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1. Introduction

A first generalization of the Riemann zeta function ζ(s) is provided by the Dirichlet
L-functions. Subsequently, Dedekind studied the zeta function ζK(s) of an arbitrary
algebraic number field K, defined for Re(s) > 1 by

ζK(s) =
∑
a

1
‖a‖s =

∞∑
n=1

a(n)
ns

,

where the first sum is to be taken over all nonzero integral ideals a of K and where ‖a‖
denotes the absolute norm of a. In the second sum, a(n) is used to denote the number
of integral ideals a with norm ‖a‖ = n.

As in the particular case K = Q, where ζ(s) = ζQ(s), the function ζK(s) is analytic
everywhere except solely for a simple pole at s = 1. (See Davenport [3] and Neukirch [11].)
The residue of this pole is given by the analytic class number formula

Res
s=1

(
ζK(s)

)
= 2rπn0−rRKhK

wK

√
|dK |

,

where r = r1+r2 (with r1 being the number of real embeddings and r2 being the number
of complex conjugate pairs of complex embeddings of K), n0 = [K:Q] denotes the degree
of K/Q, RK denotes the regulator, hK denotes the class number, wK denotes the number
of roots of unity in K, and dK denotes the discriminant of K. (See Neukirch [11, p. 467].)

For ζ(s), Hardy and Littlewood [5] provided the approximate functional equation

ζ(s) =
∑
n�X

1
ns

+ πs−1/2Γ ((1 − s)/2)
Γ (s/2)

∑
n�Y

1
n1−s

+ O
(
X−σ

)
+ O

(
Y σ−1|t|−σ+1/2),

where s = σ + it, 0 � σ � 1, X > H > 0, Y > H > 0, and 2πXY = |t|, with the
constant implied by the big-O term depending on H only. Such approximate functional
equations motivate the study of properties of the partial sums FX(s) of ζ(s) defined
by

FX(s) =
∑
n�X

1
ns

.

Gonek and one of the authors [4] studied the distribution of zeros of FX(s). The
authors denote the number of typical zeros ρX = βX + iγX of FX(s) with ordinates
0 � γX � T by NX(T ). In the case that T is the ordinate of a zero, they define NX(T )
as limε→0+ NX(T + ε). In [4], the authors are concerned with results on NX(T ) as both
X and T tend to infinity.

Theorem 1 in [4] collects together a number of known results on the zeros of FX(s)
(see Borwein, Fee, Ferguson, and Waall [1], Montgomery [8], and Montgomery and
Vaughan [9]), which can be summarized as follows:
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The zeros of FX(s) lie in the strip α < σ < β, where α and β are the unique solutions
of the equations 1+2−σ + · · ·+(X−1)−σ = X−σ and 2−σ +3−σ + · · ·+X−σ = 1, respec-
tively. In particular, α > −X and β < 1.72865. Furthermore, there exists a number X0
such that if X � X0, then FX(s) has no zeros in the half-plane

σ � 1 +
(

4
π
− 1

)
log logX

logX .

On the other hand, for any constant C satisfying the inequalities 0 < C < 4/π − 1 there
exists a number X0 depending on C only such that if X � X0, then FX(s) has zeros in
the half-plane

σ > 1 + C log logX
logX .

Theorem 2 in [4] (see also Langer [7]) can be summarized as follows:

If X and T are both greater than or equal to 2, then one has
∣∣∣∣NX(T ) − T

2π log[X]
∣∣∣∣ < X

2 .

Here and henceforth, [X] denotes the greatest integer less than or equal to X. For
ζK(s), Chandrasekharan and Narasimhan [2] gave the approximate functional equation

ζK(s) =
∑
n�X

a(n)
ns

+ B2s−1A(1 − s)
A(s)

∑
n�Y

a(n)
n1−s

+ O
(
X1−σ−1/n0 logX

)
, (1)

where A(s) = Γ r1(s/2)Γ r2(s), B = 2r2πn0/2/
√

|dK |, X > H > 0, Y > H > 0, XY =
|dK |(|t|/2π)n0 , and C1 < X/Y < C2 for some constants C1 and C2. In the present article,
we investigate the distribution of zeros of the partial sums of the function ζK(s) defined
by

ζK,X(s) =
∑

‖a‖�X

1
‖a‖s =

∑
n�X

a(n)
ns

,

which appears in the approximate functional equation (1). Our purpose is to determine
whether ζK,X(s) exhibit similar properties. To this end, we denote the number of non-real
zeros ρK,X = βK,X + iγK,X of ζK,X(s) with ordinates 0 � γK,X � T by NK,X(T ). If T
is the ordinate of a zero, then NK,X(T ) is to be defined by limε→0+ NK,X(T + ε).

