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Asymptotic expansions for the psi function

and the Euler-Mascheroni constant

Aimin Xu ∗ Zhongdi Cen †
1Institute of Mathematics, Zhejiang Wanli University, Ningbo 315100, China

Abstract

Let r �= 0 and s �= 0 be two given real numbers. Chen [C.-P. Chen, Inequalities
and asymptotic expansions for the psi function and the Euler-Mascheroni constant,
J. Number Theory 163 (2016), 596-607.] obtained recursive relation for determining
the coefficients aj(r, s) such that

ψ(x+ 1) ∼ lnx+

(
1− 1

r

)
1

x
+

1

s
ln

(
1 +

∞∑
j=1

aj(r, s)

xj

)
, x → ∞,

where ψ denotes the psi function. As a consequence, the asymptotic expansion for
the Euler-Mascheroni constant was derived. In this paper, we provide an explicit
formula for these coefficients in terms of the cycle indicator polynomial of symmetric
group which is an important tool in enumerative combinatorics. Also using this tool,
we directly obtain an alternative form of the recursive relation for determining the
coefficients aj(r, s). Furthermore we describe their asymptotic behavior for the
special case r = 2.

Keywords: Psi function; Euler-Mascheroni constant; Asymptotic expansion; Cycle
indicator polynomial

Mathematics Subject Classification: 11Y60; 41A60

1. Introduction

It is well known that the Euler gamma function

Γ(x) =

∫ ∞

0

tx−1e−tdt, x > 0

is one of the most important functions in mathematical analysis, especially in the area
of special functions. It has a lot of applications in various diverse areas and it has
been staying in the middle of attention of many authors in years. Many researches are
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devoted to establishing approximation formulas for the gamma function and the related
psi function. A formula for approximation of Γ(x) for large value of x is of special
attraction. It is stated as follows

Γ(x+ 1) ∼
√
2πx

(x
e

)x

, x → ∞.

This formula was improved by an asymptotic series which is often called the Stirling
series

Γ(x+ 1) ∼
√
2πx

(x
e

)x

exp

{ ∞∑
i=1

B2i

2i(2i− 1)x2i−1

}
, x → ∞,

where Bi denotes the ith Bernoulli number defined by the generating function

x

ex − 1
=

∞∑
i=1

Bi

i!
xi.

The first Bernoulli numbers are B1 = 1/2, B2 = 1/6, B4 = −1/30 with B2i+1 = 0,
for each integer i ≥ 1. The Laplace formula [1] for asymptotic expansion of the gamma
function is

Γ(x+ 1) ∼
√
2πx

(x
e

)x
{
1 +

1

12x
+

1

288x2
− 139

51840x3
− 571

2488320x4
+ · · ·

}
, x → ∞.

In [7], Chen and Lin proved that the gamma function has the following asymptotic
expansion:

Γ(x+ 1) ∼
√
2πx

(x
e

)x

⎛
⎝1 +

∞∑
j=1

bj
xj

⎞
⎠

xl/r

, x → ∞,

where the coefficients bj are given by

bj =
∑ rk1+k2+···+kj

k1!k2! · · · kj !
(

B2

1 · 2
)k1

(
B3

2 · 3
)k2

· · ·
(

Bj+1

j · (j + 1)

)kj

,

summed over all nonnegative integers kj satisfying the equation

(1 + l)k1 + (2 + l)k2 + · · ·+ (j + l)kj = j.

When l = 0, this result reduces to the main theorem in [6]. For more works on asymptotic
expansions and approximations of the gamma function, one is referred to [4, 5, 8, 12–15,
17–22,24–35,38, 40] and references therein.

The logarithmic derivative of the gamma function

ψ(x) =
Γ′(x)
Γ(x)
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is known as the psi function which is connected to the Euler-Mascheroni constant and
harmonic numbers through the well-known relation

ψ(n+ 1) = −γ +Hn.

In [9], Chen gave the asymptotic expansion of the psi function by

ψ(x+ 1) ∼ lnx+

(
1− 1

r

)
1

x
+

1

s
ln

⎛
⎝1 +

∞∑
j=1

aj(r, s)

xj

⎞
⎠ , x → ∞, (1.1)

where r �= 0 and s �= 0 are any given real numbers. The coefficients aj ≡ aj(r, s) in (1.1)
are given by the recursive relation

aj = bj +
1

j

j−1∑
k=1

kbkaj−k, j ≥ 1 (1.2)

and

b1 =
s(2− r)

2r
, b2k+1 = 0, b2k =

−sB2k

2k
, k ≥ 1. (1.3)

Based on the above complete asymptotic expansion, the asymptotic formula for the
Euler-Mascheroni constant was proposed:

γ ∼ Hn −
(
1− 1

r

)
1

n
− lnn− 1

s
ln

⎛
⎝1 +

∞∑
j=1

aj(r, s)

nj

⎞
⎠ , n → ∞.

