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Let k be an even integer and Sy be the space of cusp forms
of weight k on SLy(Z). Let S = ®kec2zSk. For f,g € S, we
let R(f,g) be the set of ratios of the Fourier coefficients of
f and g defined by R(f,g) = {z € PY(C) | = = [as(p) :
ag(p)] for some prime p}, where as(n) (resp. ag(n)) denotes
the nth Fourier coefficient of f (resp. g). In this paper, we
prove that if f and g are nonzero and R(f,g) is finite, then
f = cg for some constant c. This result is extended to the
space of weakly holomorphic modular forms on SLo(Z). We
apply it to study the number of representations of a positive
integer by a quadratic form.
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1. Introduction

The Fourier coefficients of a modular form play crucial roles in studying the theory

of modular forms. In particular, the g-expansion principle (for example, see [1] or [4])
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shows that a modular form is determined by its Fourier coefficients. A natural question
is to find relations between two modular forms when a connection between their Fourier
coefficients is given. It was proved by Ramakrishnan [3, Appendix] that if f and g are
normalized Hecke eigenforms of the same weight such that for all primes p outside a set

T of density 6(T) < 1x

then there exists a quadratic character y such that

f=9®x.

Here, a¢(n) (resp. ag(n)) denotes the nth Fourier coefficient of f (resp. g). This result
was also known to Blasius and Serre.

Let k be an even integer, and M, ,L be the space of weakly holomorphic modular forms
of weight & on SL2(Z). Let

M = @kegzMé.

Suppose that f and g are weakly holomorphic modular forms in M'. We define a subset
R(f,g) of P'(C) by

R(f,g) = {z € PY(C) | = [as(p) : ay(p)] for some prime p}- (1.1)

This is a set of ratios of the Fourier coefficients of f and g. For example, if a¢(p)? = a,4(p)?

for every prime p, then R(f,g) = {[1 : 1],[1 : —1]}. Therefore, if f and g are Hecke
eigenforms and R(f,g) = {[1 : 1],[1 : —1]}, then f = cg for some constant c. In this vein,
the objective of this paper is to classify f and g in M' such that R(f,g) is a finite set.
Our main result is as follows.

Theorem 1.1. Suppose that f and g are nonzero weakly holomorphic modular forms in
M'. If R(f,q) is a finite set, then f = cg for some constant c.

This applies to study the number of representations of an integer by a quadratic form.
Let Q(x1,...,xq) be a positive definite quadratic form over Z in d variables with level

one. For a positive integer n, let

TQ(n) = |{(xla"'axd) € Zd | Q(wla“wxd) = TL}’

be the number of representations of the integer n by a quadratic form . Note that

o0
1+ rgn)g”
n=1
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is a modular form of weight d/2 on SLy(Z). Here, q denotes e*™**, where z is a complex
number whose imaginary part is positive. Therefore, Theorem 1.1 gives the following

corollary.

Corollary 1.2. Assume that Qi(x1,...,zq4) and Q2(x1,...,24) are positive definite
quadratic forms over Z in d variables with level one. If there is a positive integer n such
that the numbers of representations of n by Q1 and Q2 are different, then the number of
elements of the set

R(Q1,Q2) := {:U ePYC) |z = [rQ, (p) : T, (p)] for some prime p}
is infinite.

The main ingredient of the proof of Theorem 1.1 is the result in [7] on the Galois
representations attached to Hecke eigenforms. This is used to prove that if f and ¢ are
nonzero cusp forms on SLy(Z) and R(f,g) is finite, then f = cg for some constant c.
This is the main part of the proof of Theorem 1.1.

Remark 1.3. In the same way, the result can be extended to harmonic weak Maass forms.
In this case, if f and g are harmonic weak Maass forms whose shadows are cusp forms,
then we need to look at the set

R(f",g") ={2 €PY(C) | 2 = [as+(p) : ag+(p)] for some prime p},

where f* (resp. g7) denotes the holomorphic part of f (resp. g) and as+(n) (resp.
ag+(n)) denotes the nth Fourier coefficient of f* (resp. g*).