We can summarize our first result as follows.

Lemma 1. Let K be an arbitrary algebraic number field of degree n0 = [K:Q] over the
field Q of rational numbers, let X be a real number greater than or equal to 2, and
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denote by s the complex variable σ + it. Then there exist two real numbers α and β,
with α depending on n0 and X only and with β depending on n0 only, such that the
zeros of ζK,X(s) all lie within the rectilinear strip of the complex plane given by the
inequalities α < σ < β.

As will be seen in the proof of Lemma 1 in Section 3, for any fixed δ0 > 0 and any X

large enough, an admissible choice for α is α = −3(δ0 + log 2)n0X logX/log logX. As
for β, an admissible choice is of the form β = logCε0,n0Dε0,n0/log 2, where ε0 is fixed
and satisfies the inequalities 0 < ε0 < 1/n0, Dε0,n0 =

∑∞
n=2 4/n2−ε0n0 , and Cε0,n0 is a

constant defined in terms of the divisor function.
Furthermore, we provide an asymptotic formula for NK,X(T ) when K is a cyclotomic

field, which is sharper than the one known in the case of ζ(s). Let K be any algebraic
number field of degree n0 = [K:Q] over the field Q of rational numbers. In a similar
fashion to the case of ζ(s) (see [4] and [7]), it can be shown that

∣∣∣∣NK,X(T ) − T

2π logN
∣∣∣∣ � X

2 , (2)

where T and X both go to infinity together, and N is the largest integer less than or
equal to X for which a(N) �= 0. However, if K = Q(ζq) is a cyclotomic field, we can
significantly improve the error term in (2).

Theorem 1. Let q � 2, let ζq be a primitive root of unity of order q, let K = Q(ζq), and
let T,X � 3. Let, further, N be the largest integer less than or equal to X such that
a(N) �= 0. We have

NK,X(T ) = T

2π logN + Oq

(
X

(
log logX

logX

)1−1/φ(q))
, (3)

where φ is Euler’s totient function.

Finally, we remark that the larger the degree of the cyclotomic field is, the better the
asymptotic formula (3) becomes.

2. Preliminary results

To prove Theorem 1, we will make use of two auxiliary lemmas.

Lemma 2. Fix a positive integer q � 2. We have

#
{
n � y:μ(n) �= 0 and p | n imply p ≡ 1 (mod q)

}
= Oq

(
y

(
log log y

log y

)1−1/φ(q))
,

where μ denotes the Möbius function.
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Proof. Fix a positive integer q � 2 and define

B(q, y) =
{
n � y:μ(n) �= 0 and p | n imply p ≡ 1 (mod q)

}
.

We apply Brun’s pure sieve to estimate the size of the set B(q, y). (See Murty and
Cojocaru [10, p. 86].) Let A be the set of all positive integers n � y. Let P be the set
of all primes p incongruent to 1 modulo q. Let Ap be the set of elements of A which are
divisible by p. Let, further, A1 = A and Ad =

⋂
p|d Ap, where d is a square-free positive

integer composed of a list of prime factors from P. For any positive real number z, we
define

S(A,P, z) = A \
⋃

p|P (z)

Ap,

where

P (z) =
∏
p∈P
p<z

p.

We consider the multiplicative function ω defined for all primes p by ω(p) = 1. We
have

#Ad = #
{
n � y:n ≡ 0 (mod d)

}
= ω(d)

d
y + Rd,

where

|Rd| � ω(d).

From Mertens’ estimates, we have

∑
p∈P
p<z

ω(p)
p

= φ(q) − 1
φ(q) log log z + O(1).

For the sake of brevity, we let

W (z) =
∏

p|P (z)

(
1 − ω(p)

p

)
.

