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In this paper, we aim to give full or partial proofs for the 
following three conjectures of V. J. W. Guo and C. Kratten-
thaler: (1) Let a > b be positive integers, α, β be any integers 
and p be a prime satisfying gcd(p, a) = 1. Then there ex-
ist infinitely many positive integers n for which 

(
an+α
bn+β

)
≡ r

(mod p) for all integers r; (2) For any odd prime p, there are 
no positive integers a > b such that 

(
an
bn

)
≡ 0 (mod pn −1) for 

all n ≥ 1; (3) For any positive integer m, there exist positive 
integers a and b such that am > b and 

(
amn
bn

)
≡ 0 (mod an −1)

for all n ≥ 1.
© 2017 Published by Elsevier Inc.

1. Introduction

Binomial coefficients constitute an important class of numbers that arise naturally 
in mathematics, namely as coefficients in the expansion of the polynomial (x + y)n. 
Accordingly, they appear in various mathematical areas. An elementary property of 
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binomial coefficients is that 
(
n
m

)
is divisible by a prime p for all 1 < m < n if and only 

if n is a power of p. A much more technical result due to Lucas asserts that
(
n

m

)
≡

(
n0

m0

)(
n1

m1

)
· · ·

(
nk

mk

)
(mod p),

in which n = n0+n1p +· · ·+nkp
k and m = m0+m1p +· · ·+mkp

k are the p-adic expansions 
of the non-negative integers n and m, respectively. We note that 0 ≤ mi, ni < p, for all 
i = 0, . . . , k. In 1819, Babbage [1] revealed the following congruences for all odd prime p:

(
2p− 1
p− 1

)
≡ 1 (mod p2).

In 1862, Wolstenholme [6] strengthened the identity of Babbage by showing that the same 
congruence holds modulo p3 for all primes p ≥ 5. This identity was further generalized by 
Ljunggren in 1952 to 

(
np
mp

)
≡

(
n
m

)
(mod p3) and even more to 

(
np
mp

)
/
(
n
m

)
≡ 1 (mod pq)

by Jacobsthal for all positive integers n > m and primes p ≥ 5, in which pq is any 
power of p dividing p3mn(n − m). Arithmetic properties of binomial coefficients are 
studied extensively in the literature and we may refer the interested reader to [6] for 
an account of Wolstenholme’s theorem. Recently, Guo and Krattenthaler [2] studied a 
similar problem and proved the following conjecture of Sun [4].

Theorem 1.1. Let a and b be positive integers. If bn +1 divides 
(
an+bn

an

)
for all sufficiently 

large positive integers n, then each prime factor of a divides b. In other words, if a has a 
prime factor not dividing b, then there are infinitely many positive integers n for which 
bn + 1 does not divide 

(
an+bn

an

)
.

They also stated several conjectures among which are the followings. We aim to prove 
or give partial proofs to these conjectures.

In Section 2, we prove Conjecture 1.2 in special cases, see Theorems 2.1 and 2.2.

Conjecture 1.2 ([2, Conjecture 7.2]). For any odd prime p, there are no positive integers 
a > b such that (

an

bn

)
≡ 0 (mod pn− 1)

for all n ≥ 1.

In Section 3, using only properties of the p-adic valuation, we give a full proof for 
Conjecture 7.3 of [2].

Conjecture 1.3 ([2, Conjecture 7.3]). For any positive integer m, there exist positive 
integers a and b such that am > b and
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(
amn

bn

)
≡ 0 (mod an− 1)

for all n ≥ 1.

Maxim Vsemirnov [5] has proved that Conjecture 1.4 is not true for p = 5. In Section 4, 
we prove this conjecture in a special case. The conjecture is still open for the cases p �= 5.

Conjecture 1.4 ([2, Conjecture 7.1]). Let a > b be positive integers, α, β be any integers 
and p be a prime satisfying gcd(p, a) = 1. Then there exist infinitely many positive 
integers n for which

(
an + α

bn + β

)
≡ r (mod p)

for all integers r.

2. Conjecture 1.2

Our first result is the proof of Conjecture 1.2 in the case where a, b �≡ 0 (mod p). 
Furthermore, we also provide a partial proof of Conjecture 1.2 in the case where a ≡ 0
(mod p); see Theorem 2.2.

