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Quantitative version

1. Introduction

Let Hj be the set of normalized primitive holomorphic cusp forms of even integral
weight k for the modular group I' = SLy(Z). Given any f € Hjy and prime p, the
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distribution of the normalized Hecke eigenvalues A¢(p) is an interesting and difficult
problem. The generalized Ramanujan conjecture for primitive holomorphic cusp forms
implies that |A\;(p)| < 2 for any f € Hj, and prime p. This conjecture was proved by
Deligne [4] in 1974.

Inspired by the Sato-Tate conjecture, Serre studied the asymptotic distribution of
the Hecke eigenvalues Af(p), as f is fixed and the primes p vary. In the 1960’s, Serre
conjectured that for any f € Hy, as x — 0o, Af(p), p < z, are equidistributed in [—2, 2]
with respect to the Sato—Tate measure

V1-Zdr if ze[-2,2],

otherwise,

dpioo () =

S 3=

which is also called the Sato—Tate conjecture. This conjecture was proved by Barnet-
Lamb, Geraghty, Harris and Taylor [1] in 2011.

For a fixed prime p, as k — oo, the values of A\¢(p), f € Hy, also follow some nice
distribution laws. Conrey, Duke and Farmer [3] and Serre [11] figured out that they are
equidistributed with respect to the p-adic measure

(1)

: 0 otherwise.

Moreover, Murty and Sinha [8] proved that the rate of convergence to the above dis-

tribution is O(iggz). Lau and Wang [7] later generalized Murty and Sinha’s result to a

joint distribution.
On the other hand, it is well-known that for any m,n > 1

NONOES P
d|(m,n)

and so

Ar(p") = Xn (AfT(m) :

where X, is the nth Chebychev polynomial of the second kind. One may naturally
consider the distribution of {A¢(p™) : f € Hy} for some fixed prime p and as k goes to
infinity. In this direction, Omar and Mazhouda [9] proved that {\¢(p?) : f € Hy} and
{\t(p?) : f € Hy} are equidistributed with respect to the measures

myo(x)dr if x € [—1,3],
dup,z(x)Z{ el —

0 otherwise,

and



H. Tang, Y. Wang / Journal of Number Theory 169 (2016) 295-314 297

mys(x)de if x € [—4,4],
dup,:a(x):{ el .

0 otherwise,

respectively. Here

m (m>:p+1 1 3—x
P2 2r (p'/24+p= 122 —(z+1)V 1+x

and my, 3 is given by [9, formula (3.1)] with

26 27 + arccos 3%8/633 26 4w + arccos %x
o1(x) = cos , 2(z) = cos ;
3 3 3 3
24/6 arccos 364
) B

for z € {—%, 47‘/6}. In fact, when n < 5, we can easily solve the following types of

inequalities
A
a< X, (@) <b (2)

for some real numbers a,b € R. Then applying Lau and Wang’s result, we obtain a
quantitative version of Omar and Mazhouda’s theorems. Furthermore, we also get a
quantitative version of the joint distribution of {\;(p*) : f € Hy}.

Theorem 1. Let r = 2,3,4. There exists a small constant 6 > 0 such that for all suffi-
ciently large k,

1
| H|

N N
’r’ 10 ...
:/ [ dupn,r+o( g(folpi pN))
I, n=1 &

holds uniformly for any integer N > 1 and distinct primes p1,p2,...,pN Satisfying

#f € He: (A\s(p1),-- - Ar(pN)) € I}

rN log(p1ps -+ pn) < dlogk,

and uniformly for

N N
I = [[lazinbom] € [-1,3]Y, Iy = [[lasn, bs.m] € [-4,4]7,

n=1 n=1

and
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N
H a4 nab4n [_5/4,5]N

Here, the intervals [as n,b2n], [@3.n,b3.n] and [aan,ba ] are any subintervals of [—1, 3],
[—4,4] and [—5/4,5], respectively. Furthermore,

dpip,a()
_J2 i+% (mm (é + \/E) T Mp2 (% Vet %)) doif v €[=5/4,5];
0 otherwise.

When n > 5, the nth Chebychev polynomial is complicated and it is not easy to solve
the inequality (2). We cannot figure out the precise distributions of {\f(p") : f € Hy}
for n > 5. However, we find some interesting relationships between A;(p™) and A¢(p"~?2)
for n > 2.

