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On some applications of GCD sums to Arithmetic
Combinatorics

Ilya D. Shkredov∗

Abstract

Using GCD sums, we show that the set of the primes has small common multiplicative
energy with an arbitrary exponentially large integer set S. This implies that if S is a set of
small multiplicative doubling then the size of any arithmetic progression in S, beginning at
zero, is at most O(log |S| · log log |S|). This result can be considered as an integer analogue
of Vinogradov’s question about the least quadratic non–residue. The proof rests on a certain
repulsion property of the function f(x) = log x. Also, we consider the case of general k–convex
functions f and obtain a new incidence result for collections of the curves y = f(x) + c.

1 Introduction

Having a ring R with two operations + and · one can define the sumset of sets A,B ⊆ R as

A+B = {a+ b : a ∈ A, b ∈ B}

and, similarly, the product set

AB = {a · b : a ∈ A, b ∈ B} .

The sum–product phenomenon (see, e.g., [21]) predicts that additive and multiplicative structure
cannot coexist up to some natural algebraic constraints. This can be expressed in many different
ways see, e.g., [6] and in our paper we consider just one of them. Let us formulate a particular
case of the main result, which is contained in Theorem 12 from section 3.

Theorem 1 Let S ⊂ Z be a finite set, l be an integer number, and let P(l) be the set of primes
in the segment {1, . . . , l}. Then the condition

log |S| = o

(
l

log l

)
(1)

implies
|{(p, p′, s, s′) ∈ P(l) × P(l) × S × S : ps = p′s′}| = o(|P(l)|2|S|) . (2)
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In particular, if |SS| � |S|, then size of any arithmetic progression A with the beginning at zero
in S does not exceed

|A| � log |S| · log log |S| . (3)

The result above can be considered as an integer analogue of Vinogradov’s question about
the least quadratic non–residue. Namely, having a number p one can take the subgroup of squares
R ⊆ Z/pZ with the product set RR equals R and ask the question about the maximal length of
the arithmetic progression with the beginning at zero, belonging to R. The size of this arithmetic
progression is usually denoted as np and it is known see [14] that under the Generalized Riemann
Hypothesis (a weaker unconditional result can be found in [9]) there are infinitely many primes
such that

np � log p · log log p .

On the other hand, the Generalized Riemann Hypothesis implies [2] that np = O(log2 p) (the

best unconditional bound belongs to Burgess [8] who proved np � p
1

4
√
e
+o(1)). Thus in the integer

case our Theorem 1 gives upper bound (3) of a comparable quality. The author does not know
the right answer to the integer variant of this problem (the obvious lower bound is |A| � log |S|).

Another result of ours is Theorem 9 from section 3.

Theorem 2 Let A,S ⊂ Z be finite sets and 0 � α < 1/6 be any number. Suppose that |A+A| �
K|A| with

K � exp(logα |A|) (4)

and

|S| � exp

(
log2−6α |A|
log log |A|

)
. (5)

Then for an absolute constant C > 0 and a certain a ∈ A one has

|(A− a)S| � |S| · exp(C log1−3α |A|) . (6)

In particular, |(A−A)S| � |S| · exp(C log1−3α |A|) .

The result above can be considered as the first step towards the main conjecture from [3]
where authors do not assume that the additional condition (4) takes place (also, see papers [11],
[12] in this direction).

The method of the proofs of Theorems 1, 2 uses so–called GCD sums (see, e.g., [1], [5],
[4], [13]), which are connected with a series of questions of the Uniform Distribution, as well as
Number Theory in particular, with large values of the zeta function. In our paper we follow the
beautiful exposition of random zeta functions approach from [13]. Thus our method extensively
uses the arithmetic of the integers. It is interesting to obtain some analogues of Theorems 1, 2
for subsets of R or C.

If one takes the function f(x) = log x, then Theorem 2 can be considered as a repulsion
result concerning the logarithmic function. Namely, estimate (6) says that |f(A−a)+logS| must
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be significantly larger than |S| for rather big sets S as in (5). The first results in the direction
were obtained in [10] for general k–convex functions (that is having strictly monotone the first
k derivatives). Recall [10, Theorem 1.4] (also, see very recent paper [7]).

