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This paper is devoted to (discrete) p-adic dynamical systems,
an important domain of algebraic and arithmetic dynamics. We
consider the following open problem from theory of p-adic
dynamical systems. Given continuous function f :Zp → Zp . Let
us represent it via special convergent series, namely van der Put
series. How can one specify whether this function is measure-
preserving or not for an arbitrary p? In this paper, for any
prime p, we present a complete description of all compatible
measure-preserving functions in the additive form representation.
In addition we prove the criterion in terms of coefficients with
respect to the van der Put basis determining whether a compatible
function f :Zp → Zp preserves the Haar measure.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Algebraic and arithmetic dynamics are actively developed fields of general theory of dynamical
systems. The bibliography collected by Franco Vivaldi [30] contains 216 articles and books; extended
bibliography also can be found in books of Silverman [29] and Anashin and Khrennikov [6]. Theory
of dynamical systems in fields of p-adic numbers and their algebraic extensions is an important part
of algebraic and arithmetic dynamics, see, e.g., [1–32] (the complete list of references would be very
long; hence, we refer to [30,6,21]). As in general theory of dynamical systems, problems of ergodicity
and measure-preserving play fundamental roles in theory of p-adic dynamical systems, see [6–9,21,
14]. Traditionally studies in these domains of p-adic dynamics were restricted to analytic (mainly
polynomial) or at least smooth maps f : Qp → Qp, where Qp is the field of p-adic numbers. However,
the internal mathematical development of theory of p-adic dynamical systems as well as applications
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to cryptography [6] stimulated the interest to nonsmooth dynamical maps. An important class of
(in general) nonsmooth maps is given by Lipschitz one functions. In cryptographic applications such
functions are called compatible. We shall use this terminology in this paper.

The main mathematical tool used in this paper is the representation of the function by the
van der Put series which is actively used in p-adic analysis, see e.g. Mahler [23] and Schikhof [28]. Mar-
ius van der Put introduced this series in his dissertation “Algèbres de fonctions continues p-adiques”
at Utrecht Universiteit in 1967 [24]. There are numerous results in studies of functions with zero
derivatives, antiderivation [28] obtained using van der Put series. Later van der Put basis was adapted
to the case of n-times continuously differentiable functions in one and several variables [15]. First re-
sults on applications of the van der Put series in theory of p-adic dynamical systems, the problems of
ergodicity and measure-preserving, were obtained in [7]. The present paper is the first attempt to use
van der Put basis to examine such property as measure-preserving of (discrete) dynamical systems in
a space of p-adic integers Zp for an arbitrary prime p.

Note that the van der Put basis differs fundamentally from previously used ones (for example,
the monomial and Mahler basis [5]) which are related to the algebraic structure of p-adic fields. The
van der Put basis is related to the zero dimensional topology of these fields (ultrametric structure),
since it consists of characteristic functions of p-adic balls. In other words, the basic point in the
construction of this basis is the continuity of the characteristic function of a p-adic ball.

In this paper, we present a description of all compatible measure-preserving functions by using
the additive form representation, Theorem 4.1. In the additive form criteria, a compatible measure-
preserving function is decomposed into a sum of two functions. The first one is an arbitrary compati-
ble function – “free” part, and the second one is a compatible function of a special type. This “special”
function is given by the van der Put basis, where the coefficients are defined via an arbitrary set of
substitution on the set of nonzero residues modulo p and one substitution modulo p.

The additive form representation, Theorem 4.1, is based on the criterion of measure-preserving in
terms of coefficients of the van der Put series, see Theorem 2.1. It was announced in [7,33]. In this
paper we give its proof. As an example of its application, we show how known results on the descrip-
tion of certain classes of compatible measure-preserving functions can be obtained from Theorem 3.2.
Namely, the classes of compatible 2-adic functions and uniformly differentiable functions modulo p.

2. Criterion of measure-preserving

Let p > 1 be an arbitrary prime number. The ring of p-adic integers is denoted by the symbol Zp .

The p-adic valuation is denoted by | · |p . We remind that this valuation satisfies the strong triangle
inequality:

|x + y|p � max
[|x|p, |y|p

]
.

This is the main distinguishing property of the p-adic valuation inducing essential departure from the
real or complex analysis (and hence essential difference of p-adic dynamical systems from real and
complex dynamical systems).

We shall use the terminology of papers [7,33].
Namely, van der Put series are defined in the following way. Let f :Zp → Zp be a continuous

function. Then there exists a unique sequence of p-adic coefficients B0, B1, B2, . . . such that

f (x) =
∞∑

m=0

Bmχ(m, x) (1)

for all x ∈ Zp . Here the characteristic function χ(m, x) is given by

χ(m, x) =
{

1, if |x − m|p � p−n,
0, otherwise,
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where n = 1 if m = 0, and n is uniquely defined by the inequality pn−1 � m � pn − 1 otherwise (see
Schikhof’s book [28] for detailed presentation of theory of van der Put series).

