期刊论文详细信息
JOURNAL OF NUMBER THEORY 卷:202
Independence between coefficients of two modular forms
Article
Choi, Dohoon1  Lim, Subong2 
[1] Korea Univ, Dept Math, 145 Anam Ro, Seoul 02841, South Korea
[2] Sungkyunkwan Univ, Dept Math Educ, Seoul 03063, South Korea
关键词: Fourier coefficient;    Modular form;    Galois representation;   
DOI  :  10.1016/j.jnt.2019.01.005
来源: Elsevier
PDF
【 摘 要 】

Let k be an even integer and Sk be the space of cusp forms of weight k on SL2(Z). Let S = circle plus S-k is an element of 2z(k). For f, g is an element of S, we let R(f, g) be the set of ratios of the Fourier coefficients of f and g defined by R(f, g) := {x is an element of P-1 (C) vertical bar x = [a(f)(p) : a(g) (p)] for some prime p}, where a(f)(n) (resp. a(g)(n)) denotes the nth Fourier coefficient of f (resp. g). In this paper, we prove that if f and g are nonzero and R(f, g) is finite, then f = cg for some constant c. This result is extended to the space of weakly holomorphic modular forms on SL2(Z). We apply it to study the number of representations of a positive integer by a quadratic form. (C) 2019 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jnt_2019_01_005.pdf 354KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次