Theorem 3 Let A be a finite set of real numbers contained in an interval I and let f be a function
which is k–convex on I for some k ≥ 1. Suppose that |A| > 10k. Then if |A + A − A| ≤ K|A|,
then we have ∣∣∣2kf(A)− (2k − 1)f(A)

∣∣∣ ≥ |A|k+1

(CK)2k+1−k−2(log |A|)2k+2−k−4

for some absolute constant C > 0.

In this direction we obtain a result on common energy of an arbitrary set S and the image
of a k–convex function (the required definitions can be found in section 2). Of course general
Theorem 4 below gives weaker bounds than Theorem 1 in the particular case f(x) = log x.

Theorem 4 Let f be a function which is k–convex on a set I for some k ≥ 1. Suppose that
|I + I − I| � |I|1+κ. Then for any finite set S ⊂ R with |I| � |S|ε, ε � 1/k, κ � exp(−1/(cε))
there is δ(ε) > 0 such that

E+(f(I), S) � |I|2|S|1−δ(ε) . (7)

In particular, |f(I) + S| � |S|1+δ(ε).

The method of the proofs of Theorems 3 and 4 are combinatorial and do not use such
delicate tools as GCD sums. On the other hand, our Theorem 4 takes place for the real numbers
and for rather general functions f . Further, using the Plünnecke inequality (see estimate (11)
below) one can show that to have growth as in (6) under the assumptions as in (4) Theorem 3
requires the condition

|S| � exp(O(log |A| · log log |A|)) (8)

and our restriction (5) is wider. Theorem 12, as well as Proposition 11 below require much weaker
restrictions on |S| but provide a smaller growth.

Finally, recall the main result from [19], which can be considered as a quantitative version
of some results from [6].

Theorem 5 Let p be a prime number, A,B,C ⊆ Fp be arbitrary sets, and k ≥ 1 be such that

|A||B|1+
(k+1)
2(k+4)

2−k

≤ p and

|B|
k
8
+ 1

2(k+4) ≥ |A| · C(k+4)/4
∗ logk(|A||B|) ,

where C∗ > 0 is an absolute constant. Then

max{|AB|, |A+ C|} ≥ 2−3|A| ·min
{
|C|, |B|

1
2(k+4)

2−k
}

,

and for any α 	= 0

max{|AB|, |(A+ α)C|} ≥ 2−3|A| ·min
{
|C|, |B|

1
2(k+4)

2−k
}

.
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The result above takes the form in R as well. In this case we do not need any conditions
containing the characteristic p. The main difference between Theorems 2, 4 and Theorem 5 is
that A is large and B is small in Theorem 5 but the opposite situation takes place in Theorem
4 (here |A| = |I| = |f(I)|) and similar in Theorem 2.

The author thanks Christoph Aistleitner and Sergei Konyagin for useful discussions. Also,
we are grateful to the reviewer for valuable suggestions and remarks.

2 Definitions and preliminaries

Let G be an abelian group. Put E+(A,B) for the common additive energy of two sets A,B ⊆ G
(see, e.g., [21]), that is,

E+(A,B) = |{(a1, a2, b1, b2) ∈ A×A×B ×B : a1 + b1 = a2 + b2}| .

If A = B, then we simply write E+(A) instead of E+(A,A) and the quantity E+(A) is called the
additive energy in this case. Sometimes we write E+(f1, f2, f3, f4) for the additive energy of four
real functions, namely,

E+(f1, f2, f3, f4) =
∑
x,y,z

f1(x)f2(y)f3(x+ z)f4(y + z) .

Thus E+(f1, f2, f3, f4) pertains to additive quadruples, weighted by the values of f1, f2, f3, f4. It
can be shown using the Hölder inequality (see, e.g., [21]) that

E+(f1, f2, f3, f4) � (E+(f1)E
+(f1)E

+(f1)E
+(f1))

1/4 . (9)

More generally, we deal with a higher energy

T+
k (A) := |{(a1, . . . , ak, a′1, . . . , a′k) ∈ A2k : a1 + · · ·+ ak = a′1 + · · ·+ a′k}| (10)

and similar T+
k (f) for a general function f . Sometimes we use representation function notations

like rA+B(x) or rA+A−B , which counts the number of ways x ∈ G can be expressed as a sum
a + b or as a sum a + a′ − b with a, a′ ∈ A, b ∈ B, respectively. For example, |A| = rA−A(0)
and E+(A) = rA+A−A−A(0) =

∑
x r

2
A+A(x) =

∑
x r

2
A−A(x). In the same way define the common

multiplicative energy of two sets A,B

E×(A,B) = |{(a1, a2, b1, b2) ∈ A×A×B ×B : a1b1 = a2b2}| ,

further T×
k (A), T

×
k (f) and so on.