This formula unifies the following three approximation formulas due to Mortici [23] and
develops them to complete asymptotic expansions:

γ = Hn −
(
1− 1

6− 2
√
6

)
1

n
− lnn− ln

(
1 +

1√
6n

)
+O

(
1

n3

)
, n → ∞,

γ = Hn −
(
1− 1

6 + 2
√
6

)
1

n
− lnn− ln

(
1− 1√

6n

)
+O

(
1

n3

)
, n → ∞,

and

γ = Hn −
(
1− 1

2

)
1

n
− lnn− 1

2
ln

(
1− 1

6n2

)
+O

(
1

n4

)
, n → ∞.

Motivated by these interesting works, in this paper we provide an explicit formula
for the coefficients aj(r, s) in terms of the cycle indicator polynomial of symmetric group
which is an important tool in enumerative combinatorics. Also by means of this useful
tool, we directly obtain an alternative form of the recursive relation for determining the
coefficients aj(r, s) established by Chen [9]. Furthermore we describe their asymptotic
behavior of aj(r, s) for the special case r = 2.
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2. Main results

Firstly, let us recall the notions of groups of permutations and cycle indicator polynomial.
For more details one can refer to [10]. A group G of permutation of a finite set N be a
subgroup of the group S(N) of all permutations of N , and we denote G ≤ S(N). |G| is
called the order of G, and |N | its degree.

Let [n] = {1, 2, . . . , n} and N be a set of non-negative integers. For every permutation
σ ∈ G(N), |N | = n, denote ci(σ) the number of orbits of length i of σ, i ∈ [n]. We define
the cycle indicator polynomial Z(x1, x2, . . . , xn) := Z(G;x1, x2, . . . , xn) of a group of
permutations G of N :

Z(x1, x2, . . . , xn) =
1

|G|
∑
σ∈G

x
c1(σ)
1 x

c2(σ)
2 · · ·xcn(σ)

n .

If G = S(N) (the symmetric group of degree n), the cycle indicator polynomial denoted
by Zn(x1, x2, . . . , xn) := Zn(G;x1, x2, . . . , xn) is explicitly expressed by

Zn(x1, x2, . . . , xn) =
1

n!

∑
c∈�n

(c;n)∗xc1
1 xc2

2 · · ·xcn
n ,

where

�n =

{
c := (c1, c2, . . . , cn) ∈ N

n

∣∣∣∣
n∑

k=1

kck = n

}
(2.1)

is a set in which an element corresponds to a way of partition of n, and

(c;n)∗ =
n!

c1!c2! · · · cn!1c12c2 · · ·ncn

is the number of permutations of type [c] = [c1, c2, . . . , cn].
From the definition of the cycle indicator polynomial we can directly calculate the

first few cases:

Z0 = 1,

Z1(x1) = x1,

Z2(x1, x2) =
1

2
(x2

1 + x2),

Z3(x1, x2, x3) =
1

6
(x3

1 + 3x1x2 + 2x3),

Z4(x1, x2, x3, x4) =
1

24
(x4

1 + 6x2
1x2 + 3x2

2 + 8x1x3 + 6x4),

Z5(x1, x2, x3, x4, x5) =
1

120
(x5

1 + 10x3
1x2 + 15x1x

2
2 + 20x2

1x3 + 20x2x3 + 30x1x4 + 24x5),

Z6(x1, x2, x3, x4, x5, x6) =
1

720
(x6

1 + 15x4
1x2 + 45x2

1x
2
2 + 40x3

1x3

+ 15x3
2 + 120x1x2x3 + 90x2

1x4 + 40x2
3 + 90x2x4 + 144x1x5 + 120x6).
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The ordinary generating function of the cycle indicator polynomial is

exp

( ∞∑
m=1

xm
tm

m

)
= 1 +

∞∑
n=1

Zn(x1, x2, . . . , xn)t
n. (2.2)

By (2.2) the following recurrence relation is obvious:

Z0 = 1, nZn(x1, x2, . . . , xn) =

n∑
k=1

xkZn−k(x1, x2, . . . , xn−k), n ≥ 1. (2.3)

It is worth noticing that the cycle indicator polynomials are well connected with the
well-known Bell polynomials [2, 10] by

Zn(x1, x2, . . . , xn) =
1

n!
Yn(0!x1, 1!x2, . . . , (n− 1)!xn), n = 1, 2, . . . .