Theorem 2.1. There are no positive integers a > b with gcd(ab, p) = 1 such that

(
an

bn

)
≡ 0 (mod pn− 1)

for all n � 1.

Proof. Suppose on the contrary that a > b exist satisfying the conditions of the theorem. 
Let 1 � s � p − 1 be such that sb ≡ 1 (mod p), and write

sa = pQ + r, (1 � r � p− 1)

sb = pQ′ + 1.

Also, choose t > 0 such that st ≡ −1 (mod p), and suppose st = kp − 1 for some k ≥ 0. 
We claim that

(pn + t)(p + s) = pK − 1
∣∣(aK

bK

)
,

where K = pn + ns + t + k. By Dirichlet’s theorem, there are infinitely many primes of 
the form pn + t. If pn + t is prime, Lucas’ theorem implies that
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(
aK

bK

)
=

(
a(pn + ns + t + k)
b(pn + ns + t + k)

)

=
(
a(pn + t) + a(ns + k)
b(pn + t) + b(ns + k)

)

=
(
a(pn + t) + Q(pn + t) + rn + ak −Qt

b(pn + t) + Q′(pn + t) + n + bk −Q′t

)

≡
(
a + Q

b + Q′

)(
rn + ak −Qt

n + bk −Q′t

)
(mod pn + t),

since for sufficiently large n we have rn + ak −Qt, n + bk −Q′t < pn + t. Now we have

s(n + bk −Q′t) = sn + (pQ′ + 1)k −Q′(pk − 1)

= sn + k + Q′

� srn + rk + Q

� srn + (pQ + r)k −Q(pk − 1) = s(rn + ak −Qt)

whence 
(
rn+ak−Qt
n+bk−Q′t

)
�= 0. The proof is complete. �

Notice that Conjecture 1.2 is still open in the cases where a ≡ 0 (mod p) or b ≡ 0
(mod p). In the next theorem, we consider the case where a = cp and b = pk + r

(1 � r � p − 1) and give a partial answer to Conjecture 1.2 in this case.
We know that for each prime p and ε > 0 there is a real number Mp(ε) such that 

for each x � Mp(ε) there is a prime number q in the interval (x, (1 + ε)x) with q ≡ −1
(mod p) [3]. Moreover, there is a real number M ′

p(ε) such that for each x � M ′
p(ε) there 

are at least two prime numbers q, q′ in the interval (x, (1 +ε)x) with q, q′ ≡ −1 (mod p).
In the following we may assume b < c(p − r), since if b � c(p − r) then 

(
pcn
bn

)
=

(
pcn
b′n

)
, 

where b′ = pc −b. We have b′ = pk′+r′, where k′ = c −k−1, r′ = p −r, and b′ < c(p −r′).

Theorem 2.2. Let p be an odd prime, 1 � r � p − 1, and γ = p2r+p2+r2−pr
p2(p+1) .

(i) If pk+r � cp(1 −γ), then there are no positive integers c � Mp( (p−r)2
pr(p+1) ) and k such 

that (
pcn

(pk + r)n

)
≡ 0 (mod pn− 1),

for all n � 1.
(ii) If cp(1 − γ) < pk + r < c(p − r) and r � p−3

2 , then there are no positive integers 
k � 2M ′

p(
p−(2r+1)

p+1 ) and c such that(
pcn

(pk + r)n

)
≡ 0 (mod pn− 1),

for all n � 1.
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Proof. (i) Put b = pk + r. We have − b
c � (γ − 1)p. Thus

p(c−k)
r − 1
c

= p(c− k) − r

rc
= p

r
− b

rc
� p

r
+ γp

r
− p

r
= 1 + (p− r)2

pr(p + 1) > 1.

Now since c � Mp( (p−r)2
pr(p+1) ), there is a prime number pn − 1 with

c < pn− 1 <
p(c− k)

r
− 1.

This gives the result, since k � rn + k � c < pn − 1 and Lucas’s theorem implies
(

pcn

(pk + r)n

)
=

(
c(pn− 1) + c

k(pn− 1) + rn + k

)
≡

(
c

k

)(
c

rn + k

)
(mod pn− 1).

