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1. Introduction

In [3], Connes and Consani introduced the Arithmetic Site: it is the topos of sets with 
an action of the monoid N×

+ of strictly positive natural numbers under multiplication. 
It comes equipped with a structure sheaf given by a tropical semiring with N×

+ -action. 
While the structure sheaf is necessary in order to provide a link with the Riemann 
Hypothesis, the topos of N×

+ -sets itself is already surprisingly interesting. For example, 
by [10] the points of the topos are given by Q×\Af/Ẑ×, with Ẑ =

∏
p Zp the profinite 

integers, Ẑ× its units and Af = Ẑ ⊗ Q the finite adeles. When taking the structure 
sheaf in account, the points of the topos become Q×\A/Ẑ×, with A = Af × R the full 
ring of adeles, by the results of [3]. In this way, the Arithmetic Site provides a geometric 
meaning to both Q×\Af/Ẑ× and Q×\A/Ẑ×.

We will generalize the construction of the Connes–Consani arithmetic site by consid-
ering the topos Mns

2 (Z)-Set of sets equipped with a left Mns
2 (Z)-action, where Mns

2 (Z)
denotes the 2 ×2-matrices with integer coefficients and nonzero determinant (as a monoid 
under multiplication). First we show that Mns

2 (Z)-Set is covered as a topos by an easy to 
describe topological space. This allows us to show that the topos points of Mns

2 (Z)-Set
are given by

GL2(Ẑ)\M2(Af )/GL2(Q) (1)

(note the similarity to the case of the Arithmetic Site). It turns out that this double 
quotient also classifies the abelian groups Z2 ⊆ A ⊆ Q2 up to isomorphism. This gives 
an alternative to the similar classification of these groups up to isomorphism by Mal’cev 
in [14]. In Section 4, we study to what extent the double quotient (1) lends itself to 
calculations. We provide an alternative proof for the isomorphism Ext1(Q, Z) ∼= Af/Q

and then give an adelic criterion for when two extensions are isomorphic (as abelian 
groups).

Note that N×
+ is the free commutative monoid with the prime numbers as generators. 

In particular, the prime numbers are indistinguishable from each other: for each permu-
tations of the prime numbers, there is an induced automorphism of N×

+ . This in turn 
induces a topos automorphism of N×

+ -Set (the topos of N×
+ -sets and equivariant maps). 

An important implication is that the topos N×
+ -Set contains no information at all about 
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the Riemann Hypothesis. This is one of the reasons why the tropical semiring (as struc-
ture sheaf) is so important in the approach of Connes and Consani. In Subsection 2.4
we compute the topos automorphisms of Mns

2 (Z)-Set. This topos is much more rigid — 
in particular, each automorphism acts trivially on the space of points. So in some sense, 
the topos Mns

2 (Z)-Set contains more arithmetic information than N×
+ -Set; and maybe 

the information in Mns
2 (Z)-Set can (partially) replace the role played by the structure 

sheaf in [3], leading to an even more “algebraic” approach.
An alternative take on this can be found in Subsection 2.5, where the monoid P̄ns(Z) is 

studied. It is the submonoid of P̄(Z) consisting of the matrices with nonzero determinant, 
where

P̄(R) =
{(

a b
0 1

)
: a, b ∈ R

}
, (2)

for R a commutative ring. These sets of matrices are used by Connes and Consani in [4]
to study parabolic Q-lattices. We will show that the topos points of P̄ns(Z)-Set agree 
with the points of the Arithmetic Site (if we do not take into account the structure 
sheaf). Moreover, the zeta function naturally associated to P̄ns(Z) is the Riemann zeta 
function ζ(s), and the group of topos automorphisms is isomorphic to Z/2Z.

In Section 3, we discuss the relationship of Mns
2 (Z)-Set with Conway’s big picture (as 

introduced in [6]). We consider an embedding of the big picture P in the quotient

GL2(Z)\Mns
2 (Z)

(this embedding already appeared in [18]). We give an explicit formula for the hyper-
distance on GL2(Z)\ Mns

2 (Z), extending the hyper-distance on the big picture. Then we 
show that the zeta function associated to the big picture is

ζP(s) = ζ(s)ζ(s− 1)
ζ(2s) (3)

with ζ(s) the Riemann zeta function. Note that the Riemann zeta function associated 
to GL2(Z)\ Mns

2 (Z) is ζ(s)ζ(s − 1). The latter is a special case of a result from [19], but 
it is also implicit in the work of Connes and Marcolli [5], who showed that ζ(s)ζ(s − 1)
is the partition function for their GL2-system. Note that ζ(s)ζ(s − 1) is the Hasse-Weil 
zeta function for P 1

Z. This hints at an interpretation of Mns
2 (Z)-Set in terms of algebraic 

geometry.
Another link with the work of Connes and Marcolli [5] is that their GL2-system A

can be interpreted as an algebra of operators on a vector space internal to the topos 
Mns

2 (Z)-Set. In more down-to-earth terms: there is some vector space E equipped with a 
linear left Mns

2 (Z)-action, such that the GL2-system acts faithfully on E in an equivariant 
way. Indeed, take

E =
⊕

�2(Γ\Gy) (4)

y
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with y = (ρ, τ) ∈ M2(Ẑ) × H, for H the upper half-plane, and

Gy = {g ∈ GL+
2 (Q) : gρ ∈ M2(Ẑ)}

and let a ∈ A act as πy(a) on �2(Γ\Gy), where πy is the usual representation as con-
structed by Connes and Marcolli [5, Proposition 1.23]. Then A acts in an equivariant 
way, provided we equip E with the following left Mns

2 (Z)-action: if ξ ∈ �2(Γ\Gy), then 
a · ξ ∈ �2(Γ\Gy′) with y′ = (a · ρ, a · τ) and moreover

(a · ξ)(g) = ξ(ga) (5)

for all g ∈ Gy′ . Note that a can have negative determinant, but this issue is resolved by 
considering the identification

GL2(Z)\Mns
2 (Z) = SL2(Z)\M+

2 (Z). (6)

2. The topos of Mns
2 (Z)-sets

Let Mns
2 (Z) = {a ∈ M2(Z) : det(a) �= 0} be the regular integral 2 × 2-matrices, 

considered as a monoid under multiplication. We want to construct a topological space 
X with a surjective open geometric morphism

Sh(X) −→ Mns
2 (Z)-Set. (7)

This map should additionally induce a surjection on topos-theoretic points, leading to a 
description of the topos-theoretic points for Mns

2 (Z)-Set.
Two topological spaces for which we can construct a geometric morphism as above 

(see Subsection 2.3) are

GL2(Z)\Mns
2 (Z) and GL2(Ẑ)\M2(Ẑ)

with the Scott topology. We will show that the second one is the sobrification of the 
first one. So they share the same topos of sheaves and the space of points for this topos 
is GL2(Ẑ)\ M2(Ẑ). We will give a concrete description of both these spaces and relate 
them to subgroups of Q2.