The remainder of this paper is organized as follows. In Section 2, we review some
preliminaries concerning the Fourier coefficients of weakly holomorphic modular forms
and the Galois representations attached to Hecke eigenforms. In Section 3, we prove
the main theorem for the case of cusp forms. In Section 4, we prove the main theorem:
Theorem 1.1.

2. Preliminaries

In this section, we review some basic material concerning the Fourier coeflicients of
weakly holomorphic modular forms and the Galois representations attached to Hecke
eigenforms.

2.1. Fourier coefficients of weakly holomorphic modular forms

In this section, we review some results related to the asymptotic of the Fourier coef-
ficients of weakly holomorphic modular forms based on [5] and [6].



D. Choi, S. Lim / Journal of Number Theory 202 (2019) 298-315 301

Let f € M}. We write k = 120; + k' with o, € Z and k' € {0,4,6,8,10,14}. Then,
by the valence formula, we have

ordeo (f) < o (2.1)
if f is nonzero. Moreover, for m > —oy, there is a unique fi ,, € M, ,L such that
fem(2) = ¢ ™ +O(g% ). (2.2)

Then, {frm | m > —oy} forms a basis of M}. In [2], Duke and Jenkins studied various
properties of this basis.
For positive integers m,n, and c, let

where a is an integer such that ad = 1 (mod ¢). We introduce the Bessel function of the
first kind (for example, see [9])

- oo (2/2)n+2t
In(z) = ; M +t+1)

Note that this Bessel function satisfies an asymptotic expansion

eZ

\V2mz

as z — 00. Then, we have the following theorem.

I (z) ~

Theorem 2.1. [5, Theorem 1-3], [6, pp. 149-151] For m > —oy, let ay m(n) be the nth
Fourier coefficient of fi.m.

(1) If m > 0, then

n

(k=1)/2 edmv/mn
atn(n) ~ CiApa(n) () -

(mn)1/4

as n — oo, where Cy, is a constant dependent on k.
(2) If m =0, then

g (N) ~ DypnF1

as n — oo, where Dy, is a constant dependent on k.
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2.2. Galois representations attached to Hecke eigenforms

In this section, we introduce the result in [7] concerning the Galois representations
attached to Hecke eigenforms. For a positive integer n, let T}, be the nth Hecke operator.
For a positive even integer k, let Sy denote the space of cusp forms of weight k on SLo(Z).
Let f(2) = >~ af(n)g" € Sk be a normalized Hecke eigenform, i.e. f|T}, = ayf(p)f for
every prime p and ay(1) = 1. Let Ey be the field generated by all the Hecke eigenvalues
ar(p) over Q, and Hy be the Z-algebra generated by all the Hecke eigenvalues af(p). Let
Gg denote Gal(Q/Q). For a prime ¢, let

pre:Gog — GLy (Ef ® Qp)

be the representation of Gg attached to f. Note that if p is a prime not equal to ¢ and
Frob, € Gg is a Frobenius element at p, then the trace of ps ¢(Froby) is a¢(p) in Ef ® Qy
and the determinant of py ¢(Frob,) is p*~1 (for example, see page 261 in [7]).

Let Gy.¢ be the image of ps, in GLg (Ey ® Q). If

Ay i={u € GLy (Ef ® Q) | det(u) € (Z;)" '},

then Ay, contains Gy ,. Moreover, it was proved in [7] and [8] that for all but finitely
many primes ¢, we have

Gre=Age.

Let f/ € Si be a normalized Hecke eigenform. Suppose that if & = k/, then f and
f’ are not conjugate under the action of Gg. Let Ty be the Z-subalgebra of H; x
Hy generated by the pairs (as(p),as (p)). It should be noted that according to the
assumption, [Hy x Hy: : Ty 4] is finite (for example, see lines 8-10 on p. 268 in [7]). Let
Apfxpf, be the image of py ¢ X psr o in GLa (Ef ® Q) x GLa (Ep @ Q). Ribet [7] proved
the following theorem.

Theorem 2.2 (Theorem 6.1 in [7]). If £ is a prime such that

e I >k+ K,
o Gro= Ay,
o Gpo=Ap g,

« U{[Hyx Hp 2Ty pl,
then
Appxpy = {(u,u’) € As o x Apr g | det(u) = 0", det(u) = 0¥ =1 for some v € ZZ}.