The van der Put coefficients Bm are related to the values of f as follows. Let m = m0 + · · · +
mn−2 pn−2 +mn−1 pn−1 be the representation of m in the p-ary number system, i.e., m j ∈ {0, . . . , p−1},
j = 0,1, . . . ,n − 1 and mn−1 �= 0. Then

Bm =
{

f (m) − f (m − mn−1 pn−1), if m � p,

f (m), otherwise.

Let f :Zp → Zp be a function and let f satisfy the Lipschitz condition with constant 1 (with respect
to the p-adic valuation | · |p):

∣∣ f (x) − f (y)
∣∣

p � |x − y|p

for all x, y ∈ Zp .

We state again that a mapping of an algebraic system A to itself is called compatible if it pre-
serves all the congruences of A. It is easy to check that a map f : Zp → Zp is Lipschitz one iff it is
compatible (with respect to mod pk , k = 1,2, . . . congruences).

The space Zp is equipped by the natural probability measure, namely, the Haar measure μp nor-
malized so that μp(Zp) = 1.

Recall that a mapping f :S → S of a measurable space S with a probability measure μ is called
measure-preserving if μ( f −1(S)) = μ(S) for each measurable subset S ⊂ S.

We say that a compatible function f :Zp → Zp is bijective modulo pk if the induced mapping
x �→ f (x) mod pk is a permutation on Z/pkZ. It was shown in [9] (see also [1, Section 4.4]) that a
compatible function f :Zp → Zp is measure-preserving if and only if it is bijective modulo pk for all
k = 1,2,3, . . . .

Theorem 2.1. Let f :Zp → Zp be a compatible function and

f (x) =
∞∑

m=0

p	logp m
bmχ(m, x)

be the van der Put representation of this function, where bm ∈ Zp,m = 0,1,2, . . . . Then f (x) preserves the
Haar measure iff

1. b0,b1, . . . ,bp−1 establish a complete set of residues modulo p, i.e. the function f (x) is bijective modulo p;
2.

bm+pk ,bm+2pk , . . . ,bm+(p−1)pk

for any m = 0, . . . , pk − 1 are all nonzero residues modulo p for k = 2,3, . . . .

Proof. By the induction for k = 1,2, . . . we show that the function f is bijective modulo pk. For k = 1
it is true by the first condition of the theorem, i.e. bi ≡ f (i) mod p for i = 0,1, . . . , p − 1. Assume
that f is bijective modulo pk. Let us show that the function f is bijective modulo pk+1. In other
words, we should show that the comparison f (x) ≡ t́ + pkt mod pk+1 has a unique solution for any
t́ ∈ {0, . . . , pk −1} and t = 0,1, . . . , p −1. By the induction hypothesis the comparison f (x) ≡ t́ mod pk

has a unique solution x́ ∈ {0, . . . , pk − 1}. Then to check bijective property of the function f mod pk+1

it is enough to show that for a given value t́ ∈ {0, . . . , pk − 1} the comparison
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f
(
x́ + pkx

) ≡ t́ + pkt mod pk+1 (2)

has unique solution with respect to x ∈ {0, . . . , p − 1} for any t ∈ {0, . . . , p − 1}.
For every x́ ∈ {0, . . . , pk − 1} we set a function

ϕx́(h) =
{

bx́+pkh mod p, h �= 0,

0, h = 0,

which is defined and valued in the residue ring modulo p.

To calculate values of the function f using the van der Put representation we write a compari-
son (2) as

f
(
x́ + pkx

) = f (x́) + pkϕx́(x). (3)

We take into account that x́ is unique solution of the comparison f (x) ≡ t́ mod pk and assume
f (x́) ≡ t́ + pkξ mod p. Thus we transform the comparison (3) as

ϕx́(x) ≡ t − ξ mod p. (4)

Under the second condition of Theorem 2.1 the function ϕx́ is bijective on {0, . . . , p − 1}. Then
for any t = 0, . . . , p − 1 the comparison (4) has unique solution on {0, . . . , p − 1}. That is (2) has
unique solution, and therefore the function f is bijective modulo pk for any k = 1,2, . . . . Thereby the
function f preserves measure by Theorem 1.1 in [4].