After constructing a covering of toposes

Sh (GL2(Z)\Mns
2 (Z)) −→ Mns

2 (Z)-Set (8)

we show that two points of the first topos, seen as elements a, b ∈ GL2(Ẑ)\ M2(Ẑ), give 
rise to the same topos-theoretic point of Mns

2 (Z)-Set if and only if they are g, h ∈ Mns
2 (Z)

such that

a · g = b · h. (9)
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In this way we can identify the space of points of Mns
2 (Z)-Set with

GL2(Z)\M2(Af )/GL2(Q). (10)

2.1. Posets of matrices

In this subsection we give a concrete description of the posets GL2(Z)\ Mns
2 (Z) and 

GL2(Ẑ)\ M2(Ẑ). So it can be skipped if the reader already has an intuition about these 
posets and/or has no interest in the proofs of the next subsection.

We already mentioned the topological spaces

GL2(Z)\Mns
2 (Z) and GL2(Ẑ)\M2(Ẑ)

with the Scott topology. The Scott topology is only defined for posets, so we should 
clarify which partial order we have in mind. For a, b ∈ Mns

2 (Z) we say a ≤ b if there is 
some m ∈ Mns

2 (Z) with b = ma. Clearly, m = ba−1 is uniquely determined if it exists. 
Moreover, a ≤ b and b ≤ a implies that b = ua for some u ∈ GL2(Z). So we get a 
partial order on the quotient GL2(Z)\ Mns

2 (Z). The definition for a, b ∈ GL2(Ẑ)\ M2(Ẑ)
is completely analogous: a ≤ b if there exists an m ∈ M2(Ẑ) such that b = ma. For this 
to be a partial ordering we need that a ≤ b and b ≤ a implies a = b. This is not clear 
a priori, but it follows from the concrete description of GL2(Ẑ)\ M2(Ẑ) in the following 
paragraphs.

Note that

GL2(Ẑ)\M2(Ẑ) =
∏

GL2(Zp)\M2(Zp) (11)

so we can see an element a ∈ GL2(Ẑ)\ M2(Ẑ) as a family

(ap)p with ap ∈ GL2(Zp)\M2(Zp) for all primes p. (12)

Moreover with this notation we see that a ≤ b for a, b ∈ M2(Ẑ) if and only if ap ≤ bp for 
all primes p. So we will fix one prime p and look at GL2(Zp)\ M2(Zp) in detail.

Because Zp is a principal ideal domain, every element of M2(Zp) can be brought into 
its Hermite normal form, by multiplying on the left with elements of GL2(Zp), see [13, 
Theorem 22.1]. This Hermite normal form is a matrix(

pk z
0 pl

)
(13)

with z = z0 + z1p + z2p
2 + . . . satisfies zi = 0 for i ≥ l; but we allow both k = ∞ and 

l = ∞ with the convention that p∞ = 0 (in the case l = ∞ there is no restriction on z). 
This Hermite normal form is unique whenever the determinant is nonzero (so k, l both 
finite), see [13, Theorem 22.2]. In this case, we easily find
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Table 1
Four types in GL(Zp)\ M2(Zp) and their adjacent elements.

#
{

a → b
λ(b) = λ(a)

}
#

{
a → b

λ(b) > λ(a)

}
#

{
b → a

λ(b) = λ(a)

}
#

{
b → a

λ(b) < λ(a)

}
λ(a) = 0
ν(a) = 0 p + 1 0 0 0

λ(a) = 0
ν(a) > 0 p 1 1 0

λ(a) > 0
ν(a) = 0 p + 1 0 0 p + 1

λ(a) > 0
ν(a) > 0 p 1 1 p

(
pk z
0 pl

)
≤

(
pr z′

0 ps

)
(14)

if and only if k ≤ r, l ≤ s and z′ ≡ pr−kz mod ps.
Let a, b ∈ GL2(Zp)\ M2(Zp) with nonzero determinant. Then we say that a and b are 

adjacent if

• a ≤ b and det(b) = p det(a) (in this case we write a → b);
• b ≤ a and det(a) = p det(b) (in this case we write b → a).

In this way, we can interpret GL2(Zp)\ M2(Zp) as a (directed) graph. Some additional 
definitions: let a ∈ GL2(Zp)\ M2(Zp), then

• we define the level λ(a) as the largest integer such that pλ(a) | a;
• we define the niveau ν(a) as ν(a) = vp(det a) − 2λ(a).

If we multiply a matrix by a scalar n, then the level increases by vp(n) and the niveau 
stays the same. So we could alternatively define the niveau of a as the valuation of the 
determinant of 1

N a, with N the greatest common divisor for the entries of a.
For a → b, we easily compute that either λ(b) = λ(a) and ν(b) = ν(a) + 1, or 

λ(b) = λ(a) + 1 and ν(b) = ν(a) − 1. Moreover, the latter can only occur for at most 
one b. In Table 1 we give a complete description of the directed graph structure. Fig. 1
illustrates the situation for p = 2. The elements with λ ≤ 2 and ν ≤ 4 are drawn with 
an edge between each two adjacent elements.

For an element of GL2(Zp)\ M2(Zp) with zero determinant, the following matrices 
are unique representatives: (

pk z
0 0

)
or

(
0 0
0 pl

)
(15)

for some k ∈ {0, 1, 2, 3, . . . } and z ∈ Zp, or l ∈ {0, 1, 2, . . . } ∪ {∞}. The poset structure 
on the latter matrices can be summarized as
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Fig. 1. A (truncated) picture of GL2(Z2)\M2(Z2).(
pk z
0 0

)
≤

(
pk+r prz

0 0

)
≤

(
0 0
0 0

)
and

(
0 0
0 pl

)
≤

(
0 0
0 pl+s

)
≤

(
0 0
0 0

)
.

We define the level λ(a) again as the largest integer such that pλ(a) | a, or λ(a) = ∞ for 
a the zero matrix. For any matrix with zero determinant we write ν(a) = ∞.

It is easy to see from the explicit representatives above that there is a bijection between 
the nonzero elements with zero determinant and the “paths” in GL2(Zp)\ M2(Zp), where 
by “path” we mean a subset {an}n∈N with λ(an) = λ(a0), ν(an) = n and an ≤ an+1 for 
all n ∈ N. The path associated to b with det(b) = 0 is explicitly given by

{a ≤ b : λ(a) = λ(b)}. (16)

This finishes our description of the poset GL2(Zp)\ M2(Zp). Note that the determinant 
map

GL2(Zp)\M2(Zp) −→ Z×
p \Zp (17)

is also easy to visualize when keeping Fig. 1 in mind. Moreover, we can identify Z×
p \Zp

with N ∪ {∞} using the map

ξ : N ∪ {∞} −→ Z×
p \Zp, n 
→ pn (18)

with the convention p∞ = 0. Note that ξ(n + m) = ξ(n)ξ(m). Taking the product over 
all primes p gives a description of GL2(Ẑ)\ M2(Ẑ) and the corresponding determinant 
map
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GL2(Ẑ)\M2(Ẑ) −→ Ẑ×\Ẑ.

Here Ẑ×\Ẑ can be identified with the Steinitz numbers or supernatural numbers

S =
∏
p

N ∪ {∞}. (19)

Note that the supernatural numbers S turn up as covering for Connes and Consani’s 
Arithmetic Site, see [10].

2.2. The Scott topology

We want to interpret the posets from the previous subsection as topological spaces. 
The right notion in this setting is the Scott topology.

