期刊论文详细信息
JOURNAL OF NUMBER THEORY 卷:231
On some applications of GCD sums to arithmetic combinatorics
Article
Shkredov, Ilya D.1 
[1] Steklov Math Inst, Ul Gubkina 8, Moscow 119991, Russia
关键词: GCD sums;    Arithmetic combinatorics;    Sum-product;   
DOI  :  10.1016/j.jnt.2021.05.011
来源: Elsevier
PDF
【 摘 要 】

Using GCD sums, we show that the set of the primes has small common multiplicative energy with an arbitrary exponentially large integer set S. This implies that if S is a set of small multiplicative doubling then the size of any arithmetic progression in S, beginning at zero, is at most O(log vertical bar S vertical bar . log log vertical bar S vertical bar). This result can be considered as an integer analogue of Vinogradov's question about the least quadratic non-residue. The proof rests on a certain repulsion property of the function f(x) = log x. Also, we consider the case of general k-convex functions f and obtain a new incidence result for collections of the curves y = f (x) + c. (C) 2021 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jnt_2021_05_011.pdf 1233KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次