Theorem 2. There exists a small constant § > 0 such that for any integer r > 2 and all
sufficiently large k,

ﬁ#{f € Hy o (Ar(ph) = Ap(pi72), - A p () — AP 2) € 1}

N
_ . rNlog(pipz -+ - pN)
_,/Ed“”””’(x)w( log

holds uniformly for any integer N > 1 and distinct primes py1,pa,...,pN Satisfying

rNlog(pips---pn) < dlogk,

and uniformly for

N
H ana n —2 2]
n=1

Here, dpy, () is defined by

= 417302 d j’i/zjrpﬁg’));’”w;z) dr if x € [-2,2] and r > 3 is odd;

% _ /2 4plt r/2_ . .
dup,r(x) = m/417a32 (p”‘ligfr/‘*)"‘f(;?_ﬁz) dr if x € [-2,2] and r > 2 is even;

0 if |x| > 2.

In the context of Maass forms, we have similar results. Let C denote the space con-
sisting of all the Maass cusp forms for I' = SL(2,Z). Let {u; : 7 > 0} be a complete
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orthonormal basis for C consisting of common eigenfunctions of the Hecke operators T;,,
n=1,2,... and the Laplacian A = —y2((9/0z)* + (0/0y)?) with

Touj = Aj(n)u; and Auj = (1/4 —i—t?)uj,

where ug is a constant function. It is well-known that 0 < t; <9 < --- and (Weyl’s law,
see [5])

1
r(T)=#{j: 0<t; <T} = ET2 +O(TlogT).

Moreover, we have A\;(n) € R and the generalized Ramanujan conjecture for Maass forms
asserts that

A (p)] <2
for any prime p. Unfortunately, this conjecture is still open and the best result
I\ (p)] < pT/0t 4 pmT/64 for any prime p (3)

was obtained by Kim and Sarnak [6].
Let

zj = {(A(2),A;(3), A;(5), - )}

Then x; € [[[-p™/4 —p~7/64 p7/64 4 p=7/64] In [10], Sarnak pointed out that {z;}, j =
P
1,2,3,... is equidistributed with respect to []dp,(z). Inspired by Murty and Sinha (8],
P

Lau and Wang [7] obtained a quantitative version of Sarnak’s result.
It is well-known that for any m,n > 1

and

where X, is the nth Chebychev polynomial of the second kind. We consider the analogues
of Theorem 1 and Theorem 2 and obtain the following two theorems.

Theorem 3. Let r = 2,3,4. There exists a small constant § > 0 such that for all suffi-
ciently large T,



300 H. Tang, Y. Wang / Journal of Number Theory 169 (2016) 295-314

%#{0 <t; <T: (Aj(pg)v"'vAj(p&)) € I’"}

N N
¥ lo e
_ / TT @ @) +O< g(lzz)lgpizr pN)>

n=1

r

holds uniformly for any integer N > 1 and distinct primes py,p2,...,pN Satisfying

rv log(p1ps - - pn) < dlogT,

and uniformly for

N N
I, = H[a2,n,62,n] c[-1,3V, I = H[a&nab?;,n] C [—4, 4",
n=1 n=1
and
N
Iy = H[a4,nab4,n] C [-5/4,5]N.
n=1

Theorem 4. There exists a small constant 6 > 0 such that for any integer v > 2 and all
sufficiently large T,

— O * rNlog(pip2 -+ PN)
_ / n];[1 s, (x)+ 0 ( L >

holds uniformly for any integer N > 1 and distinct primes py,po,...,pN Satisfying

rNlog(pip2 -+ pn) < 0logT,

and uniformly for

N
I=[]lanba] € [-2,2]".
n=1

We shall omit the proofs of Theorem 1 and Theorem 2 because they are very similar
to the proofs of Theorem 3 and Theorem 4 respectively.
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2. Proof of Theorem 3
By (4), we have
Ai(p%) = Ai(p) — 1.

Then \;(p2) € [ag,n, b2,] C [—1,3] is equivalent to

Aj(pn) € U = [\/ag,n 1, /b 1} U [—\/bzm 1, —/an T 1} .