Now let us prove the theorem in the opposite direction. Let the function f preserves measure.
By [6] f is bijective modulo pk+1 for any k = 1,2, . . . . The first condition follows immediately from
this result (here k = 0). The following comparisons have unique solution (x́; x), where x́ ∈ {0, . . . ,

pk − 1} and x ∈ {0, . . . , p − 1} for any t́ ∈ {0, . . . , pk − 1} and t ∈ {0, . . . , p − 1}:

f
(
x́ + pkx

) ≡ t́ + pkt mod pk+1, (5)

f (x́) ≡ t́ mod pk. (6)

After transformations presented at the beginning of the proof we can see that the condition of
uniqueness of the solution of comparisons (6) is equivalent to unique solvability of the comparison (4)
with respect to x ∈ {0, . . . , p −1} for any t ∈ {0, . . . , p −1}. It means that the function ϕx́ is bijective on
{0, . . . , p −1}. And therefore bx́+pk ,bx́+2pk , . . . ,bx́+(p−1)pk coincide with the set of all nonzero residues
modulo p. �

The formulation and the proof of measure-preservation of the locally compatible p-adic functions
are similar to the previous reasoning. Remind that locally compatible functions are ones satisfying the
p-adic Lipschitz condition with a constant of 1 locally, i.e., in a suitable neighborhood of each point
from Zp , see [7].

Corollary 2.2. Let f :Zp → Zp be a locally compatible function and

f (x) =
∞∑

m=0

p	logp m
bmχ(m, x)

be the van der Put representation of this function, where bm ∈ Zp , m � N. Then f (x) preserves the Haar
measure iff
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1. the function f (x) is bijective modulo pN ;
2.

bm+pk ,bm+2pk , . . . ,bm+(p−1)pk

for any m = 0, . . . , pk − 1 are all nonzero residues modulo p for k > N.

3. Connection to known results

Here we show how to use theorems above by proving some known results on description of com-
patible measure-preserving p-adic functions.

A compatible measure-preserving 2-adic function represented via the van der Put series has been
described in papers, see for example [7,33], and state that

Theorem 3.1. The function f : Z2 → Z2 is compatible and preserves the measure μp if and only if it can be
represented as

f (x) = b0χ(0, x) + b1χ(1, x) +
∞∑

m=2

2	log2 m
bmχ(m, x),

where bm ∈ Z2 for m = 0,1,2, . . . , and

1. b0 + b1 ≡ 1 mod 2,
2. |bm|2 = 1, if m � 2.

It turns out that this result immediately follows from Theorem 2.1. Indeed, from the second con-
dition of this theorem follows that bm ≡ 1 mod 2 for m � 2 or, in another words, |bm|2 = 1. The first
condition of Theorem 2.1 means that b0 + b1 ≡ 1 mod 2, which is equivalent to the first condition in
the theorem mentioned above.

In papers [6,4] outlined characterization of measure-preserving, uniformly differentiable modulo p
compatible p-adic functions f : Zp → Zp . We remind, see also Definitions 3.27 and 3.28 from [6], that
the function f : Zp → Zp is uniformly differentiable modulo p if for any u ∈ Zp there exist a positive
rational integer N and f ′

1(u) ∈Qp such that for every k � N and h ∈ Zp we have f (u + pkh) ≡ f (u)+
pkh · f ′

1(u) mod pk+1. Note that a uniformly differentiable modulo p function is locally compatible as
soon as | f ′

1(u)|p � 1 (n = m = 1), according to Proposition 3.41 in [6].
Therefore, we can see that Theorem 4.45 in [6] follows from our Corollary 2.2. Indeed, from the

definition of the uniformly differentiable function modulo p and periodically function f ′
1(u) with pe-

riod pN , see Proposition 3.32 from [6], follows that for sufficiently large k there exists the comparison
bu+pkh ≡ pkh · f ′

1(u) mod pk+1. The set of the coefficients bu+pkh mod p for h = 1,2, . . . , p − 1 co-
incides with the set of all nonzero residues modulo p iff f ′

1(u) �= 0 mod p for any u ∈ Zp . Thereby
here the function f preserves measure iff the function f is bijective modulo pk for some k � N and
f ′
1(u) �= 0 mod p, as well as stated in Theorem 4.45 in [6].

4. Additive representation of compatible, measure-preserving p-adic functions

By Lemma 4.41 from [6] we know that for arbitrary compatible function g : Zp → Zp the function
f (x) = d + cx + pg(x), d, c ∈ Zp, c �= 0 mod p preserves measure. So we see that measure-preserving
functions are linear combinations of some “fixed” measure-preserving function and “arbitrary” com-
patible function. Moreover, in the case p = 2 necessary and sufficient conditions for measure-
preserving property were obtained [6]. It turns out that we can find a similar representation for
all compatible measure-preserving functions for any prime p. Here as a “fixed” part the special class
of measure-preserving functions appears.
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Theorem 4.1. Let h :Zp → Zp be an arbitrary compatible function. A compatible function f :Zp → Zp pre-
serves measure iff it can be represented as

f (x) = ξ(x) + p · h(x),

where the function ξ(x) represented via the van der Put series is such that

ξ(x) =
p−1∑
m=0

G(i)χ(i, x) +
∞∑

k=1

pk−1∑
m=0

p−1∑
i=1

gm(i)pk · χ(
m + i · pk, x

)