This theorem implies the following lemma.
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Lemma 2.3. For integers j, 1 < j < 'm, suppose that f; are normalized Hecke eigenforms
in Sk, that are not conjugate to each other under the action of Gg. If £ is a sufficiently
large prime, then Hy X --- x Hy s dense in an open subset of (Hp & Q) X --- X
(Hy,, @ Q).

To prove this lemma, we need the following result.

Lemma 2.4 (Lemma 3.4 in [7]). Let Uy, ..., Uy (t > 1) be profinite groups. Assume that
for each i the following condition is satisfied: for each open subgroup W of U;, the closure
of the commutator subgroup of W is open in U;. Let H be a closed subgroup of

U=U; X XU,
which maps to an open subgroup of each group U; x U; (i # j). Then, H is open in U.
Now, we prove Lemma 2.3.

Proof. Let G be the image of py, ¢ x--- X py, ¢in GLy (Hy, ® Zg) % ---xGLa (Hy,, @ Zy).
We claim that G contains SLg (Hy, ® Zg¢) X --- x SLg (Hy,, ® Z¢), which then provides
the proof. Now, we prove the claim. Note that if £ is a sufficiently large prime, then, for
all pairs (j1, j2), the prime ¢ satisfies the following conditions:

© Gt = A b
° gsz L= Afj27e’
¢ Kf [Hfh X Hsz : Tfj1’fj2]'

Therefore, we assume that ¢ satisfies these conditions.
Let

U:=8SLy (Hy, @ Zg) % -+ x SLy (Hy,, ® Zyg)
and
H:=UNG.
Note that H is closed in GLg (Hy, ® Q¢) x --- x GLo (Hy,, ® Q) since Gg is compact
and pg, ¢ X -+ X pg ¢ is continuous. Thus, we see that H is also closed in ¢. For all

pairs (41, j2), the projection of H to SLy (Hfj1 ® Zg) x SLo (Hfj2 ® Zg) is surjective by
Theorem 2.2. For each j, we have

SLy(Hy, ® Zy) = [ [ SL2(O,
v|l
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where v denote the prime ideals of Hy, above ¢, and O, denotes the completion of Hy,
at v. Note that SL2(O,) is a f-adic lie group, and the lie algebra of SLy(O,) is the same
as its own derived algebra. This implies that for each open subgroup W of SLa(H, ®Zy),
the closure of the commutator subgroup of W is open in SLy(Hy, ® Z¢) (see Remark 3
on p. 253 in [7]). Therefore, by Lemma 2.4, we complete the proof of the claim. O

Remark 2.5. For the convenience of readers, let us recall the lie algebra of SLy(O,) and
its derived subalgebra. The lie algebra of SLy(O,) is isomorphic to

sla(0y) = {(Zg) | a,b,c,d € O, and a+c=0}.

The derived subalgebra Der(slo(O,)) of sl2(O,) is generated by all [A,B] (A,B €
slo(0,)), where [A, B] = AB — BA. Note that

(5%) =0 (0],

(52)=1(55)- (']
and

B0 =00 (5%)]-

Assume that ¢ # 2. The matrices ((1) _01)7 (8 3), and (g 8) consist a basis of sly(O,).

Therefore, we have
Der(sla(0,)) = sla(O,).
2.83. Lemma for hyperplanes
For later use, we prove the following lemma.

Lemma 2.6. Let U be a subset of V.= Q™. Suppose that U is dense in an open subset of
Ve Qg.

(1) If Ty,..., Ty are hyperplanes in V, then
U ¢ UT;.
(2) If Ly, ..., Ly are hyperplanes in V @ C, then we have

U ¢ UL;.
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Proof. (1) Suppose that

U C UT;.
This implies

U cC T,

in V ® Q. Then, UT; contains an open set in V @ Q. Note that T} is a hyperplane in
V ® Qy for each i. This gives a contradiction.

