JOURNAL OF NUCLEAR MATERIALS | 卷:550 |
Influence of neutron irradiation on Al-6061 alloy produced via ultrasonic additive manufacturing | |
Article | |
Gussev, M. N.1  Sridharan, N.1  Babu, S. S.1  Terrani, K. A.1  | |
[1] Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA | |
关键词: Ultrasonic additive manufacturing; HFIR; neutron irradiation; tensile tests; DIC; post-weld heat treatment; hot isostatic pressing; | |
DOI : 10.1016/j.jnucmat.2021.152939 | |
来源: Elsevier | |
【 摘 要 】
Samples of aluminum alloy 6061 produced via ultrasonic additive manufacturing (UAM) were irradiated in the High Flux Isotope Reactor (HFIR) up to 17.3 dpa at similar to 70 degrees C while in contact with water using perforated rabbit capsules. The irradiation campaign included as-received (AR) material, specimens subjected to various post-weld heat treatments (PWHTs, including hot isostatic pressing [HIP]), and reference (wrought) alloy samples. Mechanical tensile tests, accompanied by digital image correlation (DIC) analysis, fractography, and metallography, were performed as a part of the post-irradiation evaluation. The X- and Y-specimens (i.e., oriented in the sonotrode moving and vibration directions, respectively) showed pronounced radiation hardening and ductility decrease. Specific serration flow behavior and propagation of deformation bands were observed under various material conditions up to 3.5 dpa but disappeared at 17.3 dpa. In all cases, the fracture mechanism of X- and Y-specimens was ductile; ductile dimples dominated the fracture surface. Irradiated X- and Y-specimens showed good performance, regardless of material conditions (AR or PWHT). The performance of Z-specimens oriented in the build direction was strongly dependent on the PWHT. The AR and aged specimens showed fracture stress decrease with dose, and they experienced fracture under irradiation after 3.5 dpa; specimen cross section analysis revealed specific interface degradation that was likely related to corrosion. Recrystallization significantly improved in-reactor performance. HIP suppressed interface degradation due to recrystallization and pore removal, which led to good in-reactor performance for Z-specimens. (C) 2021 Elsevier B.V. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jnucmat_2021_152939.pdf | 5497KB | download |