Definition 1 ([9, Definition 1.3]). Let X be a poset. Then a subset S ⊆ X is open for 
the Scott topology if

• S is upwards closed (if x ∈ S and x ≤ y then y ∈ S);
• S is inaccesibly by directed suprema (for any directed supremum 

∨
i∈I si ∈ S we can 

find an si ∈ S).

Note that the Scott topology is originally defined only for complete lattices. We drop 
this requirement, following e.g. [1] and [15]. One caveat with this more general definition 
is that it is not functorial: the map from N ∪ {∞} to {0, 1} sending natural numbers 
to zero and ∞ to one is order-preserving but not continuous for the Scott topology. 
This problem does not appear for complete lattices if you require the maps to preserve 
suprema.

Proposition 2. Consider X = GL2(Z)\ Mns
2 (Z) and X̂ = GL2(Ẑ)\ M2(Ẑ) with the Scott 

topology. Then:

1. the open sets for X are precisely the upwards closed sets;
2. the inclusion X ⊂ X̂ is continuous;
3. the inclusion X ⊂ X̂ induces an isomorphism on frames of opens;
4. X is dense in X̂;
5. X̂ is the sobrification of X.

Proof. 1. We have to show that the second part of Definition 1 is automatically satisfied 
for every upwards closed subset of X. So take an upwards closed set S ⊆ X and 
suppose that s ∈ S for some s =

∨
i∈I si. Then

det(s) = max{det(si) : i ∈ I}.
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Take i ∈ I with det(si) = det(s), then si = s so in particular si ∈ S.
2. This follows almost directly from the first statement.
3. We need to prove that the open sets for X̂ are the upwards closed sets that are 

generated by elements of X. So take an upwards closed subset S ⊂ X̂ generated by 
(gi)i∈I ∈ X. Suppose that s ∈ S for s =

∨
j∈J sj . Then there is some i ∈ I with 

gi ≤ s. Consider the projection

Fp : GL2(Ẑ)\M2(Ẑ) −→ GL2(Zp)\M2(Zp).

Note that the maps Fp preserve suprema [20, Exercise 3.21.n]. It is enough to find 
for each prime p some j ∈ J with Fp(gi) ≤ Fp(sj), because Fp(gi) is the identity 
matrix for almost all primes p. We use the abbreviations λp and νp for λ ◦ Fp resp. 
ν ◦ Fp with λ and ν the level resp. niveau function (see Subsection 2.1). For each 
prime p there are three cases.
• λp(s) = ∞. Then we can find an sj with λp(sj) ≥ vp(det(gi)), but this implies 

Fp(gi) ≤ Fp(sj) because gi ≤ det(gi)I2 with I2 the identity matrix.
• λp(s) finite, νp(s) = ∞. Without loss of generality, λp(gi) = λp(s). Now take j ∈ J

with λp(sj) = λp(s) and νp(sj) ≥ νp(gi). Then Fp(gi) ≤ Fp(sj).
• λp(s) and νp(s) both finite. Then we can find j ∈ J with Fp(sj) = Fp(s), but 

then also Fp(gi) ≤ Fp(sj).
This shows that S is Scott open. Conversely, let T ⊆ X̂ be a Scott open set. Then it 
is upwards closed, and we need to prove that it is generated by T ∩X. Take s ∈ T . 
Then it is easy to see that s =

∨
i∈N si with each si ∈ X. Because T is Scott open, 

we see that si ∈ T for some i ∈ N. But now si ∈ T ∩X and si ≤ s.
4. This follows directly from the previous statement.
5. We already know that the inclusion X ⊂ X̂ is continuous and induces an isomor-

phism on frames of opens. It remains to show that X̂ is sober (in other words every 
irreducible closed subset is the closure of a unique point). It is enough to show this 
for GL2(Zp)\ M2(Zp) with the Scott topology for each prime p, because arbitrary 
products of sober spaces are again sober, see [22]. Let V ⊆ GL2(Zp)\ M2(Zp) be an 
irreducible closed subset. In particular it is downwards closed. We claim that it has 
a unique maximal element m, in other words that

V = {s ∈ GL2(Zp)\M2(Zp) : s ≤ m}.

In the case that λ(s) for s ∈ V is unbounded, it is easy to see that V is the whole 
space. If λ(s) is bounded, write λ0 for the maximal value. It is enough to prove that 
λ(s) = λ(s′) = λ0 and ν(s) = ν(s′) implies s = s′ for s, s′ ∈ V . But note that 
U = {v ∈ V : s ≤ v} and U ′ = {v ∈ V : s′ ≤ v} are two disjoint relatively open sets, 
which means we can write

V = (V \U) ∪ (V \U ′).
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This contradicts V being irreducible. �
Corollary 3. There is an equivalence of categories

Sh(X) � Sh(X̂).

The space of points for this topos is X̂.

2.3. Topos-theoretic points for Mns
2 (Z)-Set

We claim that Sh(X) is a slice topos for Mns
2 (Z)-Set. We can see Mns

2 (Z)-Set as the 
category of presheaves on the category Mop with one object ∗ and as morphisms the 
opposite monoid Mns

2 (Z)op (composition given by multiplication). Now consider the slice 
category Mop/∗. Upto equivalence of categories, we can describe it as follows:

• The objects are the elements of X = GL2(Z)\ Mns
2 (Z);

• There is an arrow n → m whenever m ≤ n.

We can also interpret Mop/∗ as the category of open sets in X that are generated by one 
element (and inclusions). Now note that the latter is a basis for the (Scott) topology on 
X. Moreover, there are no nontrivial ways to cover one basis open set with other basis 
open sets. This brings us to the conclusion

Sh(X) � PSh(Mop/∗) (20)

Moreover, the object ∗ in Mop represents the Mns
2 (Z)-set M = Mns

2 (Z) with left action 
given by multiplication. So we have an equivalence

PSh(Mop/∗) � Mns
2 (Z)-Set/M. (21)

Because we see Sh(X) as a slice topos for Mns
2 (Z)-Set, there is an induced geometric 

morphism

Sh(X) Mns
2 (Z)-Set.

π∗

π∗

(22)

This geometric morphism induces a continuous map from the space of points X̂ of Sh(X)
to the space of points of Mns

2 (Z)-Set. Note that there is an explicit construction for 
topos-theoretic points of a slice topos, see e.g. [17, Observation 3.10]. Here it is shown 
that, for T a topos and X is an object of T , we can construct a topos-theoretic point of 
the slice topos T /X for each couple (p, x) where:
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• p is a topos-theoretic point of T ;
• x ∈ p∗X, in other words x is an element of the stalk of X in the point p.

Moreover, under the natural geometric morphism T /X −→ T , the point of T /X corre-
sponding to the couple (p, x), is sent to the point p of T .

In our situation, this means that there is a point of Sh(X) for every couple (p, x) with 
p a point of Mns

2 (Z)-Set and x ∈ p∗M , and this point is sent to p under the above map. 
In particular the map

π : X̂ −→ Pts(Mns
2 (Z)-Set) (23)

is surjective, if we prove that p∗M is nonempty for every point p of Mns
2 (Z)-Set. So 

suppose that p∗M = ∅. Then by the adjunction property p∗S is the one-element set 1
for each set S. From this it follows that p∗1 = ∅, but this contradicts p∗ preserving finite 
limits. As a conclusion:

Proposition 4. There is a surjective continuous map

π : X̂ −� Pts(Mns
2 (Z)-Set).