(ii) For α = p+1
2(p−r) we have

k

αk
= 2(p− r)

p + 1 = 1 + p− (2r + 1)
p + 1 > 1

and since αk � M ′
p(

p−(2r+1)
p+1 ), there are two prime numbers pm − 1, pn − 1 with αk <

pm − 1 < pn − 1 < k. We have

k = b− r

p
<

c(p− r) − r

p
= c− r(c + 1)

p
< c.

Furthermore,

rn + k < r · k + 1
p

+ k = rk + b

p
<

rk + c(p− r)
p

<
rc + c(p− r)

p
= c.

Moreover,

c

k
<

b

k(1 − γ)p = kp + r

kp · (p2+r)(p−r)
p2(p+1)

� p + 1
p− r

,

where the last inequality is true since k � p. We can therefore deduce that

pn− 1 < k < c < 2 ·
p+1
p−r

2 k = 2αk < 2(pm− 1).

We have c +1 � 2(pm −1) < 2(pn −1). Write c = (pn −1) +R and rn +k = (pn −1) +R′. 
We know that pn − 1 > R > R′. Now Lucas’ theorem implies

(
pcn

)
=

(
c(pn− 1) + (pn− 1) + R

′

)
≡

(
c + 1

)(
R
′

)
(mod pn− 1).
(pk + r)n k(pn− 1) + (pn− 1) + R k + 1 R
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The latter is not congruent to 0, since

� c + 1
pn− 1� − � k + 1

pn− 1� − � c− k

pn− 1� � 1 − 1 − 0 = 0. �
Lemma 2.3. Let p be an odd prime, 1 � r � p − 2, j = � p

p−r �, and α = p
(p−r)(j+1) . Then 

there is an 0 < ε(p, r) < 1 with

α <
p + ε(p, r)

(p− r)(j + 1) <

r
p−r

j − 1 + r
p

.

Proof. A simple verification shows that

α <

r
p−r

j − 1 + r
p

if and only if p − r � p or equivalently r �= p − 1. This implies the existence of ε(p, r). �
On the other hand, we let c = j(pn − 1) +R, 0 � R � pn − 2, rn + k = (pn − 1) +R′

with 0 � R′ � pn − 2, and suppose pn − 1 = θk, where α < θ < β. Then by Lemma 2.3,

R′ + jθk = k − (pn− 1) + rn + jθk

= k − θk + r · θk + 1
p

+ jθk

= k(1 + (−1 + r

p
+ j)θ) + r

p

� k(1 + (−1 + r

p
+ j)β) + r

p

= k(1 + (j − 1 + r

p
)β) + r

p

< k(1 + r

p− r
) + r

p

<
p

p− r
k + r

p− r

< c.

Hence

R = c− j(pn− 1) = c− jθk > R′.

This shows that

� c

pn− 1� − �rn + k

pn− 1� − �c− (rn + k)
pn− 1 � = j − 1 − (j − 1 + �R−R′

pn− 1 �) = 0,

from which the result follows.
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3. Conjecture 1.3

In this section, using only properties of the p-adic valuation, we give an inductive 
proof of Conjecture 7.3 of [2]. For n ∈ N and a prime p, the p-adic valuation of n, 
denoted by νp(n) is the highest power of p that divides n. The expansion of n ∈ N in 
base p is written as n = n0 + n1p + . . . + nkp

k with integers 0 � ni � p − 1 and nk �= 0. 
Legendre’s classical formula for the factorials νp(n!) =

∑∞
i=1� n

pi � appears in elementary 
textbooks.

Theorem 3.1. For any positive integer m, there are positive integers a and b such that 
am > b and

(
amn

bn

)
≡ 0 (mod an− 1)

for all n � 1.

Proof. Let p1 = 2 < p2 = 3 < p3 = 5 < · · · be the sequence of prime numbers. Choose t
such that pt > 3m and put

a = 6p3 . . . pt,

b = 4p3 . . . pt.

Let n be a positive integer and qα | an − 1 for some prime number q. We aim at showing 
that qα |

(
amn
bn

)
. This of course proves that an − 1 |

(
amn
bn

)
.

Write bn in base q in the form 
∑N

j=0 rjq
j , where N = α − 1 or α since bn � qα−1. 