By Brun’s pure sieve, we have

#S(A,P, z) = yW (z)
(
1 + O

(
(log z)−A

))
+ O

(
zη log log z

)
, (4)

where A = η log η and, for some α < 1,

η = α log y
.
log z log log z
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Since ω(p) = 1, Mertens’ estimates yield

W (z) = Oq

(
1

(log z)1−1/φ(q)

)
. (5)

We now choose log z = c log y/log log y. Then for a suitable positive and sufficiently small
constant c and from (4) and (5), we have

#S(A,P, z) = Oq

(
y

(
log log y

log y

)1−1/φ(q))
. (6)

Since B(q, y) ⊆ S(A,P, z), we have #B(q, z) � #S(A,P, z). Employing this last in-
equality together with (6), we complete the proof of Lemma 2. �
Lemma 3. Let q � 2 and let K = Q(ζq). Let, further,

ζK(s) =
∞∑

n=1

a(n)
ns

.

We have

#
{
n � x: a(n) �= 0

}
= Oq

(
x

(
log log x

log x

)1−1/φ(q))
.

Proof. Let K = Q(ζq), where ζq is a primitive root of unity of order q. We have

ζK(s) =
∏
P|q

(
1 − 1

‖P‖s
)−1

Fq(s),

where

Fq(s) =
∏

χ (mod q)

L(s, χ).

(See [11, p. 468].) For σ > 1, we have

Fq(s) =
∏

χ (mod q)

∏
p prime

p�q

(
1 − χ(p)

ps

)−1

.

Hence, for σ > 1, we have

logFq(s) = −
∑

χ (mod q)

∑
p prime

p�q

log
(

1 − χ(p)
ps

)
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=
∑

χ (mod q)

∑
p prime

p�q

∞∑
m=1

χ(pm)
mpms

=
∑

p prime
p�q

∞∑
m=1

∑
χ (mod q)

χ(pm)
mpms

,

where

∑
χ (mod q)

χ
(
pm

)
=

{
φ(q), if pm ≡ 1 (mod q);
0, otherwise.

It follows that

logFq(s) =
∑

p prime, m�1
pm≡1 (mod q)

φ(q)
mpms

.

Hence, we have

Fq(s) = exp
( ∑

p prime, m�1
pm≡1 (mod q)

φ(q)
mpms

)
.

Now, for σ > 1,

Fq(s) =
∞∑

n=1

c(n)
ns

=
∏

p prime

(
1 + c(p)

ps
+ c(p2)

p2s + · · ·
)
.

Thus, we have

logFq(s) =
∑

p prime
log

(
1 + c(p)

ps
+ c(p2)

p2s + · · ·
)

=
∑

p prime

∞∑
m=1

(−1)m

m

(
c(p)
ps

+ c(p2)
p2s + · · ·

)m

,

and hence

c(p) =
{
φ(q), if p ≡ 1 (mod q);
0, if p �≡ 1 (mod q).

For all n such that c(n) �= 0, we have n = AB, where A is coprime to B, A is
squareful, and B is square-free, that is, μ(B) �= 0. Furthermore, all the prime factors
of B are congruent to 1 modulo q. Letting
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H(x) =
∏

p�x, p prime
p≡1 (mod q)

p,

we have

#
{
n � x: c(n) �= 0

}
� #

{
(A,B):A squareful, μ(B) �= 0, AB � x, B | H(x)

}
=

∑
A�x

A squareful

∑
B�x/A
B|H(x)

1

=
∑
A�x

A squareful

B
(
q,

x

A

)

=
∑

A�√
x log x

A squareful

B
(
q,

x

A

)
+

∑
√
x log x�A�x
A squareful

B
(
q,

x

A

)
.

We examine the sums on the far right-hand side separately.
Using Lemma 2, we see that

∑
A�√

x log x
A squareful

B
(
q,

x

A

)
= Oq

( ∑
A�√

x log x
A squareful

x

A

(
log log x

log x

)1−1/φ(q))

= Oq

(
x

(
log log x

log x

)1−1/φ(q) ∑
A�√

x log x
A squareful

1
A

)

= Oq

(
x

(
log log x

log x

)1−1/φ(q) ∑
a�1, b�1

1
a2b3

)

= Oq

(
x

(
log log x

log x

)1−1/φ(q))
.

Furthermore, we have

∑
√
x log x�A�x
A squareful

B
(
q,

x

A

)
�

∑
√
x log x�A�x
A squareful

x

A

�
∑

√
x log x�A�x
A squareful

x√
x log x

�
√
x

log x#{A � x:A squareful}

= O

(
x

)
.
log x
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Suppose that P1, . . . ,Pr are the prime ideals in the ring of integers of K lying over
the prime factors of q and consider the Dirichlet series

∞∑
n=1

b(n)
ns

=
∏
P|p

(
1 − 1

‖P‖s
)−1

.