If G is an abelian group, then the Plünnecke–Ruzsa inequality (see, e.g., [21]) takes place

|nA−mA| �
(
|A+A|
|A|

)n+m

· |A| , (11)
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and

|nA| �
(
|A+A|
|A|

)n

· |A| . (12)

Now recall our current knowledge about the Polynomial Freiman–Ruzsa Conjecture, see [16],
[17] and [21]. We need a simple consequence of [17, Proposition 2.5, Theorem 2.7]. Recall that if
P1, . . . , Pd ⊂ Z are arithmetic progressions, then Q := P1 + · · · + Pd is a generalized arithmetic
progression (GAP) of dimension d. A generalized arithmetic progression, Q, is called to be proper
if |Q| =

∏d
j=1 |Pj |. For properties of generalized arithmetic progressions consult, e.g., [21].

Theorem 6 Let A ⊂ Z be a finite set, |A+ A| � K|A| and κ > 3 be any constant. Then there
is a proper GAP H of size at most |A| exp(O(logκK)) and dimension O(logκK) such that for a
set of shifts X, |X| � exp(O(logκK)) one has A ⊆ H +X.

All logarithms are to base 2. The signs � and � are the usual Vinogradov symbols. For a
positive integer n, let [n] = {1, . . . , n}.

3 The proof of the main result

Now we obtain Theorem 2 from the introduction. Following the method from [13] we recall some
required definitions.

For each prime p ∈ P take a random variable Xp, which is uniformly distributed on S1 and
let all Xp be independent. For every n ∈ N, n = pω1

1 . . . pωs
s , where pj ∈ P , j ∈ [s] are different

primes put Xn :=
∏s

j=1X
ωj
pj . Then define the random zeta function by the formula (let α be a

real number, α > 1
2 , say)

ζX(α) :=
∑
n∈N

Xn

nα
=

∏
p∈P

(
1− Xp

pα

)−1

. (13)

Using the product formula (13) one can compute the moments of the random zeta function (13),
see [13, Lemma 6] (or just similar calculations in our Lemma 10 below).

Lemma 7 Let l be a positive integer. Then

logE |ζX(α)|2l �

⎧⎪⎨
⎪⎩

l log log l, α = 1 , l � 3

C(α)l1/α(log l)−1, 1/2 < α < 1 , l � 3

l2 log
(

1
2α−1

)
, 1/2 < α , l � 1 ,

where C(α) = α
1−α + α

2α−1 .

Also, for any function g : Z → C consider the following random analogue of its "multiplica-
tive" Fourier transform

ĝ(X) =
∑
n∈N

g(n)Xn . (14)
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Clearly, we have an analogue of the Parseval identity

E|ĝ(X)|2 = ‖g‖22 , (15)

and, moreover, for k � 1 one has
E|ĝ(X)|2k = T×

k (g) . (16)

Further one can compute

E|ĝ(X)ζX(α)|2 =
∑

n1,n2,m1,m2 : n1m1=n2m2

g(m1)g(m2)

(n1n2)α
=

= ζ(2α)
∑

m1,m2

g(m1)g(m2) ·
gcd(m1,m2)

2α

(m1m2)α
(17)

and hence GCD sum (17) can be interpreted as the multiplicative energy (see the definition of
Fourier transform (14)) of our weight g with the random zeta function ζX(α). It is easy to see
(consult estimate (20) below) that it can be converted further to the ordinary multiplicative
energy of the function g and the interval [N ].

We follow the method from [13], [4], [1] to give the proof of Lemma 8 below. Generally
speaking, our bound (19) is close to the optimal one, see [5].