First we show that m < r0. We have

r0 ≡ bn = 4p3 . . . ptn ≡ 2 · 3∗ · 6p3 . . . ptn = 2 · 3∗an ≡ 2 · 3∗ (mod q),

where 3∗ is the inverse of 3 mod q. We know that

3∗ =
{

q+1
3 , if 3 | q + 1,

2q+1
3 , if 3 | q + 2.

Note that 3∗ exists since q �= 3. We thus have

r0 = 2 · 3∗ =
{

2 · q+1
3 > q

3 , if 3 | q + 1,
2 · 2q+1

3 − q = q+2
3 > q

3 , if 3 | q + 2.

We have gcd(q, p1p2 . . . pt) = 1. Hence q > pt > 3m. This shows that m < r0. We 
therefore have
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�bn−m

qi
� = �

∑N
j=0 rjq

j −m

qi
� = �

N∑
j=i

rjq
j−i +

∑i−1
j=1 rjq

j + r0 −m

qi
�

=
N∑
j=i

rjq
j−i = �bn

qi
�.

Now let an − 1 = kqα, where gcd(k, q) = 1. We evaluate the q-adic valuation vq(
(
amn
bn

)
). 

If N = α then

vq
((amn

bn

))
�

α∑
i=1

(
�amn

qi
� − �bn

qi
� − � (am− b)n

qi
�
)

�
α∑

i=1

(
mkqα−i − �bn

qi
� − � (am− b)n

qi
�
)

=
α∑

i=1

(
mkqα−i − �bn

qi
� − �mkqα + m− bn

qi
�
)

=
α∑

i=1

(
mkqα−i − �bn

qi
� −mkqα−i − �m− bn

qi
�
)

=
α∑

i=1

(
− �bn

qi
� − �−bn−m

qi
�
)

=
α∑

i=1

(
− �bn

qi
� + �bn−m

qi
� + 1

)

=
α∑

i=1
1 = α,

since bn−m
qi is not an integer.

On the other hand, if N = α− 1 then

vq
((amn

bn

))
= mk +

α−1∑
i=1

(
�amn

qi
� − �bn

qi
� − � (am− b)n

qi
�
)

� mk + α− 1 � α.

Thus qα |
(
amn
bn

)
. �

4. Conjecture 1.4

Maxim Vsemirnov [5] proved that Conjecture 1.4 is not true for p = 5. Namely, he 
proved the following theorem.



436 D. Yaqubi, M. Mirzavaziri / Journal of Number Theory 183 (2018) 428–441
Theorem 4.1. Let p = 5, a = 4, b = 2. If (α, β) ∈ {(0, 0), (1, 0), (1, 1)}, then
(

4n + α

2n + β

)
≡ 0, 1 or 4 (mod 5).

Also, if (α, β) ∈ {(2, 1), (3, 1), (3, 2)}, then
(

4n + α

2n + β

)
≡ 0, 2 or 3 (mod 5).

In the following, we prove Conjecture 1.4 in a special case. We know that if 
gcd(x, y) = 1, then there is an integer 1 � x′ � y − 1 with y | xx′ − 1. We denote 
this x′ by Invy(x). Moreover, for an integer x we denote the p-adic valuation of x by 
vp(x).

Theorem 4.2. Let a and b be positive integers with a > b, let α and β be integers, and 
let d = gcd(a, b), c = a

d , e = gcd(p − 1, a). Furthermore, let p be a prime such that 
p > a + 2b. Then

(i) if e < c or v2(a) � v2(p − 1), then for each r = 0, 1, . . . , p − 1, there are infinitely 
many positive integers n such that

(
an + α

bn + β

)
≡ r (mod p);

(ii) if e � c and v2(a) > v2(p − 1), then for each

r /∈ {(2μ− 1)e+ p+α− 2+ r′ : 0 � r′ � e− c, 	e + 2 − p− α

2e 
 � μ � 	c + 1 − α

2e 
},

there are infinitely many positive integers n such that
(
an + α

bn + β

)
≡ r (mod p).

Proof. By Euler’s totient theorem, we have pϕ(a) ≡ 1 (mod a), since gcd(p, a) = 1. For 
an arbitrary positive integer N , put u = Nϕ(a). Thus

pui ≡ 1 (mod a), i ∈ N.