Now we need to determine when π(a) = π(b) for a, b ∈ X̂. We start by giving a de-
scription of the map π. Let x ∈ X̂. Then for a sheaf F on X, we get x∗F = lim−−→x∈U

F(U). 
Clearly, it is enough to take the direct limit over only the open sets U generated by one 
element. Note that π(x)∗ = x∗ ◦ π∗. Moreover, π∗ is given by

(π∗N)(U) = N (24)

for N an arbitrary Mns
2 (Z)-set. Further, if U is generated by m and V by n = am, then 

the restriction (π∗N)(U) → (π∗N)(V ) is given by left multiplication with a.
This leads to the following description of π(x): for each Mns

2 (Z)-set N ,

π(x)∗N = lim−−→
m≤x

N, (25)

where the transition map along m ≤ m′, with m′ = am, is given by multiplication by a. 
Note that the transition maps are not necessarily equivariant (we take the direct limit 
as sets).

Theorem 5. The points of Mns
2 (Z)-Set are given by

GL2(Ẑ)\M2(Af )/GL2(Q)

where Af = Ẑ⊗Q are the finite adeles. Moreover, there are in bijective correspondence 
with the isomorphism classes of subgroups Z2 ⊆ A ⊆ Q2.
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Proof. Consider the map π : X̂ � Pts(Mns
2 (Z)-Set) as above. To x ∈ X̂ we associate the 

subgroup Z2 ⊆ Ax ⊆ Q2 given by

Ax = π(x)∗Z2 = lim−−→
m≤x

Z2 (26)

where Z2 is seen as column vectors equipped with the standard left action of Mns
2 (Z). 

The inclusion in Q2 is the one induced by taking the standard inclusion Z2 ⊂ Q2 for m
the identity matrix.

Now take two elements x, y ∈ X̂ and suppose that π(x) = π(y); in other words 
there is a natural isomorphism of functors π(x)∗ � π(y)∗. Then in particular there is an 
isomorphism

Ax
∼→ Ay (27)

and by naturality this isomorphism preserves addition and negation (so it is a group 
isomorphism). Using extension of scalars to Q, we can find some g ∈ GL2(Q) such that 
Ay = g ·Ax, or rather

h−1 ·Ay = N−1 ·Ax (28)

for h = Ng ∈ Mns
2 (Z). This in turn implies yh = xN or yg = x, in other words x and y

determine the same class in

GL2(Ẑ)\M2(Af )/GL2(Q). (29)

Conversely, take x, y ∈ X̂ with x = yg. Then it is easy to construct a natural isomorphism 
π(x)∗ � π(y)∗.

We still need to show that for any subgroup Z2 ⊆ A ⊆ Q2 we can find an x ∈ X̂ such 
that A = Ax. We use the fact that A can be written as an inductive limit of finitely 
generated subgroups (of rank 2) containing Z2. By the classification of finitely generated 
abelian groups, these are all isomorphic to Z2. So we can write each of them as m−1Z2

for some m ∈ Mns
2 (Z). But then A = Ax for x the supremum of all these m’s in the 

poset X̂. �
Remark 6. The idea of using finite adeles to describe subgroups Z ⊆ A ⊆ Q2 up to 
isomorphism is not new. The standard approach is the one introduced by Mal’cev [14] in 
1938, see [8, Theorem 93.4]. However, the description from Theorem 5 is a bit different 
and was not found by the author of this paper in previous works.

Note that both the original description by Mal’cev and the variation above are rather 
unpractical. For two matrices a, b ∈ M2(Ẑ) it is in general very difficult to determine if 
they represent the same element of GL2(Ẑ)\ M2(Af )/GL2(Q).
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2.4. Automorphisms of Mns
2 (Z)-Set

The goal of this subsection is to show that the group of automorphisms of Mns
2 (Z)-Set

(up to natural isomorphism) is rather small: it is isomorphic to the group of charac-
ters Hom(Q×, {1, −1}). Intuitively, it is not surprising that it is a small group, when 
taking into account the result of Stephenson [21] that all monoid automorphisms of 
M2(Z) are inner. But Stephenson’s proof uses the idempotents in M2(Z); if we consider 
the submonoid Mns

2 (Z), then there are more automorphisms, as shown in the following 
proposition.

Proposition 7. Let ϑ : Mns
2 (Z) → Mns

2 (Z) be an automorphism of monoids. Then we can 
find g ∈ GL2(Z) and a character χ : Q× → {1, −1} such that

ϑ(a) = χ(det(a)) gag−1.

In particular, ϑ preserves the determinant.

Proof. The groupification of Mns
2 (Z) is GL2(Q), so ϑ is the restriction of a group auto-

morphism ϑ̂ : GL2(Q) → GL2(Q). This ϑ̂ can be written as

ϑ̂(a) = χ̂(a) gag−1 (30)

with χ̂ : GL2(Q) → Q× a character and g ∈ GL2(Q) (use [7, Theorem 1] and keep in 
mind that a 
→ det(a) (at)−1 is conjugation by(

0 1
−1 0

)
so this is an inner automorphism). Note that χ̂ is necessarily trivial on the commutator 
subgroup SL2(Q) of GL2(Q), so we can write χ̂(a) = χ(det(a)) for some character 
χ : Q× → Q×.

Further, ϑ induces a poset automorphism

ϑ̄ : GL2(Z)\Mns
2 (Z) −→ GL2(Z)\Mns

2 (Z) (31)

In particular, it preserves the elements that have exactly one strictly smaller element. 
These correspond to the elements a ∈ Mns

2 (Z) with det(a) = ±p for some prime number 
p. So if det(a) = ±p then up to sign det(ϑ(a)) = q with q prime. Moreover

det(ϑ(a)) = χ(det(a))2 det(a) (32)

so in fact det(ϑ(a)) = ±p (with the same sign) and χ(det(a))2 = 1. Using the Smith nor-
mal form, we see that Mns

2 (Z) is generated by units and matrices of prime determinant. 
As a corollary det(ϑ(a)) = det(a) and χ(det(a))2 = 1 for any a ∈ Mns

2 (Z). We still need 
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to deduce that g ∈ GL2(Z) from ϑ̂ sending Mns
2 (Z) to itself. Note that gag−1 ∈ Mns

2 (Z)
for all a ∈ Mns

2 (Z). Further, for any b ∈ M2(Z) we can find λ ∈ Z big enough such that 
b + λI2 is in Mns

2 (Z). This implies that gbg−1 ∈ M2(Z) and in this way conjugation by 
g defines a ring automorphism of M2(Z). This shows g ∈ GL2(Z). �

In a cancellative monoid M being left invertible is equivalent to being right invertible. 
The group of (left and right) invertible elements will be denoted by M×. As in the case 
of groups there is a (group) morphism

M× −→ Aut(M)

g 
→ ιg

with ιg(m) = gmg−1. The image is the normal subgroup of inner automorphisms, de-
noted by Inn(M) ⊆ Aut(M). We write

Out(M) = Aut(M)
Inn(M)

for the group of outer automorphisms. With these notations we can formulate an imme-
diate corollary to Proposition 7.

