期刊论文详细信息
JOURNAL OF NUMBER THEORY 卷:180
Asymptotic expansions for the psi function and the Euler-Mascheroni constant
Article
Xu, Aimin1  Cen, Zhongdi1 
[1] Zhejiang Wanli Univ, Inst Math, Ningbo 315100, Zhejiang, Peoples R China
关键词: Psi function;    Euler-Mascheroni constant;    Asymptotic expansion;    Cycle indicator polynomial;   
DOI  :  10.1016/j.jnt.2017.04.014
来源: Elsevier
PDF
【 摘 要 】

Let r not equal 0 and s not equal 0 be two given real numbers. Chen [7] (2016) obtained recursive relation for determining the coefficients a(j)(r, s) such that psi(x + 1) similar to lnx + (1-1/r) 1/x + 1/s ln (1+ Sigma(infinity)(j=1) a(j) (r, s)/x(i), x -> infinity, where psi denotes the psi function. As a consequence, the asymptotic expansion for the Euler-Mascheroni constant was derived. In this paper, we provide an explicit formula for these coefficients in terms of the cycle indicator polynomial of symmetric group which is an important tool in enumerative combinatorics. Also using this tool, we directly obtain an alternative form of the recursive relation for determining the coefficients a(j) (r, s). Furthermore we describe their asymptotic behavior for the special case r = 2. (C) 2017 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jnt_2017_04_014.pdf 261KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次