For all z, we have

#
{
n � z: b(n) �= 0

}
� #{n � z with all prime factors of n in the sets P1, . . . ,Pr}. (7)

It is well known that the right-hand side of (7) is Oq((log z)r). Thus, we have

#
{
n � z: b(n) �= 0

}
= Oq

(
(log z)r

)
.

For brevity’s sake, we let

A =
{
n: a(n) �= 0

}
, B =

{
m: b(m) �= 0

}
, C =

{
k: c(k) �= 0

}
,

and denote

Aω = A ∩ [1, ω], Bω = B ∩ [1, ω], Cω = C ∩ [1, ω].

Here, we note that

#Bω = Oq

(
(logω)r

)

and

#Cω = Oq

(
ω

(
log logω

logω

)1−1/φ(q))
. (8)

Furthermore, we have

ζK(s) =
∑
n∈A

a(n)
ns

=
∑
m∈B

b(m)
ms

∑
k∈C

c(k)
ks

.

On noting that A ⊆ BC, where BC = {bc: b ∈ B, c ∈ C}, we have Ax ⊂ (BC)x. It
follows that

#Ax � #(BC)x, (9)

where

#(BC)x =
∑
b�x

∑
c�x/b

1 =
∑
b�L

∑
c�x/b

1 +
∑

L<b�x

∑
c�x/b

1, (10)
b∈B c∈C b∈B c∈C b∈B c∈C
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with 1 � L � x (to be chosen later). By (8), we have

∑
b�L
b∈B

∑
c�x/b
c∈C

1 �
∑
b�L
b∈B

#Cx/b = Oq

(∑
b�L
b∈B

x

b

(
log log(x/b)

log(x/b)

)1−1/φ(q))
.

Since b � L, we have

(
log x

b

)1−1/φ(q)

>

(
log x

L

)1−1/φ(q)

.

Hence, we have

∑
b�L
b∈B

∑
c�x/b
c∈C

1 = Oq

(
x

(
log log x
log x/L

)1−1/φ(q) ∑
b�L
b∈B

1
b

)

= Oq

(
x

(
log log x
log(x/L)

)1−1/φ(q))
, (11)

since
∑
b∈B

1
b
< ∞.

Next, we have

∑
L<b�x
b∈B

∑
c�x/b
c∈C

1 =
∑

L<b�x
b∈B

#Cx/b �
∑

L<b�x
b∈B

x

b
� x

L
#Bx = Oq

(
x(log x)r

L

)
. (12)

In view of (9), we substitute (11) and (12) into (10) to obtain

#Ax = Oq

(
x(log x)r

L

)
+ Oq

(
x

(
log log x
log(x/L)

)1−1/φ(q))
.

Then choosing L = (log x)r+1, we obtain

#Ax = Oq

(
x

(
log log x

log x

)1−1/φ(q))
.

This finishes the proof of Lemma 3. �
3. Proof of Lemma 1

We show separately that |ζK,X(s)| > 0 in the right-half plane σ � β and in the
left-half plane σ � α. More specifically, we want to find a β so that
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1 −
∑

2�n�X

a(n)
nσ

> 0,

for σ � β. Toward this end, we employ the upper bound a(n) � d(n)n0−1, where d(n)
denotes the number of divisors of n (see Chandrasekharan and Narasimhan [2, Lemma 9])
and satisfies the upper bound d(n) � Cε0n

ε0 for all positive ε0 (see Hardy and Wright [6,
Chapter XVIII, Theorem 317]). Hence, we have a(n) � Cε0,n0n

ε0n0 .
It is enough to show that

Cε0,n0

∞∑
n=2

1
nσ−ε0n0

< 1. (13)

If we let ε0 < 1/n0, then for σ � β we have

∞∑
n=2

1
nσ−ε0n0

�
∞∑

n=2

1
nβ−ε0n0

� 1
2βDε0,n0 ,

where

Dε0,n0 =
∞∑

n=2

4
n2−ε0n0

.

In order to obtain (13), it is enough to have

β >
logCε0,n0Dε0,n0

log 2 .

We have

∞∑
n=2

d(n)n0

nβ
� Cε0,n0

∞∑
n=2

1
nβ−ε0n0

= 1
2βCε0,n0Dε0,n0 .