Lemma 8 Let w : Z \ {0} → R
+ be a non–negative function and N be a positive integer. Then

for any positive integer s one has

E×([N ], w) � N‖w‖22 exp
(
C

(√
s−1 log logN · log(T×

s+1(w)‖w‖
−2(s+1)
2 ) + log logN

))
�

(18)

� N‖w‖22 exp
(
C

(√
log logN · log(‖w‖1‖w‖−1

2 ) + log logN

))
, (19)

where C > 0 is an absolute constant.

P r o o f. Let L = logN and α ∈ (1/2, 1). Using the Dirichlet principle, as well as the multiplica-
tive analogue of estimate (9), we find a positive number U � N such that

E×([N ], w) � L2
∑

U<n1,n2�2U,m1,m2 : n1m1=n2m2

w(m1)w(m2) �

� L2U2α
∑

U<n1,n2�2U,m1,m2 : n1m1=n2m2

w(m1)w(m2)

(n1n2)α
.

In terms of the random zeta function (13), we see that the last sum clearly does not exceed

∑
n1,n2,m1,m2 : n1m1=n2m2

w(m1)w(m2)

(n1n2)α
= E|ŵ(X)ζX(α)|2 .
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Thus
E×([N ], w) � L2U2α

E|ŵ(X)ζX(α)|2 (20)

and our task is to estimate the last expectation. Let l � 3 be an integer parameter, which we will
choose later. Also, let Ts+1 = T×

s+1(w). Thanks to identities (15), (16) and the Hölder inequality,
we have

E|ŵ(X)ζX(α)|2 � (E|ŵ(X)|2+2/(l−1))1−1/l · (E|ζX(α)|2l)1/l � (21)

�
(
E|ŵ(X)|2

) s(l−1)−1
sl

(
E|ŵ(X)|2s+2

) 1
sl · E1/l|ζX(α)|2l = ‖w‖22T

1
sl
s+1‖w‖

− 2s+2
sl

2 · (E|ζX(α)|2l)1/l .
(22)

Applying Lemma 7, we get
E|ŵ(X)ζX(α)|2 �

� ‖w‖22 exp
(

1

ls
log(Ts+1‖w‖−2(s+1)

2 ) + min

{
C(α)l1/α

l log l
, O

(
l log

1

2α− 1

)})
. (23)

Put Y = s−1 log(Ts+1‖w‖−2(s+1)
2 ) � 0. First of all, take the second term in the minimum in (23).

In this case we see that the optimal choice of l = �Y 1/2 log−1/2(1/(2α− 1))
. Hence

E|ŵ(X)ζX(α)|2 � ‖w‖22 exp
(
O

(
Y 1/2 log1/2

1

2α− 1

))
.

Now we take α = 1
2 +

1
logN . We can assume that l � 3 because otherwise Y � log logN and the

desired bound (19) follows from (20) and (23). Using U � N , we get in view of (20) that

E×([N ], w) � L2N‖w‖22 exp
(
O

(√
s−1 log logN · log(Ts+1‖w‖−2(s+1)

2 )

))
.

To obtain (19) just notice that Ts+1 � ‖w‖2s1 ‖w‖22. This completes the proof. �

Using lemma above we obtain in particular, Theorem 2 from the introduction.

Theorem 9 Let A,S ⊂ Z be finite sets and 0 � α < 1/6 be any number. Suppose that |A+A| �
K|A| with

K � exp(logα |A|) (24)

and

|S| � exp

(
log2−6α |A|
log log |A|

)
. (25)

Then there are at least exp(O(log1−3α |A|)) elements a ∈ A such that

|(A− a)S| � |S| · exp(O(log1−3α |A|)) . (26)

In addition, if |S + S| � K∗|S|, then (26) takes place provided

K∗ log |S| � exp

(
log2−6α |A|
log log |A|

)
. (27)
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P r o o f. Using Theorem 6 we find a proper GAP H of size at most |A| exp(O(logκK)) and
dimension d = O(logκK) such that for a set of shifts X, |X| � exp(O(logκK)) one has A ⊆
H +X. Here κ > 3 is any number. We have H = P1 + · · ·+ Pd, where the sum is direct and all
Pj are arithmetic progressions. Without loss of generality we can assume that for P = P1 one
has |P | � |H|1/d. Also, there is x ∈ X such that |A ∩ (H + x)| � |A|/|X| and hence

|A| · exp(−O(logκK)) � |A|/|X| � |A ∩ (H + x)| �
∑

y∈P2+···+Pd

|A ∩ (P + y + x)| .

