JOURNAL OF NUCLEAR MATERIALS | 卷:477 |
Fracture strength and principal stress fields during crush testing of the SiC layer in TRISO-coated fuel particles | |
Article | |
Davis, Brian C.1,5  Ward, Logan2,5  Butt, Darryl P.3  Fillery, Brent4  Reimanis, Ivar2,5  | |
[1] Colorado Sch Mines, Dept Mech Engn, 1500 Illinois St, Golden, CO 80401 USA | |
[2] Colorado Sch Mines, Dept Met & Mat Engn, 1500 Illinois St, Golden, CO 80401 USA | |
[3] Boise State Univ, Mat & Sci Engn Dept, 1910 Univ Blvd, Boise, ID 83725 USA | |
[4] Rolls Royce Deutschland Ltd & Co KG, Eschenweg 11, D-15827 Dahlewitz, Blankenfelde Ma, Germany | |
[5] Colorado Sch Mines, Colorado Ctr Adv Ceram, 1500 Illinois St, Golden, CO 80401 USA | |
关键词: TRISO; SiC; Strength; Crush test; FEA; HTGR; FCM; | |
DOI : 10.1016/j.jnucmat.2016.05.018 | |
来源: Elsevier | |
【 摘 要 】
Diametrical compression testing is an important technique to evaluate fracture properties of the SiC layer in TRISO-coated nuclear fuel particles. This study was conducted to expand the understanding and improve the methodology of the test. An analytic solution and multiple FEA models are used to determine the development of the principal stress fields in the SiC shell during a crush test. An ideal fracture condition where the diametrical compression test best mimics in-service internal pressurization conditions was discovered. For a small set of empirical data points, results from different analysis methodologies were input to an iterative Weibull equation set to determine characteristic strength (332.9 MPa) and Weibull modulus (3.80). These results correlate well with published research. It is shown that SiC shell asphericity is currently the limiting factor of greatest concern to obtaining repeatable results. Improvements to the FEA are the only apparent method for incorporating asphericity and improving accuracy. (C) 2016 Elsevier B.V. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jnucmat_2016_05_018.pdf | 3564KB | download |