Then for σ � β, we have
∣∣∣∣

∑
2�n�X

a(n)
ns

∣∣∣∣ �
∑

2�n�X

d(n)n0

nβ
< 1, (14)

and hence

∣∣ζK,X(s)
∣∣ � 1 −

∣∣∣∣
∑

2�n�X

a(n)
ns

∣∣∣∣ > 0.

Therefore, ζK,X(s) �= 0 on the right-half plane σ � β.
Next, let N be the largest positive integer less than or equal to X for which a(N) �= 0.

Since
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∣∣ζK,X(s)
∣∣ � a(N)

Nσ
−

∣∣∣∣
∑

1�n�N−1

a(n)
ns

∣∣∣∣,

it is enough to find an α such that

1
Nσ

>
∑

1�n�N−1

a(n)
nσ

,

for σ � α.
To this end, let us fix δ0 > 0. Then there exist constants Cδ0 > 0 and nδ0 ∈ Z+ such

that for all 1 � n < nδ0 , we have

d(n) � Cδ0n
(δ0+log 2)/log log n,

and that for all n � nδ0 , we have

d(n) � n(δ0+log 2)/log log n.

(See Wigert [13].)
It suffices to have

1
Nσ

> Cn0
δ0

∑
1�n�nδ0−1

n(δ0+log 2)n0/log log n

nσ
+

∑
nδ0�n�N−1

n(δ0+log 2)n0/log log n

nσ

= 1 + Cn0
δ0

SI(n0, δ0, nδ0 , σ) + SII (n0, δ0, σ),

for σ � α, where

SI(n0, δ0, nδ0 , σ) =
∑

2�n�nδ0−1

n(δ0+log 2)n0/log log n

nσ

and

SII (n0, δ0, σ) =
∑

nδ0�n�N−1

n(δ0+log 2)n0/log log n

nσ
.

This would follow from the inequality

1
Nα

> 1 + Cn0
δ0

SI(n0, δ0, nδ0 , α) + SII (n0, δ0, α),

since, for any σ � α,

1
Nσ

>
1

Nσ−α

[
1 + Cn0

δ0
SI(n0, δ0, nδ0 , α) + SII (n0, δ0, α)

]

= 1
Nσ−α

+ Cn0
δ0

∑
2�n�n −1

n(δ0+log 2)n0/log log n

Nσ−αnα
+

∑
n �n�N−1

n(δ0+log 2)n0/log log n

Nσ−αnα
δ0 δ0
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> 1 + Cn0
δ0

∑
2�n�nδ0−1

n(δ0+log 2)n0/log log n

nσ−αnα
+

∑
2�n�N−1

n(δ0+log 2)n0/log log n

nσ−αnα

= 1 + Cn0
δ0

SI(n0, δ0, nδ0 , σ) + SII (n0, δ0, σ).

Thus, it is enough to find α such that

1
Nα

> 2 + 2Cn0
δ0

SI(n0, δ0, nδ0 , α) (15)

and such that

1
Nα

> 2SII (n0, δ0, α). (16)

It is enough to have

1
Nα

> 2 + 2Cn0
δ0

1
nα
δ0

∑
2�n�nδ0−1

n(δ0+log 2)n0/log log n, (17)

since the right-hand side of (17) is greater than the right-hand side of (15).
The inequality in (17) holds for any fixed α < 0 and for all N large enough in terms

of n0, δ0, nδ0 , Cδ0 , and α. Therefore, we may take any fixed α < 0 as a function of N ,
n0, and δ0 for which (16) holds true. For nδ0 � 16, we see that

∑
nδ0�n�N−1

n(δ0+log 2)n0/log log n

nα
�

∑
nδ0�n�N−1

N (δ0+log 2)n0/log log N

nα

< N (δ0+log 2)n0/log log N
∑

nδ0�n�N−1

1
nα

. (18)

It remains to examine the sum on the far right-hand side of (18).
For α < 0, we have

∑
nδ0�n�N−1

1
nα

� (N − 1)−α +
N−1∫
nδ0

dy

yα
< (N − 1)−α

(
N − α

1 − α

)
.

It follows from (18) that (16) is consequence of

N−α > 2N (δ0+log 2)n0/log log N (N − 1)−α

(
N − α

1 − α

)
.