Thus there exists y ∈ P2 + · · ·+ Pd + x such that

|P | · exp(−O(logκK)) � |P ||A|/|H| · exp(−O(logκK)) =

= |A| · exp(−O(logκK))(|P2| . . . |Pd|)−1 � |A ∩ (P + y)| . (28)

For any a ∈ A∩ (P +y), we have D∗ := A∩ (P +y)−a ⊆ (A−A)∩ (P −P ). Applying Lemma 8,
the lower bound |P | � |H|1/d and using the Holder inequality several times, as well as estimate
(28), we obtain

|D∗S| � |D∗|2|S|2
E×(P − P, S)

� |A ∩ (P + y)|2|S|2
E×(P, S)

�

� |S||P | · exp(−O(logκK +
√

log log |P | · log |S| − log log |P |)) � (29)

� |S| · exp
(
O

(
log |A|
logκK

− logκK −
√
log log |A| · log |S|

))
.

Here we have ignored the term log log |P | from (29) because |S| � log |A| � log |P |. Indeed, if
|S| � log |A|, then inequality (26) is trivial. Thanks to our conditions (24), (25), we obtain

|D∗S| � |S| · exp
(
O

(
log |A|
logκK

−
√
log log |A| · log |S|

))
� |S| · exp

(
O

(
log |A|
logκK

))
� (30)

� |S| · exp(O(log1−3α |A|)) (31)

as required. In a similar way, we have the following lower bound for and number of a ∈ A∩(P+y),
namely,

|A∩(P+y)| � |P |·exp(−O(logκK)) � |H|1/d·exp(−O(logκK)) � exp

(
−O

(
log |A|
logκK

+ logκK

))

� exp(O(log1−3α |A|)) .

Now to obtain (27) just repeat the previous calculations and use Lemma 8 with the param-
eter s = 1. By Solymosi’s result [20] we know that E×(S) � |S+S|2 log |S| � K2

∗ |S|2 log |S| and
we arrive to an analogue of (30), (31)

|D∗S| � |S| · exp
(
O

(
log |A|
logκK

−
√
log log |A| · log(K2

∗ log |S|)
))

.

This completes the proof. �
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Now consider another zeta function, which allows to make calculations above better and
even simpler. Let α > 0 be a real number and z be a positive integer. Then

ZX(α) :=
∏

z�p<2z

(
1 +

Xp

pα

)
. (32)

Denote by Pz the set of all primes in [z, 2z) and let g be any non–negative function. Since the
support of ZX(α) coincides with all possible products of primes from Pz and 1, we see that the
function ZX(α) can be used to calculate the common energy of the set Pz with any function g,
namely,

E×(g,Pz) < 4αz2α · E|ĝ(X)ZX(α)|2 . (33)

Thus to compute E×(g,Pz) we need to estimate all moments of the function ZX(α) similar to
Lemma 7.

Lemma 10 Let α > 0 be any real number, l be a positive integer and l � zα. Then

logE|ZX(α)|2l � l2z1−2α

log z
.

P r o o f. In view of the fact that all the variables Xp, p ∈ Pz are independent, we have

E|ZX(α)|2l =
∏

z�p<2z

E

(
1 +

Xp

pα

)l (
1 +

Xp

pα

)l

:=
∏

z�p<2z

El(p) ,

and

El(p) =
1

2π

∫ 2π

0

(
1 +

eiθ

pα

)l (
1 +

e−iθ

pα

)l

dθ =

l∑
n=0

(
l

n

)2 1

p2αn
.

Using the condition l � zα, we obtain logEl(p) � 2l2/p2α. Hence

logE|ZX(α)|2l � 2l2
∑

z�p<2z

p−2α � l2z1−2α

log z
.

This completes the proof. �

Now we formulate an analogue of Lemma 8 allowing to calculate the common energy of the
set Pz with a general weight w.

Proposition 11 Let w : Z \ {0} → R
+ be a non–negative function and s, z be positive integers.

