期刊论文详细信息
JOURNAL OF NUMBER THEORY 卷:204
An arithmetic topos for integer matrices
Article
Hemelaer, Jens1,2 
[1] Univ Antwerp, Dept Math, Middelheimlaan 1, B-2020 Antwerp, Belgium
[2] Res Fdn Flanders FWO, Brussels, Belgium
关键词: Arithmetic site;    Monoid;    Topos;    Topos automorphism;    Adele ring;    Topos-theoretic point;    Torsion-free abelian group;    Zeta function;    Goormaghtigh conjecture;    Big picture;   
DOI  :  10.1016/j.jnt.2019.03.023
来源: Elsevier
PDF
【 摘 要 】

We study the topos of sets equipped with an action of the monoid of regular 2 x 2 matrices over the integers. In particular, we show that the topos-theoretic points are given by the double quotient GL(2)((Z) over cap)\ M-2(A(f))/GL(2)(Q), so they classify the groups Z(2) subset of A subset of Q(2) up to isomorphism. We determine the topos automorphisms and then point out the relation with Conway's big picture and the work of Connes and Consani on the Arithmetic Site. As an application to number theory, we show that classifying extensions of Q by Z up to isomorphism relates to Goormaghtigh conjecture. (C) 2019 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jnt_2019_03_023.pdf 502KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次