One sees that an admissible choice of α is given by

α = −3(δ0 + log 2)n0
N logN
log logN .

Then ζK,X(s) �= 0 in the left-half plane σ � α. This completes the proof of Lemma 1.
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4. Proof of Theorem 1

Assuming for simplicity’s sake that T does not coincide with the ordinate of any zero,
we have

NK,X(T ) = 1
2πi

∫
R

ζ ′K,X(s)
ζK,X(s) ds,

where R is the rectangle with vertices at α, β, β + iT , and α + iT . Thus, we have

2πNK,X(T ) =
∫
R

Im
(
ζ ′K,X(s)
ζK,X(s)

)
ds = ΔR arg ζK,X(s), (19)

where ΔR denotes the change in arg ζK,X(s) as s traverses R in the positive sense.
Since ζK,X(s) is real and nonzero on [α, β], we have

Δ[α,β] arg ζK,X(σ) = 0. (20)

As s describes the right edge of R, we observe from (14) that

∣∣ζK,X(s) − 1
∣∣ < 1.

It follows that Re ζK,X(β + it) > 0 for 0 � t � T . Hence, we have

Δ[0,T ] arg ζK,X(β + it) = O(1). (21)

Furthermore, along the top edge of R, to estimate the change in arg ζK,X(s) we de-
compose ζK,X(s) into its real part and its imaginary part. We have

ζK,X(s) =
∑

n�[X]

a(n) exp
{
−(σ + it) logn

}
=

∑
n�[X]

a(n)[cos(t logn) − i sin(t logn)]
nσ

,

so that

Im
(
ζK,X(σ + iT )

)
= −

∑
n�[X]

a(n) sin(T log n)
nσ

.

By a generalization of Descartes’s Rule of Signs (see Pólya and Szegö [12, Part V,
Chapter 1, No. 77]), the number of real zeros of Im(ζK,X(σ + iT )) in the interval
α � σ � β is less than or equal to the number of nonzero coefficients a(n) sin(T log n).
By Lemma 3, the number of nonzero coefficients a(n) is Oq(X(log logX/ logX)1−1/φ(q))
at most.



132 A. Ledoan et al. / Journal of Number Theory 136 (2014) 118–133
Since the change in argument of ζK,X(σ + iT ) between two consecutive zeros of
Im(ζK,X(σ + iT )) is at most π, it follows that

Δ[α,β] arg ζK,X(σ + iT ) = Oq

(
X

(
log logX

logX

)1−1/φ(q))
. (22)

As in the proof of Lemma 1, we let N be the largest integer less than or equal to X

so that a(N) �= 0. Along the left edge of R, we have

ζK,X(α + it) =
[
1 + 1 + a(2)2−α−it + · · · + a(N − 1)(N − 1)−α−it

a(N)N−α−it

]
a(N)N−α−it.

Therefore, we have

Δ[0,T ] arg ζK,X(α + it) = Δ[0,T ] arg
[
1 + 1 + a(2)2−α−it + · · · + a(N − 1)(N − 1)−α−it

a(N)N−α−it

]

+ Δ[0,T ] arg a(N)N−α−it. (23)

In the proof of Lemma 1, we noticed that

a(N)
Nα

>
∑

1�n�N−1

a(n)
nα

.

Thus, for any t, we have
∣∣∣∣1 + a(2)2−α−it + · · · + a(N − 1)(N − 1)−α−it

a(N)N−α−it

∣∣∣∣ < 1,

and hence

Δ[0,T ] arg
[
1 + 1 + a(2)2−α−it + · · · + a(N − 1)(N − 1)−α−it

a(N)N−α−it

]
= O(1). (24)

Finally, we have

Δ[0,T ] arg a(N)N−α−it = Δ[0,T ] arg a(N)N−α exp{−it logN}
= Δ[0,T ] arg exp{−it logN}
= −T logN. (25)

Then substituting (24) and (25) into (23), we obtain

Δ[0,T ] arg ζK,X(α + it) = −T logN + O(1). (26)

Since
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ΔR arg ζK,X(s) = Δ[α,β] arg ζK,X(σ) + Δ[0,T ] arg ζK,X(β + it)

− Δ[α,β] arg ζK,X(σ + iT ) − Δ[0,T ] arg ζK,X(α + it),

we may now substitute (20), (21), (22), and (26) into (19) to obtain Theorem 1.
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