Forn=1,2,3,..., N, put
[\/GQ,n+17\/b2,n+1:| =1x {\/a2,n+17\/b2,n+1} )
[~V 4 L =Vaza 1) = =1 x [Vazn T 1,v/ban +1|

and

U2=LNJ U ﬁenx [\/027n+1,\/b27n+1}.

n=1le,=+1n=1

Then (\;(p?),...,A;j(p%)) € L2 is equivalent to (A\;j(p1),...,A;j(pn)) € Uz. Hence, by [7,
Theorem 1], we have

%# {0 <t; <T: ()\j(pf),...,)\j(P?v)) € ‘[2}
1

r(T)
oo (2

Uz

#{0<t; <T: (Nj(p1),.--,Nj(pn)) € Ua}

Making a change of variable 2 — 1 — ¢, we obtain

%# {o<t; <T: (ND),....\(0R)) € I2}

N
2V log(pip2 -+ p
—/Hdupng(m)w( by o)),
n=1
Iz

Noting that
(%) = A3(p) —2X(p)  and  Ai(p") = A (PP) — N(P7) — 1,

we can prove Theorem 3 for r = 3,4 similarly. O
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3. Preparations for Theorem 4

To begin with, we cite some notation and results from [2,7,12] which will be used
to prove Theorem 4. Let ¢, : R/Z — R be the normalized characteristic functions
defined as

1 ifu<z—n<wvfor somen € Z,
1

Gup(T) = 5 fu—x€e€Zorifv—x€eZ,
0 otherwise,

where u < v < u + 1. For our purpose, we take 0 < u < v < 1/2 and define

Szu,v(z) = Pu,v (z) + @—v,—u(l') € [07 1}

for any = € R, since the two intervals (u,v) and (—v,—u) do not overlap in R/Z.
Furthermore, Barton, Montgomery and Vaaler [2, §2] obtained

Cup(®) = (v—u)+Y(u—2z)+9(z—v)

with ¢(z) =z — [x] — 1/2 for z ¢ Z and ¥(x) =0 for = € Z.
Let M be a positive integer to be determined later. Define

ko (z) = MES:M (1 - M‘ﬂ 1)6(&5) - M1+ 1 (sz(fﬂ 1)x>2 )
and
inte)= 30 7 (5757 )eteo)
where

7y = {Tuuncomﬂu, i?j)t' <1 ©)
Furthermore, define
Buw(@) = M +2)7 (kar(z — u) + kar(z — v) + kar (z + w) + kar(z +0))
and
Qo (T) = Puw * i (T) + P, —u * (), (7)

where f * g is the convolution given by
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[xg( /lf )dy.
0

By direct calculation, we rewrite &, and BW in cosine series (see [7, (2.6)])

Guw(T) = Gup(0) + D Guw(l)cos(2mlz) (8)
1<|eI<M
and
Bu,v( )=(2M +2)” Z ﬂuv ) cos(2mlx), (9)
|| <M
where

Bull) = { (mti) T (5 ) (e(—tu) — e(~tv) it £ 0

2(v —u) if £ =0;
. N (o) — e(—t0)) i _
&ww):{i(l M+J<< u) — e(—tv)) ;ﬁ#g, »

Moreover, for x € R, it is known that (see [2, (2.6)] or [7, (2.4)])

(B (@) = G ()] < Buw(@) (11)

and (see [7, (2.8)] and the line below it)

0<ayp(z)<l1 and 0 < Byn(z) <2 (12)
Define
N
H P o (Tn), (13)
where u = (uj,ug,...,uy) and v = (v1,v2,...,0y) with 0 < w,, < v, < 1/2 and

Un(M +1),v,(M +1) € Z for all n = 1,2,..., N. For simplicity, we put

Bn(@) = Bupon (2), Gn(2) = a0, (@), Br() = Buy o, (@),
An(0) = Auy v, (0), Bull) = Bu, o, (6).

The following result is one of our main tools.
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Lemma 3.1 (/7, Proposition 1]). Let ®,., : (R/Z)N — R be defined as in (13) where
0<up, <v, <1/2 and up(M + 1),v,(M + 1) € Z. Then for z = (x1,...,2N),

|[Pup(2) — a(z)] < B(z),

where
N
a(z) = H an(Ty) = Z a(f) cos(2rlo ),
n=1 Le([—M,MNZ)N
N 1 N R
B(z) = = (2 .
(z) Zﬁn(a?n) S+ 1) Z Z Br(m) cos(2mrmay,)
n=1 n=1|m|<M
Here,
N N
a(l) = H an(ln), cos(2mlox)= H cos(2ml,xy) (14)
n=1 n=1
and Lo x := (L1x1,...,lyxN) denotes the Hadamard product; the values of &, (¢) and
Brn(m) are defined in (10). Moreover,
@ (O] < 2kar(0),  |Bu(m)| < 4kas(m) (15)

where kar(€) = (1= [€]/(M +1)).
Another main tool is the following lemma.