Corollary 8. There is a group isomorphism

Out(Mns
2 (Z)) ∼= Hom(Q×, {1,−1}).

Note that every f ∈ Hom(Q×, {1, −1}) is uniquely determined by choosing a value 
for f(−1) and for f(p) for all primes p.

We now want to determine the topos automorphisms of Mns
2 (Z)-Set. We first present a 

criterion describing which topos automorphisms of M -Set (with M an arbitrary monoid) 
arise from monoid automorphisms of M .

Proposition 9. Let M be an arbitrary monoid and let Θ : M -Set → M -Set be an equiv-
alence such that GΘ � G for G : M -Set → Set the forgetful functor. Then Θ � ϑ∗ for 
some monoid automorphism ϑ : M → M .

Proof. For ϑ an automorphism of M , the equivalence ϑ∗ satisfies Gϑ∗ = G and can be 
reconstructed from the monoid map

Nat(G,G) → Nat(G,G)

αm 
→ αmϑ∗ = αϑ(m).

Here αm, m ∈ M is the natural transformation given by αm(n) = m · n for all M -sets 
N and n ∈ N (every natural transformation G ⇒ G is of this form). We denote hori-
zontal composition for natural transformations by juxtaposition and we denote vertical 
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composition with ◦. Note that any monoid map Nat(G, G) → Nat(G, G) is of the form 
αm 
→ αϑ(m) for some ϑ.

Now take some Θ as in the proposition an take an equivalence ϕ : GΘ ⇒ G. Then we 
can construct a monoid map

Nat(G,G) → Nat(G,G)

αm 
→ ϕ ◦ αmΘ ◦ ϕ−1.

We can find a monoid automorphism ϑ : M → M such that

αϑ(m) = ϕ ◦ αmΘ ◦ ϕ−1 (33)

in other words, such that the diagram

ΘN N

ΘN ′ N ′

ϕ

αm αϑ(m)

ϕ

(34)

commutes for any M -sets N and N ′ and any m ∈ M . But this means that ϕ is equiv-
ariant, so it defines a natural isomorphism ϕ : Θ ⇒ ϑ∗. �
Corollary 10. Let M be a cancellative monoid. Then the topos automorphisms Θ of M -Set
up to natural isomorphism satisfying GΘ � G form a group isomorphic to Out(M).

Proof. We already showed that every autoequivalence Θ with GΘ � G is induced by 
an automorphism of M (up to natural isomorphism). We still need to determine when 
ϑ∗ � ζ∗ for ϑ, ζ two automorphisms of M . If ζ = ιg ◦ ϑ for some g ∈ M×, then left 
multiplication by g defines a natural isomorphism ϑ ⇒ ζ. Conversely, if ϕ : ϑ ⇒ ζ

is a natural isomorphism, then by functoriality ϕ(ma) = ϕ(m)a for all m, a ∈ M . 
So ϕ(m) = gm for some g ∈ M×. Because ϕ is equivariant, we see that ζ = ιg ◦ ϑ. 
In conclusion, ϑ and ζ are naturally isomorphic if and only if they differ by an inner 
automorphism. �

We now return to the case M = Mns
2 (Z). We first show that the criterion from 

Corollary 10 is satisfied for all topos automorphisms.

Lemma 11. Let

Θ : Mns
2 (Z)-Set −→ Mns

2 (Z)-Set

be an autoequivalence. Then GΘ � G.
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Proof. Note that G � p∗ with p the point corresponding to the identity matrix. Similarly, 
GΘ has a right adjoint and preserves finite limits so GΘ � q∗ for some point q. For N
an Mns

2 (Z)-set, we can write

GΘN ∼= q∗N = lim−−→
m≤x

N (35)

for some x ∈ GL2(Ẑ)\ M2(Ẑ). We claim that q∗ � p∗ � G. To show this, we take 
N = {0, 1} with the Mns

2 (Z)-action

m · x =
{
x if det(m) = 1
0 if det(m) �= 1

. (36)

We compute

lim−−→
m≤x

N =
{
N if x ∈ X

1 if x ∈ X̂ \X
(37)

(recall the notations X = GL2(Z)\ Mns
2 (Z) and X̂ = GL2(Ẑ)\ M2(Ẑ)). Because Θ is 

an equivalence, it cannot send N to 1 (if so, Θ−1 would not preserve the terminal 
object). So x ∈ X and because X is precisely the orbit of the indentity matrix under the 
GL2(Q)-action, we see that GΘ � q∗ � p∗ � G. �

Combining Corollaries 8 and 10 with Lemma 11, we get the following description of 
the topos automorphisms of Mns

2 (Z)-Set.

Theorem 12. The group of topos automorphisms of Mns
2 (Z)-Set up to natural isomor-

phism can be identified with the group of characters

χ : Q× → {1,−1}

under pointwise multiplication.

2.5. The ax + b monoid

In a recent paper of Connes and Consani [4], the subsets

P̄ (R) =
{(

a b
0 1

)
: a ∈ R, b ∈ R

}
(38)

are introduced, for an arbitrary commutative ring R. They are used to study parabolic
Q-lattices [4, Definition 6.1, p. 50]. For example, the parabolic Q-lattices up to commen-
surability are given by
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C0
Q = P+(Q)\

(
P̄(Af ) × P+(R)

)
, (39)

where the superscript + means that we take the subset of matrices 
(
a b
0 1

)
with a > 0

[4, Theorem 6.1.(ii), p. 52].
In this subsection we will study the submonoid P̄ns(Z) ⊂ P̄(Z) consisting of matrices 

with nonzero determinant, and the associated topos P̄ns(Z)-Set. We will show that the 
topos has three nice properties as a setting for the Riemann Hypothesis:

1. its topos points are given by Ẑ×\Af/Q×, so by [10] the topos points are the same 
as for the underlying topos of the Arithmetic Site of [3];

2. its zeta function is the Riemann zeta function ζ(s);
3. its group of topos automorphisms is Z/2Z.

So P̄ns(Z)-Set resembles the Arithmetic Site (without structure sheaf), but this time 
there are only two automorphisms.

The units of the monoid P̄ns(Z) are given by the matrices 
(
±1 b
0 1

)
, and it is 

easy to see that the elements of the quotient Y = P̄ns(Z)×\P̄ns(Z) have unique rep-

resentatives of the form 
(
a 0
0 1

)
, a > 0. There is an obvious inclusion Y ⊂ X, 

with X = GL2(Z)\ Mns
2 (Z) as before. This inclusion puts a partial order on Y , and 

it is continuous for the induced topologies (with upwards closed sets as opens). Let 
p∗ : P̄ns(Z)-Set −→ Set be a topos-theoretic point. Then completely analogously to the 
situation in Subsection 2.3, we can show that p∗ = x∗π∗, where x∗ is a point of Sh(Y )
and π∗ is the pullback part of the geometric morphism

Sh(Y ) P̄ns(Z)-Set

π!