(2) Due to (1), it is enough to prove that L; NV is contained in a hyperplane in V'
for each i. Note that L; can be expressed as

{yi,.. ., yn) €eVRC| ainyi + -+ ainyn =0}

for a; ; € C. Since L; is a hyperplane, we see that (a;1,...,a:n) # (0,...,0). Without

loss of generality, we may assume that a; , # 0. Then, (y1,...,yn) € L; is equivalent to
a; 1 A n—1
Y =11, ooy Yno1 =tno1, Yn = ——tp — - — ——ty
Qi n Ajn
for some t1,...,t,—1 € C. Therefore, (z1,...,2,) € L; NV is equivalent to
r1=1t1, ..., Tpn_1 =t,_1 for some ty,...,t,_1 € Q,
a; Qi
Tn = Z71t1_"'_ o 1tn71€Q
Qi n Qi n
We can take Q-linearly independent complex numbers a; = 1,...,a,—1 such that
;1 Qi n—1
Qi n T Qi n
can be expressed as QQ-linear combinations of ay,...,a,_1. This implies that

n—1
Ty = Fl(tl, . atn—l) —|— Z OéiFi(tl, - 7tn—1)
=2

for some degree 1 homogeneous polynomials F; with coefficients in Q. Therefore, z,, € Q
is equivalent to x, = Fi(t1,...,t,—1). From this, we see that L; NV is in the hyperplane

{(z1,...,2,) €Q" | &, = F1(x1,...,2p—1)}. O



306 D. Choi, S. Lim / Journal of Number Theory 202 (2019) 298-315

3. Coefficients of cusp forms

In this section, we prove that if f and g are cusp forms and R(f,g) is finite, then
f = cg for some constant c. To prove this, we need the following lemmas.

Lemma 3.1. Suppose that fi,..., fm are normalized Hecke eigenforms on SLo(Z) such
that any two of them are not conjugate under the action of Gg. Then, there are no finite
subsets B of (E;, @ C) x --- x (Ey, ®C) such that (0,...,0) ¢ B and for any primes p,
we have

Avag (p) + -+ Amay,, (p) =0
for some (A1,...,An) € B.

Proof. Suppose that B is a finite subset of (Ey, ® C) x --- x (Ef, ® C) such that
(0,...,0) ¢ B and for any primes p, we have

Arayp, (p) + -+ Anay, (p) =0

for some (A1,...,A,,) € B. Then, the set

C= U {(‘rhaxm)e(Efl@(C)XX(Ef7YL®C)‘A1a’,‘1+—|—Amij:0}
(A1,...,An)EB

is a finite union of hyperplanes (Ey, ® C) x --- x (Ey, ® C).
By Lemma 2.3, we see that there is a prime £ such that Hy, x---x Hy, is dense in an
open subset of (Hy, ® Qg) x --- x (Hy,, ® Qg). Since the trace of py, ¢(Froby) is ay, (p) for

primes p # ¢ and {Frob, | p is a prime} is dense in Gg by Chebotarev’s density theorem,
we see that the set

T ={(af (p),...,ay,(p) | pis a prime with p # £}
is a dense subset of Hy, x --- x Hy, . Since we have
(Hp, @ Q) x -+ x (Hy,, @ Qo) = (Ep, x -+ x By, ) © Qu
and
(B @C) x -~ x (By, @ C) = (Ejp, x -+~ x By, ) ®C,

by Lemma 2.6, the set T" is not contained in any finite union of hyperplanes in (Ey, ®C) x
---x (Ey, ®C). This is a contradiction since T is contained in C' by the assumption. 0O



D. Choi, S. Lim / Journal of Number Theory 202 (2019) 298-315 307

Let f be a normalized Hecke eigenform on SLy(Z). Let m =

[Ef: Q] and o1,...,0m

be the embeddings from E; to Q. Note that Fy ® Q; = (Q)™. Let {71,...,7m} be a
basis of Ey over Q. Then, for each n > 0, the coefficient af(n) can be written as a linear

combination of 71,..., 7y, i.e.,
ar(n) =ar(n)m + -+ am(n)mm

for a;(n) € Q. This means that

ap(n)” = ar(n)7y + -+ am(n)7y,

for o € Gp. From this, we prove the following lemma.

Lemma 3.2. There are no finite subsets B of C™ such that (0,
primes p, we have

Avar(p)® + -+ Apayp(p)’ =0
for some (A1,...,An) € B.