Using the cycle indicator polynomials, we obtain the explicit expressions of the coef-
ficients aj(r, s) or aj :

Theorem 2.1. Let r �= 0 and s �= 0 be two given real numbers. The psi function has the
following asymptotic expansion:

ψ(x+ 1) ∼ lnx+

(
1− 1

r

)
1

x
+

1

s
ln

⎛
⎝1 +

∞∑
j=1

aj
xj

⎞
⎠ , x → ∞ (2.4)

with the coefficients aj explicitly given by

aj =

⎧⎪⎨
⎪⎩

∑m−1
k=0

1
(2m−1−2k)!Zk

(− sB2

2 ,− sB4

2 , . . . ,− sB2k

2

) ( s(2−r)
2r

)2m−1−2k

, j = 2m− 1,∑m
k=0

1
(2m−2k)!Zk

(− sB2

2 ,− sB4

2 , . . . ,− sB2k

2

) ( s(2−r)
2r

)2m−2k

, j = 2m,

(2.5)

where m ≥ 1.

Proof. The psi function has asymptotic expansion [1, 16]:

ψ(x+ 1)− lnx ∼ 1

2x
−

∞∑
j=1

B2j

2jx2j
, x → ∞, (2.6)

where Bn are the Bernoulli numbers. Comparing with (2.4) and (2.6) we have

ln

⎛
⎝1 +

∞∑
j=1

aj
xj

⎞
⎠ ∼ s(2− r)

2r

1

x
−

∞∑
j=1

sB2j

2j

1

x2j
, x → ∞,

which is equivalent to

1 +

∞∑
j=1

aj
xj

∼ exp

(
s(2− r)

2r

1

x

)
exp

⎛
⎝−

∞∑
j=1

sB2j

2j

1

x2j

⎞
⎠ , x → ∞. (2.7)
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By (2.2) we have

exp

(
s(2− r)

2r

1

x

)
exp

⎛
⎝−

∞∑
j=1

sB2j

2j

1

x2j

⎞
⎠

=

∞∑
k=0

1

k!

(
s(2− r)

2r

)k
1

xk

∞∑
k=0

Zk

(
−sB2

2
,−sB4

2
, . . . ,−sB2k

2

)
1

x2k
.

Combining with (2.7) we easily obtain (2.5).

According to (2.2), it is not difficult to verify that

Lemma 2.1. For m ≥ 1, we have

Z2m−1(x1, x2, 0, x4, 0, . . . , x2m−2, 0) =
m−1∑
k=0

Zk

(x2

2
,
x4

2
, . . . ,

x2k

2

) x2m−1−2k
1

(2m− 1− 2k)!
,

Z2m(x1, x2, 0, x4, 0, . . . , x2m−2, 0, x2m) =

m∑
k=0

Zk

(x2

2
,
x4

2
, . . . ,

x2k

2

) x2m−2k
1

(2m− 2k)!
.

Thus, according to this lemma we can obtain an alternative form of the expressions
of the aj ’s.

Theorem 2.2. Let r �= 0 and s �= 0 be two given real numbers. The psi function has the
following asymptotic expansion:

ψ(x+ 1) ∼ lnx+

(
1− 1

r

)
1

x
+

1

s
ln

⎛
⎝1 +

∞∑
j=1

aj
xj

⎞
⎠ , x → ∞,

with the coefficients aj explicitly given by

aj =

⎧⎨
⎩

Z2m−1

(
s(2−r)

2r ,− sB2

2 , 0,− sB4

2 , 0, . . . ,− sB2m−2

2 , 0
)
, j = 2m− 1,

Z2m

(
s(2−r)

2r ,− sB2

2 , 0,− sB4

2 , 0, . . . ,− sB2m−2

2 , 0,− sB2m

2

)
, j = 2m,

(2.8)

where m ≥ 1.

Using the recurrence relation of the cycle indicator polynomials, i.e., (2.3), we can
calculate the coefficients aj recursively.