Suppose that
log(T×

s+1(w)‖w‖
−2(s+1)
2 ) � sz

log z
. (34)

Then for any α > 0 the following holds

E×(Pz, w) � z2α‖w‖22 exp
(
Cz1/2−α

√
s−1 log−1 z · log(T×

s+1(w)‖w‖
−2(s+1)
2 )

)
. (35)
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In particular, for any ε > 0 and z > 1/ε one has

E×(Pz, w) � (εz)2‖w‖22 exp
(
Cε−1z−1/2

√
s−1 log−1 z · log(T×

s+1(w)‖w‖
−2(s+1)
2 )

)
. (36)

P r o o f. Let X = s−1 log(T×
s+1(w)‖w‖

−2(s+1)
2 ). Choose l = (X log z/z)1/2zα. Thanks to our

assumption (34), we have l � zα. Using Lemma 10 as in lines (21)—(23), combining with bound
(33), we get

E×(Pz, w) � z2α‖w‖22 exp
(
1

ls
log(T×

s+1(w)‖w‖
−2(s+1)
2 ) +

lz1−2α

log z

)
�

� z2α‖w‖22 exp
(
Cz1/2−α

√
s−1 log−1 z · log(T×

s+1(w)‖w‖
−2(s+1)
2 )

)
. (37)

Taking α = 1− log(1/ε)
log z , we obtain

E×(Pz, w) � (εz)2‖w‖22 exp
(
Cε−1z−1/2

√
s−1 log−1 z · log(T×

s+1(w)‖w‖
−2(s+1)
2 )

)
(38)

as required. �

Now we derive an upper bound for the common energy of the set of the primes in a segment
and an arbitrary set. It shows that in a sense the primes "repulse" the other sets.

Theorem 12 Let S ⊂ Z be a set, l be an integer number, and P(l) := [l] ∩ P. Then for any
d 	= 0 the conditions

log |S| � εl

log l
, ε � log l

l
(39)

imply
E×(d · P(l), S) � ε|Pl|2|S| . (40)

P r o o f. Take any z � [l/2]. By estimate (35) of Proposition 11, we get for any ε∗ > 0

E×(Pz, S) � (ε∗z)
2|S| exp

(
Cε−1

∗ z−1/2
√
log−1 z · log |S|

)
.

Summing over z > log l√
ε

:= z0 of the form 2j � l/2 and using the prime number theorem, we
obtain

E×(d · P(l), S) � ε2∗l
2|S| exp

(
Cε−1

∗ l−1/2
√
log−1 l · log |S|

)
+

z20 |S|
log2 z0

.

Notice that the second condition from (39) gives us z0 �
√
l log l. Now put ε2∗ = ε

log2 l
. Then

thanks to our assumption (39) and z0 �
√
l log l, we have (40). This completes the proof. �
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Theorem 12 implies Theorem 1 from the introduction. Indeed, in the notation of Theorem 1,
we have A ⊆ S, where A is an arithmetic progression and |SS| � |S|. Take P = P(|A|). Applying
the Cauchy–Schwarz inequality, we derive

|P |2|S|2 � E×(P, S)|PS| � ε|P |2|S||SS| � ε|P |2|S|2

and taking ε to be a sufficiently small constant, we obtain a contradiction. Hence the first
condition from (39) does not hold and we have

log |S| � |A|
log |A|

which implies |A| � log |S| · log log |S| as required.

Of course in Theorem 12 one can consider more general arithmetic progressions as well but
in this case one should control the beginning and the step of such progression, simultaneously.

4 On general k–convex functions

In [10, Theorem 1.3] authors obtained the following growth result for sequences of the form
A = f([N ]), where f is an arbitrary k–convex function.

Theorem 13 Let k � 2 be an integer and let A be a k–convex sequence. Then

|2kA− (2k − 1)A| � |A|k+1

2k2
.

Thus Theorem 3 from the introduction can be considered as a "statistical" version of The-
orem 13. Also, notice that the dependence on k in Theorem 13 is better.

In this section we show how Theorem 3 implies an upper bound for the higher energy of any
k–convex function. Basically, we repeat the combination of the arguments from [15, Theorem 13]
and [18, Theorem 23].

Theorem 14 Let f be a function which is k–convex on a set I for some k ≥ 1. Suppose that
|I + I − I| � |I|1+ε. Then for all l � 2k, ε � log l

l one has

T+
2l
(f(I)) � |I|2l+1−c log l . (41)

for a certain absolute constant c > 0.