Proof. Suppose that B is a finite subset of C™ such that (0,
primes p, we have

Arap(p)? + -+ Apay(p)’™ =0

for some (A1,...,An,) € B. By (3.1), we see that the equation

o1 o1

(3.1)

...,0) ¢ B and for any

(3.2)

...,0) ¢ B and for any

(3.2) is equivalent to

T e T a1(p)
(A, Am) |0 0 : =0.
T e T am(p)
Since {71,..., T} is a basis of Ef over Q, the matrix
LT ek
T{’m T::”
is invertible. Therefore, we have
71”1 R
/! / . .
(Af,...,A4,) = (41,..., Ap) Do #(0,...,0)
Tlgm Tg;n

since (A, ..., An) # (0,...,0). This means that the set

{(a1(p),...,am(p)) | p is a prime}
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is a subset of the set

C = U {@n. . oem) eC™ | Aoy + -+ Ay, = 0}, (3.3)
(Al,.,,,Am,)GB

which is a finite union of hyperplanes in £y ® C.

By Lemma 2.3, we see that there is a prime £ such that H is dense in an open subset of
H;®Qy. Since the trace of py ¢(Frob,) is af(p) for primes p # £ and {Frob,, | p is a prime}
is dense in Gg by Chebotarev’s density theorem, we see that the set

T = {as(p) | p is a prime with p # £}

is a dense subset of H¢. Then, by Lemma 2.6, the set 7" is not contained in any finite
union of hyperplanes in £y ® C. We consider the isomorphism from E¢ to Q™ defined
by a — (a1,...,am), where ay, ..., a, is determined by the decomposition

a=a171 + -+ amTm-
By using this isomorphism, we see that the set

T’ = {(a1(p),-- - am(p)) | p is a prime with p # ¢}

is not contained in any finite union of hyperplanes in C™. This is a contradiction since
T’ is contained in C' by the assumption. O

Suppose that fi,..., fi, are normalized Hecke eigenforms such that any two of them
are not conjugate under the action of Gg. Let a;(n) be the nth Fourier coefficient of f;,
ie.,

fi(z) = Z a;(n)q".

n>0
For each ¢, let t; = [Ey, : Q] and {01,...,0:4} be the embeddings of Ey, to Q. Let
{Ti1,---,Ti;} be a basis of Ey, over Q. Therefore, a;(n) can be written as a linear
combination of 7;1,...,7;4,, i€,
ai(n) = ain(n)7iy + -+ aig, ()7,
for a; j(n) € Q. From this, we see that

ai(n)? = a;1(n)771 + -+ aig, (n)77, (3.4)

for o € Gg. Then, we have the following lemma.
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Lemma 3.3. Lett = t1+- - -+t,,. There are no finite subsets B of C* such that (0, ...

B and for any primes p, we have

m  t;

Z Z A; ja;(p)7 =0

i=1 j=1

for some (A11,..., A1y s Amas .oy Am,,) € B

309

,0) ¢

(3.5)

Proof. Suppose that B is a finite subset of C' such that (0,...,0) ¢ B and for any

primes p, we have
m tri
) SYITEE
i=1 j=1

GALe, e Ama, - Am,) € B.
By (3.4), we see that the equation (3.5) is equivalent to

for some (411, ..

1,1 71,1
T11 Ty
. . . 0 0
o1t o1t
T1,1 o Tl,tll
(Al,la'“aAl»tla'--aAmyla'”aAm,tm) 0 0
Tm,1 Tm,1
Ty e T
0 0 .
Tmitym
m,1 m,tm,
ay,1(p)
ai,ty (P)
X =0.
am,l(P)
am,tm(p)

Note that the matrix

mytm

Tm,tm
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01,1 01,1
T1,1 T1,t1
. . . 0 0
o1t o1t
T1,1 o T1,tq !
0 0
Tm,1 Tm,1
7—717,,1 Tm.t,,L
0 0 : .
Tm,tm Tm,tm
Tm,1 Tm,tm
is invertible since the matrix
i1 i1
Ti,1 Ti,t;
0,‘7t, Tt
T'Lll ‘ TziL ’
is invertible for each i. Therefore, if we let
/ / ’ ’
(Ao ALty s At A )
01,1 1,1
T1,1 T1,t1
. . 0 0
o1t o1t
T1,1 ! T1,tq !
:(A171,-.-,A17t1,--~,Am,1,--~,Am,tm) 0 0
Tm,1
m,1
0 0 .
7_:””'7’%‘771
/ /

then ( '1,1,..., Il,tw"" it A ) # (0,
Amt,,) # (0,...,0). This means that the set