Theorem 2.3. Let r �= 0 and s �= 0 be two given real numbers. Let a0 = 1 and
a1 = s(2− r)/(2r). The psi function has the following asymptotic expansion:

ψ(x+ 1) ∼ lnx+

(
1− 1

r

)
1

x
+

1

s
ln

⎛
⎝1 +

∞∑
j=1

aj
xj

⎞
⎠ , x → ∞,
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with the coefficients aj recursively given by

a2m−1 =
1

2m− 1

(
s(2− r)

2r
a2m−2 − s

2

m−1∑
k=1

B2m−2ka2k−1

)
, (2.9)

a2m =
1

2m

(
s(2− r)

2r
a2m−1 − s

2

m−1∑
k=0

B2m−2ka2k

)
, (2.10)

where m ≥ 1.

Proof. Taking

x1 =
s(2− r)

2r
, x2j = −sB2j

2
, x2j+1 = 0, 1 ≤ j ≤ m− 1

in (2.3) and combining with (2.8) implies that (2.9) is true. The proof of (2.10) is
similar.

Remark 2.1. In fact, the recursive relation (1.2) can be divided into (2.9) and (2.10)
because b2k+1 = 0, k ≥ 1. This means that by means of the cycle indicator polynomials
we rediscover the recurrence relation of the aj’s.

Applying Theorems 2.1, 2.2 and 2.3 to the asymptotic expansion of the Euler-Mascheroni
constant γ, we have similar results.

Corollary 2.1. Let r �= 0 and s �= 0 be two given real numbers. The Euler-Mascheroni
constant γ has the following asymptotic expansion:

γ ∼ Hn −
(
1− 1

r

)
1

n
− 1

s
ln

⎛
⎝ns

⎛
⎝1 +

∞∑
j=1

aj
nj

⎞
⎠
⎞
⎠ , n → ∞,

where the coefficients aj are explicitly given by (2.5) or (2.8).

Corollary 2.2. Let r �= 0 and s �= 0 be two given real numbers. Let a0 = 1 and
a1 = s(2 − r)/(2r). The Euler-Mascheroni constant γ has the following asymptotic
expansion:

γ ∼ Hn −
(
1− 1

r

)
1

n
− 1

s
ln

⎛
⎝ns

⎛
⎝1 +

∞∑
j=1

aj
nj

⎞
⎠
⎞
⎠ , n → ∞,

where the coefficients aj are recursively given by (2.9) and (2.10).

The case r = 2 is of special interest. From Theorems 2.1, 2.2 and 2.3 we have

Corollary 2.3. Let s �= 0 be a given real numbers. The psi function has the following
asymptotic expansion:

ψ(x+ 1) ∼ lnx+
1

2x
+

1

s
ln

⎛
⎝1 +

∞∑
j=1

aj
xj

⎞
⎠ , x → ∞,

7



with the coefficients aj explicitly given by

aj =

{
0, j = 2m− 1,

Zm

(− sB2

2 ,− sB4

2 , . . . ,− sB2m

2

)
, j = 2m,

(2.11)

where m ≥ 1. The coefficients a2m(m ≥ 1) can also be recursively given by

a2m = − s

4m

m−1∑
k=0

B2m−2ka2k

with a0 = 1.

Though (2.11) is a real explicit formula for the coefficients aj(j ≥ 1), the evaluation
of aj requires listing all or almost all of the solutions of (2.1). It also seems difficult to
find a simpler explicit expression for aj in general. Instead we provide an asymptotic
formula for them.

Theorem 2.4. Let s �= 0 be a given real numbers. The psi function has the following
asymptotic expansion:

ψ(x+ 1) ∼ lnx+
1

2x
+

1

s
ln

⎛
⎝1 +

∞∑
j=1

aj
xj

⎞
⎠ , x → ∞, (2.12)

where we have

a2m−1 = 0, m ≥ 1, (2.13)

and

a2m ∼ (−1)m2s(2m− 1)!

(2π)2m
, (2.14)

as m → +∞.

Before we give the proof of Theorem 2.4, some lemmas are presented below.

Lemma 2.2. Let G(x) =
∑∞

n=1 gnx
n and F (x) =

∑∞
n=1 fnx

n be two formal power
series, and let

H(x) := F (G(x)) =
∞∑

n=1

hnx
n.