Lemma 3.2 ([7, Lemma 3./]). Let S be a finite set of distinct primes. Then we have for
mp 21 (p€S),

Z H apA; )+ b (p mpiz))

1<]<7‘(T) peS

by
= Mo, 225 m>+0(2#5>7’2“H(me”maxﬂapi,ibp)))

pGS pES

where 0g), = 1 if 2|h and O otherwise, a,,b, are constants depending only on p, #(S)

denotes the cardinality of S, 0 < k < kg = 1—55 and n > ng = % are any absolute
constants. When m, =1, X\;(p™»~?) denotes 0.

Further, for M > 1, we have

SOOI e <] OépM ) +12 (T )™,

1<j<r(T) peS peS pES

where o(m) =3 4,,, d
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The Hecke eigenvalue Aj(p) can be expressed in the form \;(p) = o, + B, with
jps Bip € C and o pBj, = 1. By (3), |aj,| < p? with 6 = 7/64. Hence, there exists a
unique 6;(p) € [0,7] Ui(0,0logp] U + i(0, 0 logp] such that a;, = (P and

Aj(p) = 2cosb,(p).

It is well-known that

A(p") = X, (cos0;(p)) = W_ "

Then we easily obtain that for r > 2,
Xi(p") = Aj(p"%) = 2cosrl(p) € [-2,2]
and \;(p") — N\;(p"?) € (a,b) C [-2,2] is equivalent to
r0;(p)/(2m) € (krjp + b krjp +a”) U (krjp — 0 krjp — b7)
for some integer k, ;, depending on r,p and j, where

o = arccos(a/2) and b= arccos(b/?).
27 27

Hence \;(p") — Aj(p"72) € (a,b) C [-2,2] if and only if @p o+ (rf,(p)/(27)) = 1. There-
fore, for any (a,b) C [-2,2] and r > 2

~ T
Z 1= Z Db a» (%Gj(p))- (17)
1<5<r(T) 1<5<r(T)
A (PT)=X;(p" %) E(a,b) 0 (p)€[0,n]

Let p1,...,pn be distinct primes. To prove Theorem 4, we shall consider

(1)272(%@]‘ (p)),

where 0;(p) = (0(p1),---,0;(pn)) and 0;(py) is defined as above. In light of Lemma 3.1,
we are led to prove the following two lemmas.

Lemma 3.3. For rf = (ry,...,rly) where |£,| < M, we have

Y a(ow)-rm Y a0

1<5<r(T) Le([-M,MINZ)N

< (2M 4+ 2)NT?> 5 (py - - py )2 M1, (18)

where c,(rl) = Hf:[:l cp, (rly,) with ¢,(0) =1, and
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» %pf\flrﬂ(l —p) if rl is even
’r‘ =
if rf is odd.

Here 0 < k < kg = ﬁ and n > ny = 73 are any absolute constants and the implied

constant in (18) depends only on 1.

Proof. By (15), we only have to prove
> cos(rLo,(p)) — r(T)ey(rl)| < T**(py - i)™ (19)
1<5<r(T)

Using 2 cos(£0) = X4 (2cos ) — X|g—2(2cos @) for [£| > 2, we have

%( J pla Aj(p|£‘72))7 W > 2a
cos(£0;(p)) = | 3i(p),
1,

el =1,
£=0.
Therefore, if we denote Q(X,Y) = (X —Y), then
cos(rLof,( H QO (P, A (pren1=2)).

n:[6a]21

Applying Lemma 3.2 with a,, =1/2, b,, = —1/2 and m,,, = r|{,|,

Z H Q rlén\> ( 7€ | — 2))

1<G<r(T) m: [€n] 21

T? 11 11 . o]
= ﬁ H 62‘7{” (ipr‘znl/z - iprM"‘/271) + O(T H p:LI n

n:[ly|>1 n:,|>1

2

=15¢ (r£)+O(T2 ®(p;1 -~~pN)TM”).

Here we have used the assumption |£,| < M in the last step. The proof is complete. O

Define

o0

F:D,r(y): Z cp(rf)e(ﬂy), (20)

{=—o00

where ¢, (rf) is defined as in Lemma 3.3. By the identity

1-t¢
Z t" cosmz = = tc?:; (t,x e R, |¢| < 1),
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we get

p +p' " —(14p) cos 4my oo )
G722 24 cos? (ang) if r is odd;

pir () /2 4p'=7/2 _(14p) cos 2y
(pr/1+p=7/1)2—4 cos?(ny)

(21)
if r is even.