=
p−1∑
m=0

G(i)χ(i, x) +
∞∑

k=1

pk−1∑
m=0

p−1∑
i=1

i · pk · χ(
m + g−1

m (i) · pk, x
)
, (7)

where gm is a substitution on the set {1, . . . , p − 1} and G is a substitution on the set {0,1, . . . , p − 1}.

Proof. By the hypothesis of this theorem the function f is compatible. Let us represent f via the
following van der Put series. Here the van der Put coefficients are Bm = p	logp m
(bm + p · b̃m), where
bm, ˜bm ∈ Zp . Then

f (x) =
∞∑

m=0

p	logp m
bm · χ(m, x) + p ·
∞∑

m=0

p	logp m
b̃m · χ(m, x).

By the theorem about compatibility (i.e. the Lipschitz property with constant 1) of functions repre-
sented via the van der Put series, see [28,7,33], the function

h(x) =
∞∑

m=0

p	logp m
b̃m · χ(m, x)

is compatible. Now we set

ξ(x) =
∞∑

m=0

p	logp m
bm · χ(m, x).

By Theorem 2.1 a compatible function ξ(x) preserves measure iff it is bijective modulo p, i.e. bi = G(i)
for i = 0,1, . . . , p − 1, where

bm+pk ,bm+2pk , . . . ,bm+(p−1)pk

are all nonzero residues modulo p for k = 1,2,3, . . . and m = 0, . . . , pk − 1. Let gm be a substitution
on the set 1,2, . . . , p − 1 such that gm(i) = bm+i·pk mod p for k = 1,2,3, . . . and m = 0, . . . , pk − 1.

Then

ξ(x) =
p−1∑
m=0

G(i)χ(i, x) +
∞∑

k=1

pk−1∑
m=0

p−1∑
i=1

gm(i)pk · χ(
m + i · pk, x

)

=
p−1∑
m=0

G(i)χ(i, x) +
∞∑

k=1

pk−1∑
m=0

p−1∑
i=1

i · pk · χ(
m + g−1

m (i) · pk, x
)
, (8)

where g−1
m is an inverse substitution to gm . �
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4.1. Example of measure-preserving function in additive representation

Now we consider an example of the compatible measure-preserving p-adic function constructed
by using the additive representation. For k = 0,1,2, . . . we choose substitutions gm such that g0 =
g1 = · · · = gpk−1 = hk. Denote via δk(x) the value of k-th p-adic digit in a canonical expansion of the
number x. Then

pk−1∑
m=0

p−1∑
i=1

gm(i)pk · χ(
m + i · pk, x

) =
p−1∑
i=1

hk(i)pk ·
pk−1∑
m=0

χ
(
m + i · pk, x

)

=
p−1∑
i=1

hk(i)pk · I
(
δk(x) = i

)
, (9)

where

I
(
δk(x) = i

) =
{

1, δk(x) = i,

0, δk(x) �= i.

Then let us choose integer s such that GC D(s, p − 1) = 1. Substitutions hk defined on the set
{1,2, . . . , p − 1} determine by the comparison hk(i) = is mod p for k = 1,2, . . . . Using the equality∑p−1

i=0 G(i)χ(i, x) = G(δ0(x)) we represent the function ξ(x) as

ξ(x) = G
(
δ0(x)

) +
∞∑

k=1

pk · (δk(x)
)s

mod p

or

ξ
(
x0 + x1 p + · · · + xk pk + · · ·) = G(x0) +

∞∑
k=1

pk · xs
k mod p.

The substitution G we define, let us say, by G(x0) = p − 1 − x0, where x0 = {0, . . . , p − 1}. Then
as a function h(x) from Theorem 4.1 we take the pseudo-constant function h(x) = ∑∞

k=0 xk p2k with
x = ∑∞

k=0 xk pk ∈ Zp, Example 26.4, p. 74 in [28]. Finally we get that the function

f
(
x0 + x1 p + · · · + xk pk + · · ·)

= (p − 1)(1 + x0) +
∞∑

k=1

pk · xs
k mod p +

∞∑
k=1

p2k+1 · xk

= (p − 1)(1 + x0) +
∞∑

k=1

(
xs

2k+1 mod p + xk
) · p2k+1 +

∞∑
k=1

p2k · xs
2k mod p (10)

preserves measure.
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