Suppose that F (x) is analytic in a neighborhood of the origin, gn �= 0 and
(i) gn−1 = o(gn) as n → +∞,

(ii)
∑n−1

j=1 |gjgn−j | = O(gn−1) as n → +∞.
Then we have hn ∼ f1gn as n → +∞.
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This lemma is due to Bender [3]. In the original theorem of Bender, the assumptions
on F are more general. However, as it was noted by Odlyzko [36], those assumptions are
automatically satisfied if F is analytic at the origin. See also [11].

It is well known that the Bernoulli numbers can be expressed in terms of the Riemann
zeta function as [37]

B2k = (−1)k+1 2(2k)!

(2π)2k
ζ(2k).

From this formula, one can easily deduce Lemmas 2.3 and 2.4, see also [11, 39].

Lemma 2.3. For any k ≥ 0 we have

2(2k)!

(2π)2k
< |B2k| < 4(2k)!

(2π)2k
. (2.15)

Lemma 2.4. As k → +∞, we have

B2k ∼ (−1)k+1 2(2k)!

(2π)2k
. (2.16)

Now we turn to prove Theorem 2.4. From (2.6) and (2.12) we have

1 +

∞∑
j=1

aj
xj

∼ exp

⎛
⎝−

∞∑
j=1

sB2j

2j

1

x2j

⎞
⎠ , x → ∞. (2.17)

which immediately leads to

a2m−1 = 0, m ≥ 1.

Therefore, (2.17) can be rewritten as

∞∑
j=0

a2j
x2j

∼ exp

⎛
⎝−

∞∑
j=1

sB2j

2j

1

x2j

⎞
⎠ . (2.18)

Let

G(t) = −
∞∑
j=1

sB2j

2j
tj

and
F (t) = et − 1

in Lemma 2.2. It is clear that F (t) is analytic in a neighborhood of the origin. It follows
from (2.18) that

H(t) = F (G(t)) =

∞∑
j=1

a2jt
j .

9



Applying Lemma 2.3 to the sequence

gj :=
−sB2j

2j
,

we obtain

2|s|(2m− 1)!

(2π)2m
< |gm| < 4|s|(2m− 1)!

(2π)2m
,

for every m ≥ 1. Since gm �= 0, and

0 ≤ lim
m→+∞

∣∣∣∣gm−1

gm

∣∣∣∣ < lim
m→+∞

2(2π)2

(2m− 2)(2m− 1)
= 0,

we obtain

gm−1 = o(gm) as m → ∞,

which implies that the first condition of Lemma 2.2 holds. It follows from (2.15) that

m−1∑
j=1

|gjgm−j | < 16s2

(2π)2m

m−1∑
j=1

(2j − 1)!(2(m− j)− 1)!

<
2|s||gm−1|

π2

m−1∑
j=1

(2j − 1)!(2(m− j)− 1)!

(2m− 3)!
.

By simple calculation we have

m−1∑
j=1

(2j − 1)!(2(m− j)− 1)!

(2m− 3)!
= (2m− 2)

m−1∑
j=1

1(
2m−2
2j−1

)

= (2m− 2)

⎧⎨
⎩ 2

2m− 2
+

m−2∑
j=2

1(
2m−2
2j−1

)
⎫⎬
⎭ .

If m is large enough, then there exists a constant C1 > 0 such that(
2m− 2

2j − 1

)
≥ 1

C1
m3,

for 2 ≤ j ≤ m− 2. Thus,

m−2∑
j=2

1(
2m−2
2j−1

) ≤ C1

m2
.

This implies that for m large enough there exists a constant C2 > 0 such that

m−1∑
j=1

(2j − 1)!(2(m− j)− 1)!

(2m− 3)!
≤ C2.

10



Therefore, we have

m−1∑
j=1

|gjgm−j | = O(gm−1) as m → +∞,

which implies that the second condition of Lemma 2.2 is satisfied. According to Lemmas
2.2 and 2.4, we have

a2m ∼ gm = −sB2m

2m
∼ (−1)m2s(2m− 1)!

(2π)2m
,

as m → +∞. This completes the proof of Theorem 2.4.
According to Theorem 2.4, we immediately have the following corollary.

Corollary 2.4. Let s �= 0 be a given real numbers. The Euler-Mascheroni constant γ
has the following asymptotic expansion:

γ ∼ Hn − 1

2n
− 1

s
ln

⎛
⎝ns

⎛
⎝1 +

∞∑
j=1

aj
nj

⎞
⎠
⎞
⎠ , n → ∞,

where we have

a2m−1 = 0, m ≥ 1,

and

a2m ∼ (−1)m2s(2m− 1)!

(2π)2m
,

as m → +∞.
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