π∗

π∗
. (40)

So the topos points of P̄ns(Z)-Set are exactly the topos points of Sh(Y ) modulo some 
equivalence relation. But the commutative diagram

Sh(Y ) Sh(X)

P̄ns(Z)-Set P̄ns(Z)-Set

(41)

induces a commutative diagram between the spaces of points
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Ŷ X̂

Pts(P̄ns(Z)-Set) Pts(Mns
2 (Z)-Set)

, (42)

where Ŷ and X̂ are the sobrifications of Y resp. X. So if two points y1, y2 ∈ Ŷ are 
equivalent, then there is some g ∈ GL2(Q) such that y2 = y1g. Conversely, it is easy to 
see that if y2 = y1g, then y1 and y2 define the same point of P̄ns(Z)-Set.

Recall that the action of GL2(Q) on X̂ was defined using the identification

X̂ = GL2(Ẑ)\M2(Ẑ). (43)

Under this identification we find

Ŷ =
{(

z 0
0 1

)
: z ∈ Ẑ×\Ẑ

}
⊂ X̂. (44)

To determine the points of P̄ns(Z)-Set, we have to quotient out the action of GL2(Q). 
We then get the following theorem.

Theorem 13. The topos points of P̄ns(Z)-Set are given by

Ẑ×\Ẑ/N×
+ = Ẑ×\Af/Q

×.

In particular, by [10] they agree with the topos points of N×
+ -Set, the underlying topos 

for the Arithmetic Site of [3].

The embedding Y ⊂ X allows us to associate a zeta function to P̄ns(Z)-Set, namely

ζP̄(s) =
∑
a∈Y

det(a)−s. (45)

Clearly ζP̄(s) is the Riemann zeta function ζ(s).
Now we show that P̄ns(Z)-Set has only two topos automorphisms. We first determine 

the outer automorphisms of P̄ns(Z).

Proposition 14. The outer automorphism group of P̄ns(Z) is isomorphic to Z/2Z.

Proof. The nonzero integers will be considered as a submonoid, where n ∈ Z, n �= 0, 

corresponds to the matrix 
(
n 0
0 1

)
. The nonzero integers generate P̄ns(Z), together with 

the matrix t ∈
(

1 1
0 1

)
and its inverse. Every element has a unique representation in 

the form tba, with a, b ∈ Z, a �= 0. Moreover, nt = tnn. In is now easy to see that, if α
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is an automorphism of P̄ns(Z), then α(n) = tk(n)n, for some k(n) ∈ Z depending on n. 
Because α(n) and α(2) commute, we find

k(n) = (n− 1)k(2). (46)

This implies α(n) = t−k(2)ntk(2), so up to an inner automorphism we can assume that 
α(n) = n for all n ∈ Z, n �= 0. It is now clear that either

α(tkn) = tkn (47)

or

α(tkn) = t−kn. � (48)

Corollary 15. The group of topos automorphisms of P̄ns(Z)-Set (up to natural isomor-
phism) is isomorphic to Z/2Z.

Proof. By Corollary 10, we need to show that any topos automorphism Θ of P̄ns(Z)-Set
satisfies GΘ � G, where G is the forgetful functor. The proof of this fact is completely 
analogous to the proof of Lemma 11. �
3. Relation to Conway’s big picture

Conway’s big picture (introduced in [6]) is the graph with vertex set Q+ ×Q/Z and 
edges defined by a hyper-distance δ.

We use the notations from [11]: the big picture is denoted by P, and for each X =
(M, gh ) ∈ Q+ ×Q/Z we consider the matrices

αX =
(
M g

h
0 1

)
∈ Γ\GL+

2 (Q) (49)

where Γ = PSL2(Z) is the modular group and GL+
2 (Q) the subgroup of GL2(Q) con-

sisting of the matrices with positive determinant. The hyper-distance δ is then given 
by

δ(X,Y ) = det(αXY αXα−1
Y ) (50)

with αXY the smallest rational number such that αXY αXα−1
Y ∈ M+

2 (Z); further, there 
is an edge between X and Y whenever δ(X, Y ) is a prime number (see [11, p. 7] for all 
this).

We claim that we can embed P as a full subgraph of GL2(Z)\ Mns
2 (Z). The embedding 

is given on vertices by

Q+ ×Q/Z, (M, g
h ) = X 
→

(
MN g

hN
0 N

)
= βX (51)
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where N ∈ N+ is minimal such that ghN ∈ Z. We can assume 0 ≤ g
h < 1 and then βX

is in Hermite normal form so the mapping is injective. Further, the greatest common 
divisor of the entries of βX is 1 (i.e. the entries are coprime) and conversely every a ∈
GL2(Z)\ Mns

2 (Z) with this property can be written as a = βX for some X ∈ Q+ ×Q/Z. 
In the notations of Section 2,

P = {a ∈ GL2(Z)\Mns
2 (Z) : λp(a) = 0 for all primes p} (52)

where λp(a) is the level of a at prime p.
In the following proposition, we will see that the poset structure on P as a subset of 

GL2(Z)\ Mns
2 (Z) is the same as the poset structure on the big picture as introduced in 

[11, Definition 1], i.e. the one given by

X ≤ Y iff δ(1, Y ) = δ(X,Y )δ(1, X). (53)

A fortiori, the edges of the underlying graphs are the same.

Proposition 16. Consider the hyper-distance δ̃ on GL2(Z)\ Mns
2 (Z) given by

δ̃(a, b) = det(a′) det(b′)

where x = a ∧ b and a = a′x, b = b′x. Then:

1. log δ̃(a, b) is the weighted distance between a and b where an edge x → y with det(y) =
p det(x) has weight log(p);

2. δ̃(x, y) = δ(x, y) for x, y ∈ P;
3. the poset structure on P as a subset of GL2(Z)\ Mns

2 (Z) agrees with the poset struc-
ture from (53) above [11, Definition 1];

4. the big picture P is a fundamental domain for the monoid action of N×
+ on 

GL2(Z)\ Mns
2 (Z) by scalar multiplication.

Proof. 1. We denote the weighted distance between a and b by d(a, b). Note that

d(a, b) =
∑
p

dp(ap, bp)

where ap and bp are the projections on GL2(Zp)\ Mns
2 (Zp) of a resp. b, and dp is 

the weighted distance function in GL2(Zp)\ Mns
2 (Zp), where every edge has weight 

log(p). As a weighted graph, GL2(Zp)\ Mns
2 (Zp) can be identified with

Xp = {a ∈ GL2(Z)\Mns
2 (Z) : aq = 1 for all q �= p}.

It follows from the above that it is enough to prove the statement for a, b ∈ Xp. First 
assume that x = a ∧ b = 1, a �= 1 and b �= 1. We claim that then a, b ∈ P, i.e. p � a
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and p � b. Indeed, suppose p | a. Any divisor y ≤ b with det(y) = p then also divides 
a. This shows b = 1, a contradiction. So p � a and analogously p � b. Take a path of 
minimal length from a to b. We can assume that this path does not leave P, so it 
is of length det(a) det(b). Now suppose that x = a ∧ b �= 1. Again we take a path of 
minimal length from a to b and we can assume that this path does not leave

↑ x = {a ∈ Xp : a ≥ x}.

