JOURNAL OF NUMBER THEORY | 卷:183 |
Some divisibility properties of binomial coefficients | |
Article | |
Yaqubi, Daniel1  Mirzavaziri, Madjid1  | |
[1] Ferdowsi Univ Mashhad, Dept Pure Math, POB 1159, Mashhad 91775, Iran | |
关键词: Binomial coefficients; Lucas' theorem; Euler's totient theorem; Bernoulli numbers; p-adic valuation; | |
DOI : 10.1016/j.jnt.2017.08.005 | |
来源: Elsevier | |
【 摘 要 】
In this paper, we aim to give full or partial proofs for the following three conjectures of V. J. W . Guo and C. Krattenthaler: (1) Let a > b be positive integers, alpha, beta be any integers and p be a prime satisfying gcd(p, a) = 1. Then there exist infinitely many positive integers n for which ((an+alpha)(bn+beta)) r(mod p) for all integers r; (2) For any odd prime p, there are no positive integers a > b such that ((an)(bn)) 0 (mod pn-1) for all n >= 1; (3) For any positive integer m, there exist positive integers a and b such that am > b and ((amn)(bn)) equivalent to 0 (mod an-1) for all n >= 1. (C) 2017 Published by Elsevier Inc.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jnt_2017_08_005.pdf | 286KB | download |