Note that F}, -(y) > 0 and fol F,.r(y)dy = 1, yielding a probability density function on
the space R/Z.

Lemma 3.4. Let a(£) and cy(rL) be defined as in Lemma 3.1 and Lemma 5.3, respectively.
Then we have

N Un
N
3 H/ bor ) dy+0(57)-
ﬁE([—M,M]ﬂZ)N n=1
Proof. By the definition of a({), c,(rf), we have

Z Uz;an n)Cp,, (1) = li[lp}r,

£€([*M’M]QZ)N

where

por = > Anlln)cy, (rly).

[en|<M

By (8) and (20), we obtain

1
Yp,r = /aumvn Fy, +(=y)dy = au,, v, * Fp, +(0).
0

By the nonnegativity of F),, .(y) (see (21)) and (12), we have

1 1
0<%, , = / G (9) Fr (—y)dy < / Ey o (—y)dy = 1. (22)
0 0

Moreover, we have

1
1 p = Pup vy * Fp, r(0)] = /(&umvn (Y) = Pup o W) Fp,, r(—y)dy
0
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< / |&un,vn (y) - Szun,vn (y)|Fpn,r(_y)dy

< Eumvn * Fy,, +(0). (23)

Here we have used (11) in the last step. By the nonnegativity of Bumvn (see (12)) and (9),
we have

B o * Fpon(0) < max |Fy, ()] / B () dy < (24)

y€l0,1] M+1

Recall that 0 < u < v < 1/2. It is easy to see

v

Fuw Fprl0) = [ 2P )y € 0.1). (25)

Combining (25) with (23) and (24), we get

Un

Ypyr = /2Fpn,r(y) + O(%) (26)

Un
Suppose for S > 1, we have

S S Un,

H Lpr = H /2Fpn,r(y) dy—i—O(%),

n=1 n=1
Un

By (22), (25) and (26), we have

S
Ypsirr X H Ypnr = Bpgia,r X H/ o (Y) dy + O( )

S+1 Un

S
1 o maof) <o)
S S+1
- }_[1 2F,, . (y) dy + O =~ - ).
Therefore, by induction,
N N Yn
S @, HZWZH/QF wdy+0(37). o

Le([—M,MNZ)N n=1 n=1,
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4. Proof of Theorem 4
For Nlog(py---pn) < dlogT, we have N < /logT as p; > 2. Define
Or(p) ={1 <j <r(T): 0;(p) € [0, 7]}
We have the following result.

Lemma 4.1 ([7, Lemma 4.3]). Let p be a prime. Then for all sufficiently large T,

1 logp\”
(D)~ Or(p)) < (1ogT>

where |O7(p)| denotes the cardinality of ©r(p) and the implied constant is absolute.

Define

and

O ={:1<j<r(MI\O=J{j: 1<j<r(D)}\Or(pn)).

n=1
Here we suppress symbols for the dependence on T" and p1, ..., py, as no ambiguity will
arise. By Lemma 4.1, we obtain
- log(p1 - -pn) |
e’ (log p, (| ———=) . 27
0] g 2 Gomn)? < () (FERLZNY ) (27)

With the notation as in Section 3, we prove the following lemma.

Lemma 4.2. Let Hi:;l[un,vn] C [0, 1N satisfy the conditions in Lemma 5.1. Then we
have

_H/ Pt dy+o(rN1°glg’;1T’”pN>>. (28)



310 H. Tang, Y. Wang / Journal of Number Theory 169 (2016) 295-314

Proof. By Lemma 3.3 and Lemma 3.4, we obtain

T N
> alytm) — (D) H/QFpn,r(y) dy
1<5<T n=1;
< @M+ VT Ry pa ™M 4 (1) (29)

Note that the complete sum in (29) shows that it suffices to estimate
(T
> a(5-0,w).
jeor NI
If \j(pn) € [—2,2], then 0;(p,,) is real and by (12)

r

0;(p))| < 1

o (5=

If |Aj(pn)| > 2, then 6;(p,) = i¥;(pn) or m+iY;(py) for some real ¥;(p,). By (8) and (15),
we have

|G (105 (pn)/(27))] <D [@n (£)] cosh(eri;(pn))
<M

<2 Z k:M(E)cosh(Zrﬂ( n))