In particular, there is an integer m with pu − 1 = am. Thus m = −Invp(a). Put t =
(p − 1) − r. Write c − t − α = μe + ρ, where 0 � ρ � e − 1. Note that e | c − t − α − ρ. 
Suppose

ε =
{

0, if ρ � c− 2,
1, otherwise.
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If e < c then put

K = c− t− α− ρ

e
·
(
pInva

e
(p(p− 1)

e
)
)

+(c− t− α− ρ)amInvp(a + 1) − (β − 1)a2mInvp(b(a + 1)) + Lpa,

where L is sufficiently large so that K > 1. Note that ε = 0 in this case, since ρ � e −1 �
c − 2.

If e � c and v2(a) � v2(p − 1), then put

K = c− t− α− ρ

e
·
(
pInva

e
(p(p− 1)(1 + ε)

e
)
)

+(c− t− α− ρ)amInvp(a + 1) − (β − 1)a2mInvp(b(a + 1)) + Lpa,

where L is sufficiently large so that K > 1. Note that Inva
e
(1 + ε) exists, since ae is odd 

in this case.
Finally, if e � c and v2(a) > v2(p − 1), then put

K = c− t− α− ρ

(1 + ε)e ·
(
pInv a

(1+ε)e
(p(p− 1)

e
)
)

+(c− t− α− ρ)amInvp(a + 1) − (β − 1)a2mInvp(b(a + 1)) + Lpa,

where L is sufficiently large so that K > 1. Note that c−t−α−ρ
e is even by our assumption 

on r in this case.
In each of the above cases we have

K(p− 1)(1 + ε) ≡ c− t− α− ρ (mod a),

mb
(
K(p− 1)(a + 1 + ε) − (c− t− α− ρ)

)
≡ β − 1 (mod p).

Let

M = K(p− 1)(d(c− 1) + 1) − (c− 1) + ρ,

and

I2 = {M − k(c− 1) : k = 0, 1, . . . ,K(p− 1)(d + ε) − 1},

I1 = {1, 2, . . . ,M} \ I2.

We have
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pu(M+1) − t−
∑
i∈I1

pui −
∑
i∈I2

2pui − α

≡ 1 − t− (M −K(p− 1)(d + ε)) − 2K(p− 1)(d + ε) − α

= 1 − t− α−K(p− 1)(a + 1 + ε) + (c− 1) − ρ

≡ c− t− α− ρ−K(p− 1)(1 + ε)

≡ 0 (mod a).

Hence, there is a positive integer n such that

an + α = pu(M+1) − t−
∑
i∈I1

pui −
∑
i∈I2

2pui.

Write an + α in base p as 
∑u(M+1)

s=0 asp
s. Then we have

as =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p− 1 − t, if s = 0,
p− 2, if s = ui for some i ∈ I1,

p− 3, if s = ui for some i ∈ I2,

p− 1, otherwise.

We now aim to find digits of bn + β in base p. If bn + β =
∑u(M+1)

s=0 bsp
s then bs is the 

remainder of � bn+β
ps � mod p. In fact, we need to find bs for s = 0, u, 2u, . . . , Mu.

We have

bn + β = b

a

(
pu(M+1) − t−

∑
i∈I1

pui −
∑
i∈I2

2pui
)
− b

a
α + β

= b

a

(
pu(M+1) − 1 −

∑
i∈I1

(pui − 1) −
∑
i∈I2

2(pui − 1)
)

+ b

a
(1 − t− (M −K(p− 1)(d + ε)) − 2K(p− 1)(d + ε) − α) + β

= b

a

(
pu(M+1) − 1 −

∑
i∈I1

(pui − 1) −
∑
i∈I2

2(pui − 1)
)

+β − b

a

(
c− t− α− ρ−K(p− 1)(a + 1 + ε)

)
.