{(a1,1(0)s.--,a14,(D)y- -y am1(D), - Amy,, (p)) | pis a prime}

is a subset of the set

C

U

(A1,1,-A1 g 5 Am 1503 At JEB

,0) since (A11,..., A1ty --

Tm,1
m,tm

Tm,tm

Tm,tm

7Am,17



D. Choi, S. Lim / Journal of Number Theory 202 (2019) 298-315 311

m  t;
ZZA'/ivai’j =0 5 (36)

i=1 j=1

t
X 9 (T115 3 T1tys s Tty Ty, ) € C

which is a finite union of hyperplanes in C?.
As in the proof of Lemma 3.1, there is a prime ¢ such that the set

T ={(as (p),...,az,(p) | pisa prime with p # ¢}

is not contained in any finite union of hyperplanes in (Ey, ® C) x --- x (Ey,, @ C). As
in the proof of Lemma 3.2, we consider the isomorphism from Eyf X --- x Ey_ to Q'
defined by

(@1, s am) = (@11, Qltys ey Ay e - Qmity, )y
where a1,1,...,81,4,5-+-,8m,1,---,0Am.yt, are determined by the decomposition
Q; = Qi1Ti1 + -+ Qi Tt
for each i. By this isomorphism, we see that

T ={(a11(P),---ya1,4,(P),- -y am1(P),- -, amyt,, (p)) | pis a prime with p # ¢}

is not contained in any finite union of hyperplanes in C!. This is a contradiction since
T’ is contained in C' by the assumption. O

From Lemma 3.3, we can prove the following theorem.

Theorem 3.4. Suppose that f and g are nonzero cusp forms on SLy(Z). If f is not a
constant multiple of g, then R(f,g) defined in (1.1) is not finite.

Proof. Since f and g are cusp forms, each function can be written as a linear combination
of finitely many normalized Hecke eigenforms {f1,..., fm}, i.e.,

f= Zaz‘fm g= Zbifi
=1 i=1

for a;,b; € C. For each ¢, we consider embeddings 0y 1,...,0:¢, from Ef, to Q, where
t; = [Ey, : Q]. Consider the set

A={fl"]1<i<m, 1<j <t}
We write

t=IAl, A={h1,...,h}.
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Since A contains {fi,..., fmm}, both f and g can be written as linear combinations of
elements of A, i.e.,

t t
= ahi, g=>_ Bihi
i=1 i=1

for oy, 5; € C.

Suppose that R(f,g) is finite and that f is not a constant multiple of g. Let a;(n)
be the nth Fourier coefficient of h;. Then, there is a finite subset B of C! such that
(0,...,0) ¢ B and for each prime p, we have

Arar(p) + -+ Arar(p) = 0
for some (Ai,...,As) € B. This is a contradiction due to Lemma 3.3. O

Remark 3.5. Suppose that f and g are cusp forms. They may be zero. Then, Theorem 3.4
implies that if R(f,g) is finite, then there are constants « and 8 such that of = 8g.

4. Proof of the main result

In this section, we prove Theorem 1.1. Suppose that f is not a cusp form and g is a
cusp form. For a weakly holomorphic modular form h € M', let my, = |orda (h)| and ky
be the weight of h. Since g is a cusp form, the Fourier coefficients of g should satisfy the
Hecke bound

ay(n) = O(n*s/?)
as n — oco. Then, by Theorem 2.1, we have

ay(n)
ag(n)

lim
n—oo

= o0,

which means that the set R(f,g) cannot be finite. This is a contradiction. Therefore,
both f and g are cusp forms or none of them are cusp forms. If both f and g are cusp
forms, then by Theorem 3.4, f = cg for some constant c.