<2 Z kM(Z) cosh(20rd,;(pn))

as cosh(¢) < cosh(2¢) for real ¢. Thus by (5) the last line gives

@0 (63 (pn) /(2m))] < 2kM(@)

2 [sin(M +1)r8,(pa)
O M+1 sinr8;(py) '

(30)

It is easy to see that (noting that r > 2)
(Sin 710] (pn))2 — (62T19j (p'n) + 6_2Tﬂj (pn) _ 2)/4
> (e2ViPn) 4 o=20i(pn) _ 9)/4

= (Sin Hj (pn))z'

Combining the above formula with (30), we obtain
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G (103 (p)/(27))] <~ (Sin<M+ 1>r9j<pn>)

M+1 sin 8, (pn)
2
M +1

2 r r—
= M+1>\j(pnM+ 1)

(Xar+1yr—1(cos(0;(pn)))”

by (16). Therefore, for both cases, we have

a(5-0 )<<H <1+ ]\;M:; D’ )

By the second part of Lemma 3.2 and the fact o(p™)/pM < 2, we have

N
2 rM4r—1\2
< ST (14 g
’ 2 N 4 h N2—k 2(rM+r—1
<|®+T Z<h)(M—+1) +2NTP 7 (py - pyy ) 2M AT DT

(31)
if

K logT

M< e
~ 4rnlog(p1---pN)

(32)

Here we have used the fact that the sum over h is < (1 + ﬁ)N — 1< N/M.
By Lemma 3.1, we also need to estimate

> B(%Qj(ﬂ))

By (19), we have

B(5:0,®) =
1<G<T

ﬁ:;ﬁ cp(re+o( ﬁ: TM’?)

< r(T) (33)

§\2

provided that (32) holds.
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Combining (33), (29), (31) and (27) with Lemma 3.1, we conclude that

N Un
r rNlog(p1---pn)
> B (58 0) @) [T [ 260 dy] < ()52
jE€EO n:lun
by taking
K logT
=" O 34
[4Tn10g(p1~~pzv) (39

Now we are ready to complete the proof. Let T be sufficiently large, and write I =
T [an, by] with [an,bn] C (—=2,2) where n = 1,...,N. Then 2cosrd € [an,by,] is

n=1
equivalent to

r8/(2m) € (ko + b}, kro+ay) U (krg —a, kg — b))
for some integer k, ¢ depending on r and ¢, where

. arccos(a,/2) . arccos(b,/2)

Hence 2 cos 0 € [ay, b,] if and only if @p- o« (r0/(27)) = 1. Therefore,
Xlan,bn](2€08T0) = Qps o= (r0/(27)),

where x[q,5 denotes the characteristic function over [a, b].
Next, we choose [un,v,] C [bf,ak] C [ul,v)] (C [0,1/2]) such that u(M + 1),

ny“n ny “n

v(M +1) € Z for (u,v) = (un,v,) and (ul,,v],), the complement has a small measure
| [t 0] \ [, ]| < 1/M
where M takes the value as in (34), and also,
Gup,vn (10/(27)) < X[ay, b,](2€0870) < Dur o (10/(27)).
We denote
u=(uy,...,un), v=(v1,...,0n),

and write u/, v’ similarly. Applying Lemma 4.2 to ®,, and ®,/ ,/, we obtain lower and
upper bounds of the form in the right-side of (28) for

LS T ) = M) AR — A ) € T
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Write u = (uy,...,uy) and v = (vy,...,vy). It remains to show
N Vo N
N
11 /26 / I ;... (@) +0(57) (35)

n

for (u,v) = (u,v) and (v/,v'). For odd r, we make a change of variable z = 2 cos 27y.
Then we get that (with the subscript n suppressed)

v v

p" 4+ pt" — (14 p) cosdmy
OF, (y) dy = 2
/ br(y) dy / (pr/2 +p~7/2)2 — 4 cos?(2my)

u u

2 cos 2mu
1 / PrAp T —(+p)E®-2) 1
(pr/Q +p77’/2)2 — 2 m

s

dx.

2 cos 2mv
As [2 cos 27w, 2 cos 2mu] C [a, b] C [2cos2mv’, 2 cos 2mu’], we get

v b

[2Bnwyay = [ g @)+ 00100

u a

and (35) follows. By similar arguments, we get (35) for even r. Finally we relax the
condition [an, by,] C (—2,2) to [—2,2] with (35) and the proof is complete.
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