Thus

bn + β ≡ −mb
(
pu(M+1) − 1 −

∑
i∈I1

(pui − 1) −
∑
i∈I2

2(pui − 1)
)

+β −mb
(
K(p− 1)(a + 1 + ε) − (c− t− α− ρ)

)
≡ β − (β − 1) ≡ 1 (mod p).
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This shows that b0 = 1. Given s, for j = 1, 2 let Is,j be the number of i ∈ Ij with i � s. 
For s ∈ Ij we have

�bn + β

pus
� = � b

a

(
pu(M+1−s) − 1 −

∑
s�i∈I1

(pu(i−s) − 1) −
∑

s�i∈I2

(2pu(i−s) − 2)

−
∑

s>i∈I1

1
pu(s−i) −

∑
s>i∈I2

2
pu(s−i) − t

pus
− Is,1 − 2Is,2 + 1

)
+ β

pus
�

= b

a

(
pu(M+1−s) − 1 −

∑
s�i∈I1

(pu(s−i) − 1) −
∑

s�i∈I2

(2pu(s−i) − 2)
)

+� b
a

(
−

∑
s>i∈I1

1
pu(s−i) −

∑
s>i∈I2

2
pu(s−i) − t

pus
− Is,1 − 2Is,2 + 1

)
+ β

pus
�

≡ −mb(−1 + Is,1 + 2Is,2 − j) − � b
a
(−1 + Is,1 + 2Is,2)� − 1 (mod p).

Let Is,1 + Is,2 − 1 = cqs + rs, where 0 � rs < c. Then for s ∈ Ij we have

bsu = mb(j − rs) − �brs
a

� − 1 ≡ m(a�brs
a

� + a− b(rs − j)) (mod p).

Let us evaluate rs for s ∈ Ij . If j = 2 then s = M − k(c − 1) for some k = 0, 1, . . . ,
K(p − 1)(d + ε) − 1. Thus

Is,1 = M − (M − k(c− 1)) + 1 − (k + 1), Is,2 = k + 1.

So

cqs + rs = k(c− 1) + 1 + (k + 1) − 1 ≡ 1 (mod c).

Hence rs = 1, whenever s ∈ I2. Note that we have K(p − 1)(d + ε) times occurrence of 
rs = 1.

Moreover, if j = 1 then s = M−k(c −1) −s′ for some k = 0, 1, . . . , K(p −1)(d +ε) −1
and s′ = 1, 2, . . . , c − 2. Thus

Is,1 = M − (M − k(c− 1) − s′) + 1 − (k + 1), Is,2 = k + 1.

So

cqs + rs = k(c− 1) + s′ + 1 + (k + 1) − 1 ≡ s′ + 1 (mod c).

Hence rs = 2, . . . , c − 1, whenever s ∈ I1. Note that we have K(p − 1)(d + ε − 1) times 
occurrence of rs = ρ + 2 − ε(c − 1), . . . , c − 1 and K(p − 1)(d + ε) times occurrence of 
rs = 2, . . . , ρ + 1 − ε(c − 1).
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Now we show that if s ∈ I1 then bsu+1 �≡ 0 (mod p) and if s ∈ I2 then bsu+1, bsu+2 �≡
0 (mod p).

Let s ∈ Ij . Then

bsu + 1 ≡ m(a�brs
a

� − b(rs − j)) (mod p).

Now if p | bsu + 1 then p | a� brs
a � − b(rs − j). The latter holds if and only if a� brs

a � −
b(rs − j) = 0, since

|b(rs − j) − a�brs
a

�| � a(brs
a

− �brs
a

�) + jb � a + 2b < p

Thus we should have a | b(rs − j) which implies that c | rs − j. This is a contradiction, 
since rs < c and rs �= j whenever s ∈ Ij .

Let s ∈ I2. Then

bsu + 2 ≡ m(a�brs
a

� − a− b(rs − 2)) (mod p).

We know that rs = 1 whenever s ∈ I2. Thus if p | bsu + 2 then we should have p | a − b. 
The latter is impossible since p > a − b.

We therefore have(
an + α

bn + β

)
≡

(
p− 1 − t

b0

) ∏
s∈I1

(bsu + 1)
∏
s∈I2

(bsu + 1)(bsu + 2)

≡ −(1 + t)
ρ+1−ε(c−1)∏

rs=2
(bsu + 1)K(p−1)(d+ε)

c−1∏
rs=ρ+2−ε(c−1)

(bsu + 1)K(p−1)(d+ε−1)

·(mb)K(p−1)(d+ε)(m(b− a))K(p−1)(d+ε)

≡ −(1 + t)

≡ −(1 + (p− 1) − r)

≡ r (mod p).

Note that there are infinitely many such n, since N was arbitrary. �
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