期刊论文详细信息
JOURNAL OF NUMBER THEORY | 卷:136 |
Zeros of partial sums of the Dedekind zeta function of a cyclotomic field | |
Article | |
Ledoan, Andrew1  Roy, Arindam2  Zaharescu, Alexandru2  | |
[1] Univ Tennessee, Dept Math, Chattanooga, TN 37403 USA | |
[2] Univ Illinois, Dept Math, Urbana, IL 61801 USA | |
关键词: Dedekind zeta function; Dirichlet polynomial; Distribution of zeros; | |
DOI : 10.1016/j.jnt.2013.09.003 | |
来源: Elsevier | |
【 摘 要 】
In this article, we study the zeros of the partial sums of the Dedekind zeta function of a cyclotomic field K defined by the truncated Dirichlet series (GRAPHICS) where the sum is to be taken over nonzero integral ideals a of K and Hall denotes the absolute norm of a. Specifically, we establish the zero-free regions for sigma K,x(s) and estimate the number of zeros of sigma K,X(S) up to height T. (C) 2013 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jnt_2013_09_003.pdf | 287KB | download |