期刊论文详细信息
JOURNAL OF MULTIVARIATE ANALYSIS 卷:116
Feasible ridge estimator in partially linear models
Article
Roozbeh, M.1  Arashi, M.2 
[1] Semnan Univ, Sch Sci, Dept Math Stat & Comp Sci, Semnan, Iran
[2] Shahrood Univ Technol, Fac Math, Shahrood, Iran
关键词: Linear restrictions;    Kernel smoothing;    Multicollinearity;    Feasible ridge estimator;    Partial linear model;   
DOI  :  10.1016/j.jmva.2012.11.006
来源: Elsevier
PDF
【 摘 要 】

In a partial linear model, some non-stochastic linear restrictions are imposed under a multicollinearity setting. Semiparametric ridge and non-ridge type estimators, in a restricted manifold are defined. For practical use, it is assumed that the covariance matrix of the error term is unknown and thus feasible estimators are replaced and their asymptotic distributional properties are derived. Also, necessary and sufficient conditions, for the superiority of the ridge type estimator over its counterpart, for selecting the ridge parameter k are obtained. Lastly, a Monte Carlo simulation study is conducted to estimate the parametric and non-parametric parts. In this regard, kernel smoothing and cross validation methods for estimating the non-parametric function are used. (C) 2012 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmva_2012_11_006.pdf 555KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次