P r o o f. Put A = f(I). Let T2j := T+
2j
(A) and T1 = |A|2. Our task is to prove for any j ∈ [l]

that

T2j � T2j−1 |A|2j

Q
, (42)
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where Q = |A|
c log j

j because it clearly implies (41). Suppose not. Put L = O(k log |A|). By the
dyadic Dirichlet principle and the Hölder inequality in the form (9) there is a number Δ > 0 and
a set P = {x ∈ Z : Δ < r2j−1A(x) � 2Δ} such that

L4Δ4E+(P ) � T2j � |A|2jT2j−1

Q
� (Δ|P |)2Δ2|P |

Q
. (43)

Indeed, we can assume that (41) does not hold (otherwise there is nothing to prove) and thus by
our condition j � l � 2k one has

|A|2j−1−1 � Δ � |A|2j−1−c log j

and hence we do indeed have the upper bound (43) with the quantity L. Also, we have used the
trivial bounds

Δ|P | � |A|2j−1
and Δ2|P | � T2j−1 . (44)

Further from (43), we obtain Δ � L−4T2j |A|−3·2j−1 because by (44)

L4Δ|A|3·2j−1 � L4Δ4|P |3 � L4Δ4E+(P ) � T2j

and

E+(P ) � L−4 |P |3
Q

:=
|P |3
Q1

.

Also notice that Δ4E+(P ) � Δ2|P |(Δ|P |)2 � T2j−1(Δ|P |)2 and hence from (43), we get

Δ|P | � |A|2j−1

L2Q1/2
. (45)

Similarly, by (44), we have Δ4E+(P ) � (Δ2|P |)|A|2j−2|P |2 � T2j−1 |A|2j−2|P |2 and thus from
(43), we derive

|P | � |A|
L2Q1/2

. (46)

By the Balog–Szemerédi–Gowers Theorem (see, e.g., [21]), we find P∗ ⊆ P such that |P∗| �
|P |Q−C∗

1 , and |P∗+P∗| � QC∗
1 |P∗|. Here C∗ > 1 is an absolute constant, which may change from

line to line. By the definition of the set P , we have

Δ|P∗| �
∑
x∈P∗

r2j−1A(x) =
∑

x1,...,x2j−1−1
∈A

rP∗−A(x1 + · · ·+ x2j−1−1) .

Hence there is a shift x and a set A∗ ⊆ A ∩ (P∗ − x) such that

|A∗| � Δ|P∗|/|A|2
j−1−1 � |A|(LQ)−C∗ . (47)

Here we have used bound (45). The set A∗ has the form A∗ = f(S), where S ⊆ I is a set of the
same size. Clearly,

|S + S − S| � |I + I − I| � |I|1+ε = |A|1+ε/|A∗| · |S| := K|S| .
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Applying Theorem 3 with a parameter t = t(j) � k, which we will choose later, combining with
inequality (11), we obtain

|A∗|t+1

(CK)2t+1−t−2(log |A∗|)2t+2−t−4
� |2tA∗ − (2t − 1)A∗| � |2tP∗ − (2t − 1)P∗| �

� Q
(2t+1−1)C∗
1 |P∗| . (48)

Thanks to estimate (47), we know that K � (LQ)C∗ |A|ε. By the assumption ε � log l
l and hence

K � (LQ)C∗ (with another constant C∗ of course) by our choice of Q. Using this estimate, as
well as both inequalities from (47), combining with (45) and the lower bound |P∗| � |P |Q−C∗

1 ,
we derive from (48)

Δ|P∗| · |A|t+1−2j−1
Q−C∗2t

1 �
(

Δ|P∗|
|A|2j−1−1

)t+1

� QC∗2t

1 |P∗| .

Hence
Δ|A|t+1−2j−1 � QC∗2t

1

and in view of (43), we get

|A|2j−1−(t+1)QC∗2t

1 |A|3·2j−1 � T2j � |A|2j+1−c log j .

Now take the parameter t as t(j) = log j. It follows that for sufficiently large constant C ′ we get

Q � |A|
log j
C′j . This completes the proof. �

Remark 15 In a very recent paper [7] the authors obtain better bounds (using another and more
direct method) in a result which is parallel to Theorem 14.

