期刊论文详细信息
JOURNAL OF NUMBER THEORY 卷:169
Quantitative versions of the joint distributions of Hecke eigenvalues
Article
Tang, Hengcai1  Wang, Yingnan2 
[1] Henan Univ, Inst Modern Math, Sch Math & Informat Sci, Kaifeng 475004, Henan, Peoples R China
[2] Shenzhen Univ, Coll Math & Stat, Shenzhen 518060, Guangdong, Peoples R China
关键词: Holomorphic cusp forms;    Maass cusp forms;    Hecke eigenvalues;    Joint distribution;    Quantitative version;   
DOI  :  10.1016/j.jnt.2016.05.011
来源: Elsevier
PDF
【 摘 要 】

In 2009, Omar and Mazhouda proved that as k -> infinity , {lambda(f) (p(2)) : f is an element of H-k} and {lambda(f) (p(3)) : f is an element of H-k} are equidistributed with respect to some measures respectively, where H-k is the set of all the normalized primitive holomorphic cusp forms of weight k for SL2(Z). In this paper, we obtain a quantitative version of Omar and Mazhouda's result. Moreover, we find out that {lambda(f) (p(4)) : f is an element of H-k} and {lambda(f) (p(r)) - lambda(f) (p(r-2)) : f is an element of H-k and r >= 2} follow some nice distribution laws respectively as k -> infinity and get quantitative versions of these distributions. In the context of Maass cusp forms, we establish analogous results. (C) 2016 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jnt_2016_05_011.pdf 357KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次