Multiplication by x−1 on the right is an isometry from ↑ x to Xp, and replaces a by 
a′, b by b′ and x by 1. From the previous case we find

d(a, b) = d(a′, b′) = det(a′) det(b′).

2. This follows directly from (1).
3. It is enough to show that

a ≤ b iff δ̃(1, b) = δ̃(a, b)δ̃(1, a).

This easily follows from (1), for example by induction on the number of prime divisors 
of δ̃(x, y) (counted with multiplicity).

4. This is clear from the description of P as consisting of the matrices for which the 
entries are coprime. �

From now on, we use the notation M = GL2(Z)\ Mns
2 (Z). We can associate to it the 

zeta function

ζM(s) =
∑
x∈M

det(x)−s. (54)

It is proved in [19] that

ζM(s) = ζ(s)ζ(s− 1). (55)

Note that this is the same as the Hasse-Weil zeta function for P 1
Z.

Remark 17. Saito in [19] considers GLn(R)\ Mns
n (R) for n a natural number and R a 

principal ideal domain, and shows that the zeta function is equal to

ζR(s)ζR(s− 1) · · · ζR(s− n + 1). (56)

(Saito uses the notation PM(n,R)×,deg(exp(−s)) for this zeta function.) In our case, it 
follows directly from the Hermite normal form that the number of elements in M with 
determinant n is given by σ(n), so
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ζM(s) =
∑
n

σ(n)n−s = ζ(s)ζ(s− 1). (57)

So following Saito’s approach is not necessary in this easy case. Also, the zeta function 
ζ(s)ζ(s − 1) for Mns

2 (Z) already appeared implicitly in the work of Connes and Marcolli 
(see e.g. [5]), when they show that it is the partition function of their GL2-system.

Proposition 18. Consider the big picture P as a subgraph of M. Then its zeta function 
is given by

ζP(s) =
∑
x∈P

det(x)−s = ζ(s)ζ(s− 1)
ζ(2s) .

Proof. In Proposition 16 we proved that P is a fundamental domain for the action of 
N×

+ on M. So M can be written as a disjoint union

M = �
n∈N+

n ·P (58)

The zeta function for n ·P is given by n−2s · ζP(s), so we get

ζM(s) =
∑

n∈N+

n−2s · ζP(s) = ζ(2s)ζP(s). (59)

The statement then follows from ζM(s) = ζ(s)ζ(s − 1). �
Remark 19. We can also write the zeta function for P as

ζP(s) =
∑

X∈Q+×Q/Z

det(βX), (60)

with βX as in (51). The analogous definition

ξP(s) =
∑

X∈Q+×Q/Z

det(αX) (61)

with αX as in (49) is not well-defined, because for a fixed n there are infinitely many 
X ∈ Q+ ×Q/Z with det(αX) = n.

4. Applications

In Section 2, we proved that the set of points for Mns
2 (Z)-Set is given by

GL2(Z)\M2(Af )/GL2(Q) (62)
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and that, additionally, this double quotient classifies abelian groups Z2 ⊆ A ⊆ Q2 up to 
isomorphism. Here Af = (

∏
p Zp) ⊗Q denotes the finite adèles.

In this section we discuss some applications, with as underlying goal to determine to 
what extent this description is suitable for calculations.

4.1. Relation to Ext1(Q, Z)

The Ext-group Ext1(Q, Z) can be written as

Ext1(Q,Z) ∼= Af/Q. (63)

For a proof using the long exact sequence we refer to Boardman’s note [2]. We also refer 
to [16] (and the blogpost [12]) where an analogon for the full ring of adeles is discussed. 
In this subsection we provide an alternative proof of (63) using Theorem 5. From this 
approach we automatically get a criterion describing when two extension of Q by Z are 
isomorphic as abelian groups (equivalent extensions are always isomorphic as abelian 
groups, but the converse does not hold).

We saw in the proof of Theorem 5 that for every subgroup Z2 ⊆ A ⊆ Q2 there is an 
x ∈ GL2(Ẑ)\ M2(Ẑ) such that

Ax = lim−−→
m≤x

Z2 (64)

where the filtered colimit is over the m ≤ x with m ∈ GL2(Z)\ Mns
2 (Z) and where a 

transition map Z2 → Z2 corresponding to m ≤ m′ is given by a, with a the matrix such 
that m′ = am (we assume that m, m′ are in Hermite normal form, in order to fix a 
matrix representative). Alternatively,

Ax = {(u, v) ∈ Q2 : x · (u, v) ∈ Ẑ2} (65)

where (u, v) is seen as a column vector in A2
f on which x acts by matrix multiplication.

We will focus on the subgroups Ax such that the sequence

0 Z Ax Q 0

n (n, 0)

(u, v) v

(66)

is exact. In other words, we consider the subgroups Z2 ⊆ Ax ⊆ Q2 with the properties

(E1) (u, 0) ∈ Ax implies that u ∈ Z; and
(E2) for all v ∈ Q there is an u ∈ Q with (u, v) ∈ Ax.
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By definition Ax then determines an element [Ax] ∈ Ext1(Q, Z) and it is easy to see 
that, conversely, every element of Ext1(Q, Z) is the class of some Ax.

We now describe the elements x ∈ GL2(Ẑ)\ M2(Ẑ) such that Ax satisfies (E1) and 
(E2). First we introduce the supernatural numbers as subset of the profinite integers.

Definition 20. A supernatural number (or Steinitz number) is a profinite integer s ∈ Ẑ

such that for each prime p its projection on Zp (i.e. the pth component) is either 0
or a power of p. The supernatural numbers will be denoted by S. They are a set of 
representatives for Ẑ×\Ẑ.

With p∞ we denote the supernatural number such that the pth component is 0 and 
such that the qth component is 1 for each q �= p.

For each natural number n ∈ N we define s(n) to be the supernatural number such 
that for each prime p its projection on Zp is pk, where pk is the largest pth power dividing 
n.

Note that s(0) = 0 =
∏

p p
∞ and s(1) = 1, but these are the only n ∈ N for which 

s(n) = n. Our definition of the supernatural numbers agrees with the usual definition, 
apart from the fact that the supernatural numbers are usually defined abstractly as a 
monoid under multiplication (not as a subset of the profinite integers).

The supernatural numbers S come into the picture when considering the Hermite 
normal form for x ∈ GL2(Ẑ)\ M2(Ẑ). It is given by

x =
(
s z
0 s′

)
(67)

with s, s′ ∈ S and z ∈ Ẑ. Note that two matrices in Hermite normal form might describe 
the same element of GL2(Ẑ)\ M2(Ẑ), for example

(
0 1
0 0

)
and

(
0 0
0 1

)
. (68)

So what are the matrices

x =
(
s z
0 s′

)
such that Ax satisfies (E1) and (E2)? First we use that (u, 0) ∈ Ax if and only if

(
s z
0 s′

)(
u
0

)
=

(
su
0

)
∈ Ẑ2, (69)

which is the case if and only if su ∈ Ẑ. If p | s then ( 1
p , 0) ∈ Ax, so it follows that Ax

satisfies (E1) if and only if s = 1. More generally, (u, v) ∈ Ax if and only if
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(
s z
0 s′

)(
u
v

)
=

(
su + zv

s′v

)
∈ Ẑ2. (70)

Now it is easy to see that (E1) and (E2) hold if and only if s = 1 and s′ = 0. So the 
matrices under consideration are of the form

x =
(

1 z
0 0

)
.