Theorem 14 can be used to obtain a series of lower bounds for various combinations of
different sets see, e.g., [10, Corollary 1.5]. We restrict ourself by just one consequence. Much
more stronger results for subsets of Z were obtained in [11], [12].

Corollary 16 Let m be a positive integer, A1, . . . , A2m ⊂ R be sets of the same size |A1|,
|AjAj | � |Aj |, j ∈ [2m]. Then for any non–zero shifts z1, . . . , z2m one has

|(A1 + z1) . . . (A2m + z2m)| � |A1|c logm .

P r o o f. For any z 	= 0 consider the function fz(x) = log(z + ex). Then fz is k–convex for any
k. Also, for I = logA, where A is any of the sets Aj , j ∈ [2m] one has in view of (11) that
|I + I − I| � |I|. Applying Theorem 14 for f = fz, and l = m, we see that T×

2m(A + z) �
|A|2m+1−c logm. Hence by the Hölder inequality

|A1|2
m+1 � |(A1 + z1) . . . (A2m + z2m)| ·

∑
x

r2(A1+z1)...(A2m+z2m )(x) �
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� |(A1+z1) . . . (A2m+z2m)|·

⎛
⎝ 2m∏

j=1

T×
2m(Aj + zj)

⎞
⎠

1/2m

� |(A1+z1) . . . (A2m+z2m)|·|A1|2
m+1−c logm

as required. �

Now we obtain a new incidence result for one–parametric curves.

Theorem 17 Let f be a function which is k–convex on a set I for some k ≥ 1. Suppose that
|I + I − I| � |I|1+κ and κ � log k

k . Then for any finite sets B,C ⊂ R with |I| � |B|ε, ε � 1/k
and κ � exp(−1/(cε)) there is δ(ε) � exp(− exp(O(1/ε))) > 0 such that

|{(i, b, c) ∈ I ×B × C : f(i) + b = c}| �
√

|B||C||I| · |B|−δ(ε) . (49)

P r o o f. Put A = f(I)∪ (−f(I)) and let σ be cardinality of the set on the left–hand side of (49).
Using the Cauchy–Schwarz inequality several times, we obtain for any j

σ2j � |C|2j−1 |B|2j−1−1
∑
x

r2jA(x)rB−B(x) .

Applying the Cauchy–Schwarz inequality one more time, we get

σ2j+1 � |C|2j |B|2j−2E+(B)T2j (A) .

Now suppose that j � 2k. Then by Theorem 14 and the trivial bound E+(B) � |B|3, we obtain

σ2j+1 � |C|2j |B|2j · |B||I|2j+1−c log j .

It gives us

σ �
√

|B||C||I| ·
(

|B|
|I|c log j

)2−(j+1)

By our assumption |I| � |B|ε and hence taking j � exp(1/(cε)), we derive

σ �
√
|B||C||I| · |B|−2−(j+1)

as required. Here δ(ε) ∼ exp(− exp(1/cε)). This completes the proof. �

Notice that Lemma 8 alllows us to estimate the common mulplicative energy of [N ] and
an arbitrary set. It gives an analogue of the incidence bound (49) with f(x) = log x by a single
application of the Cauchy–Schwarz inequality.

The incidence result above implies Theorem 4 from the introduction.

Corollary 18 Let f be a function which is k–convex on a set I for some k ≥ 1. Suppose that
|I + I − I| � |I|1+κ. Then for any finite set B ⊂ R with |I| � |B|ε, ε � 1/k, κ � exp(−1/(cε))
there is δ(ε) > 0 such that

E+(f(I), B) � |I|2|B|1−δ(ε) . (50)

In particular, |f(I) +B| � |B|1+δ(ε).



15

P r o o f. Let τ > 0 be a real number and

Sτ = {s ∈ R : |{(i, b) ∈ I ×B : f(i) + b = s}| � τ} .

Using Theorem 14, we have

τ |Sτ | � |{(i, b, s) ∈ I ×B × Sτ : f(i) + b = s}| �
√

|B||Sτ ||I||B|−δ(ε) .

By summation we obtain (50) and the bound |f(I) + B| � |B|1+δ(ε) follows from the Cauchy–
Schwarz inequality. This completes the proof. �
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