Suppose that neither f nor g is a cusp form. If my # my,, then we may assume that
mys > mgy. By Theorem 2.1, we have

ar(n)

ag(n)

lim
n—oo

b

which means that R(f, ¢) is an infinite set. This is a contradiction. Therefore, m; = m,,.
In the same way, we see that ky = k. By multiplying a nonzero constant to g, we may
assume that
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ap(—my) = ag(—myg). (4.1)

Therefore, it is enough to show that f = g.
Suppose that [« : 8] € R(f,g) satisfying

Bas(p) = aay(p) (4.2)

for infinitely many primes p. Such [« : §] exists since R(f, g) is finite. By the asymptotic
expansion given in Theorem 2.1, we see that both f and g have only finitely many zero
coefficients. Therefore, both « and S are nonzero.

Then, we have a strictly increasing sequence {p;} of primes satisfying (4.2). By The-
orem 2.1 and (4.2), we have

o oap(p) o ap(=my)etmTVPT
— = lim = lim e
i—00 ag(plv) i—00 ag(_mg)e m\/Pillg

=1 (4.3)

since my = my and ky = k,. Therefore, we see that [o: 5] = [1: 1] € R(f,g).
This implies that if [« : 8] € R(f,g) and [o : 8] # [1 : 1], then the number of primes
satisfying (4.2) is finite. Since R(f, g) is finite, we see that

for all but finitely many primes p.
Now, we prove that f — g is a cusp form. Suppose that f — g is not a cusp form. This
means that the principal parts of f and g are not the same. Let

mo =max{n >0 | as(—n) # ag(—n)}.

Then, by (2.1), we see that —mg < op. Let
m) fiopms £ =1,

Z
Z m) fisoms §=9— 4,
m>m,

~»
Il

>
Il

where f, . is a weakly holomorphic modular form as in (2.2). We denote by a f(n)
(resp. af(n), ag(n), and ag(n)) the nth Fourier coefficient of f (resp. f, 9, and §). By the
definition of mg, we see that f = §. Then, for all but finitely many primes p, we have

az(p) = ag(p). (4.4)

This implies that R(f, §) is finite.
If mo > 0, then at least one of f and § is not a cusp form. Since R(f,§) is finite,
in the same way as above, we see that my = mg = mo. Note that we have a strictly
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increasing sequence {p;} of primes satisfying (4.4). Then, by the same argument as in
(4.3), we have

L= g P g, arEmo)eV . ag(=mo)
imoo ag(pi) oo ag(—mo)e*™VPITO ag(—mo)

~

Therefore, we obtain af(—mo) = az(—mo) which implies that as(—mg) = ag(—mo).
This is a contradiction due to the definition of mg.

If mg = 0, then both f and § are holomorphic modular forms and a;(0) # ag(0).
Then, we see that

f~ = af(o)fkf,o + f07
g= ag(o)fkf,O + 9gc

for some cusp forms fc, g. € Sk, . By the Hecke bound, cusp forms f.(2) = > - ayr.(n)q"
and g.(z) = Zn>0 ag.(n)g™ satisty

ay.(n),ag.(n) = O(n*/?). (4.5)
By (4.4), we have a strictly increasing sequence {p;} of primes satisfying
(af(0) —ag(0))ak,,0(p:) = ag,(p:) — az.(pi),
where ay, f70(n) is the nth Fourier coefficient of fx, o. This is a contradiction since

- (a7(0) — ag(0))ar, o(pi) | _
imoo|  ag,(pi) —as.(pi)

by Theorem 2.1 and (4.5). In conclusion, f — g should be a cusp form.
If Sy, = {0}, the proof is completed. Otherwise, we consider

F=f=> ay(=m)fi;m;

m>0
G=g-"Y ag(=m)fi;m-
m>0
Both F' and G are cusp forms and
ar(p) = ac(p) (4.6)

for all but finitely many primes p, where ap(n) (resp. ag(n)) denotes the nth Fourier
coefficient of F' (resp. G). Therefore, R(F,G) is finite. By Theorem 3.4, there are con-
stants o/, 5/ such that 8'F = o/G. By (4.6), we see that F' = G, and this implies that
f = g since ay(—m) = ayz(—m) for all m > 0. This completes the proof.
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