As a group under multiplication, they can be identified with the additive group of profi-
nite integers Ẑ. Further, suppose that

x =
(

1 z
0 0

)
and x′ =

(
1 z′

0 0

)
(71)

determine an equivalent extension (i.e. the same element in Ext1(Q, Z)). Then Ax′ =
g ·Ax for some g ∈ GL2(Q) that preserves both the inclusion of Z and the projection on 
Q. We write

g =
(
a b
c d

)
.

Then g preserves Z if and only if(
a b
c d

)(
1
0

)
=

(
1
0

)
, (72)

in other words, if and only if a = 1 and c = 0. Moreover, g preserves the projection on 
Q if and only if

(0 1)
(
a b
c d

)
= (0 1) , (73)

in other words, if and only if c = 0 and d = 1. So g is of the form

g =
(

1 b
0 1

)
and we get (

1 z′

0 0

)
=

(
1 z
0 0

)(
1 −b
0 1

)
=

(
1 z − b
0 0

)
(74)

(note that g ·Ax = Axg−1). This shows

Ext1(Q,Z) = Ẑ/Z = Af/Q. (75)
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Even if Ax and Ax′ define non-equivalent extensions, it is still possible that they are 
isomorphic as abelian groups. Any isomorphism Ax

∼= Ax′ is given by conjugation by an 
element of GL2(Q). So if

x =
(

1 z
0 0

)
and x′ =

(
1 z′

0 0

)

then there is a matrix g =
(
a b
c d

)
∈ GL2(Q) such that

(
1 z
0 0

)(
a b
c d

)
=

(
a + cz b + dz

0 0

)
and

(
1 z′

0 0

)
(76)

define the same element in GL2(Ẑ)\ M2(Af ). This is the case if and only if

a + cz ∈ Ẑ× and z′ = b + dz

a + cz
. (77)

Proposition 21. Consider the partially defined right action of PGL2(Q) on

Ext1(Q,Z) = Af/Q

given by

z ·
(
a b
c d

)
= b + dz

a + cz

whenever a + cz ∈ A×
f . Then two extensions A, A′ ∈ Ext1(Q, Z) are isomorphic as 

abelian groups if and only if they are in the same PGL2(Q)-orbit.

Proof. This follows from the above discussion. Note that for a + cz ∈ A×
f we can assume 

that a + cz ∈ Ẑ×, because 
(
a b
c d

)
is only defined up to a scalar. �

4.2. Computations

We now try to determine whether some extensions in

Ext1(Q,Z) = Af/Q

are isomorphic as abelian groups. This will reveal some advantages and limitations of 
the description from Proposition 21.

Recall from Definition 20 the constuction of supernatural numbers as subset of Ẑ, 
and the specific supernatural numbers s(n) with pth component given by the largest pth 
power dividing n.
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We first consider the set

N = {s(n) : n ∈ N} ⊆ Af/Q = Ext1(Q,Z); (78)

when do s(n) and s(m) define isomorphic abelian groups? In other words, when can we 
find some (

a b
c d

)
∈ PGL2(Q) such that s(m) = b + d s(n)

a + c s(n) ? (79)

In the following, we use the notation s(m) ∼ s(n) when the above holds.

Proposition 22.

1. if s(n) ∼ s(0) then n ∈ {0, 1};
2. if s(n) ∼ s(m) for n, m /∈ {0, 1}, then n and m have the same prime divisors;
3. s(pk) ∼ s(pu) for all primes p and integers k, u ≥ 1;
4. s(pkqr) ∼ s(puqv) for all primes p, q and integers k, r, u, v ≥ 1.

Proof. 1. Note that s(0) = 0, so if s(n) ∼ s(0) then s(n) ∈ Q. It is clear that n = 0, 1
are possible. Conversely, if n �= 0 then the pth component of s(n) is 1 for almost all 
primes p. Together with s(n) ∈ Q this shows s(n) = 1, so n = 1.

2. Suppose that s(n) ∼ s(m), more precisely

s(m) = b + d s(n)
a + c s(n) .

Then a s(m) + c s(nm) = b + d s(n). Note that for almost all primes p, the pth 
components of both s(n) and s(m) are 1. By looking at such a component we see 
that a + c = b + d and by rescaling we can assume a + c = 1 = b + d. Now suppose 
that there is a prime q such that the qth components of s(n) and s(m) are 1 resp. 
qv. Then qv = aqv + cqv = b + d = 1.

3. Note that s(pu) = pk−pu

pk−1 + pu−1
pk−1 s(pk); this can be checked componentwise.

4. It is enough to show that there is a solution to the system of equations⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
b + d = 1
a + c = 1
b + dpk = apu + cpk+u

b + dqr = aqv + cqr+v

.

Then s(puqv) = b+d s(pkqr)
a+c s(pkqr) and moreover a + c s(pkqr) ∈ A×

f (indeed, if the pth 

component of a + c s(pkqr) would be zero, then a + cpk = 0 = b + dpk; together with 
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a + c = 1 = b + d we find (a, c) = (b, d) but this contradicts b + dqr = aqv + cqr+v). 
The system of equations has a solution because

∣∣∣∣∣∣∣∣∣
1 1 0 0
0 0 1 1
1 pk pu pk+u

1 qr qv qr+v

∣∣∣∣∣∣∣∣∣ = (pk − 1)(qr − 1)(pu − qv) �= 0. �

For more general extensions, the situation becomes a lot more complicated. Recall 
that the Goormaghtigh conjecture2 states that the only natural number solutions to

xn − 1
x− 1 = ym − 1

y − 1 (80)

are (x, y, n, m) = (2, 5, 5, 3) and (x, y, n, m) = (2, 90, 13, 2). The conjecture is still open 
at the time of writing.

Proposition 23 (Relation to Goormaghtigh conjecture). We have

s(24 · 52)l∞ ∼ s(25 · 53)l∞

for all primes l. Any other solution (p, q, l, k, r), p ≤ q of

s(pkqr)l∞ ∼ s(pk+1qr+1)l∞

gives a counterexample to Goormaghtigh conjecture.

Proof. We can check componentwise that

30 s(24 · 52)l∞

31 − s(24 · 52)l∞ = s(25 · 53). (81)

Further, if

b + d s(pkqr)l∞

a + c s(pkqr)l∞ = s(pk+1qr+1)l∞, (82)

then we can assume b + d = 1 = a + c like in the proof of (2), and by looking at the 
components we get

2 Named after the Belgian engineer/mathematician René Goormaghtigh.
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⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

b + d = 1
a + c = 1
b + dpk = apk+1 + cp2k+1

b + dqr = aqr+1 + cq2r+1

b = 0

. (83)

From this we find ⎧⎪⎪⎨⎪⎪⎩
1 = a + c

1 = ap + cpk+1

1 = aq + cqk+1

(84)

so

a = −pk+1−1
p−1 c = − qr+1−1

q−1 c (85)

but this means that (p, q, k + 1, r + 1) is a counterexample to Goormaghtigh conjecture, 
except when pk+1 = 25 and qr+1 = 53. �
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