期刊论文详细信息
JOURNAL OF NUMBER THEORY 卷:133
Criteria of measure-preserving for p-adic dynamical systems in terms of the van der Put basis
Article
Khrennikov, Andrei1  Yurova, Ekaterina1 
[1] Linnaeus Univ, Int Ctr Math Modelling Phys & Cognit Sci, S-35195 Vaxjo, Sweden
关键词: p-Adic numbers;    Van der Put basis;    Dynamics;    Haar measure;    Measure-preserving;   
DOI  :  10.1016/j.jnt.2012.08.013
来源: Elsevier
PDF
【 摘 要 】

This paper is devoted to (discrete) p-adic dynamical systems, an important domain of algebraic and arithmetic dynamics. We consider the following open problem from theory of p-adic dynamical systems. Given continuous function f : Z(p) -> Z(p). Let us represent it via special convergent series, namely van der Put series. How can one specify whether this function is measure-preserving or not for an arbitrary p? In this paper, for any prime p, we present a complete description of all compatible measure-preserving functions in the additive form representation. In addition we prove the criterion in terms of coefficients with respect to the van der Put basis determining whether a compatible function f : Z(p) -> Z(p) preserves the Haar measure. (C) 2012 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jnt_2012_08_013.pdf 155KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次