunity to correct Example 4.12 in [Bit].
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belongs to ClS(OV ) and there are four non-equivalent classes in ClS(OV ). For example, 

A−1
〈x,y〉 =

(
x −y/x

y −x

)
induces the form represented by 

⎛
⎜⎝ 2xy −2x2 − 1 0

−2x2 − 1 2y 0
0 0 1

⎞
⎟⎠, 

being not OS-isomorphic to V , as 〈x, y〉 is not principal.

5.2. |S| > 1

If |S| > 1 then an OS-regular quadratic space V will possess multiple (2|S|−1) gen-
era, and if rank(V ) = 3, 4 some of them may be anisotropic, i.e., contain anisotropic 
representatives only.

Example 5.4. Let C be the projective line defined over F3, so K = F3(t), and let S =
{t, t−1}, so OS = F3[t, t−1], being the ring of regular functions on the multiplicative group 
Gm, thus it is a PID. The ternary OS-space V = 〈1, −1, −t〉 with q(x, y, z) = x2−y2−tz2

is isotropic, e.g., q(1, 1, 0) = 0. It is properly isomorphic over OS(i) (being a scalar 
extension of OS thus an étale one), by diag(1, i, −i) to the anisotropic form V ′ = 〈1, 1, t〉. 
Both are OS-unimodular as det(q) = t ∈ O×

S , but belong to two distinct genera (there 
are exactly 2|S|−1 = 2 such, cf. Proposition 4.5). As OS is a PID, Pic (OS) = 1, and 
so according to Theorem 4.6 there is only one class in ClS(OV ). The hyperbolic plane 
〈1, −1〉 has trivial Witt invariant, and it is orthogonal to 〈−t〉 in V , thus w(q) = 0 (cf. 
[Knu, IV, Prop. 8.1.1, 1), 3)]), so [q] corresponds to the trivial element in 2Br(OS). To 
compute the Clifford algebra of (V ′, q′), we choose the natural basis

{e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1)}.

The embedding i : V ′ ↪→ C(q′) satisfies the relations i(v)2 = q′(v) · 1 ∀v ∈ V ′ which 
imply:

i(v)i(u) + i(u)i(v) = Bq′(u, v) ∀u, v ∈ V ′.

Since {ei}3
i=1 are orthogonal, this means that:

i(ei)i(ej) = −i(ej)i(ei) ∀1 ≤ i �= j ≤ 3,

so we may choose (as q′ is anisotropic the obtained quaternion algebra is not split):

i(e1) =
(

1 0
0 −1

)
, i(e2) =

(
0 1
1 0

)
, i(e3) =

(
0

√
−t

−
√
−t 0

)
.
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Then {1, i(e1)i(e2), i(e2)i(e3), i(e1)i(e3)} is a basis of C0(q′) (cf. [Knu, V. §3]):

C0(q′) =
〈

1,
(

0 1
−1 0

)
,

(
−
√
−t 0

0
√
−t

)
,

(
0

√
−t√

−t 0

)〉

and w(q′) = [C0(q′)] is the non-trivial element in 2Br(OS).
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