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a b s t r a c t

In a partial linear model, some non-stochastic linear restrictions are imposed under a mul-
ticollinearity setting. Semiparametric ridge and non-ridge type estimators, in a restricted
manifold are defined. For practical use, it is assumed that the covariancematrix of the error
term is unknown and thus feasible estimators are replaced and their asymptotic distribu-
tional properties are derived. Also, necessary and sufficient conditions, for the superiority
of the ridge type estimator over its counterpart, for selecting the ridge parameter k are ob-
tained. Lastly, a Monte Carlo simulation study is conducted to estimate the parametric and
non-parametric parts. In this regard, kernel smoothing and cross validation methods for
estimating the non-parametric function are used.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Consider the partial linear model given by

y = Xβ + f (t) + ϵ, (1.1)

where y = (y1, . . . , yn)′,X = (x1, . . . , xn)′ is a n × p matrix, x′

is are known p-vectors for i = 1, . . . , n, β = (β1, . . . , βp)
′

is a vector of unknown parameters, f (t) = (f (t1), . . . , f (tn))′ is a vector of unknown nonparametric functions and ϵ =

(ϵ1, . . . , ϵn)
′ is the error term. We assume that in general, f (·) is an unknown function, the t ’s have bounded support, say

the unit interval, and have been reordered so that t1 ≤ t2 ≤ · · · ≤ tn. All we know about f (·) is that it’s first derivative is
bounded by a constant, say L. This model is first considered by Engle et al. [3] to study the effect of weather on electricity
demand, in which they assumed that themean relationship between temperature and electricity usagewas unknownwhile
other related factors such as income and price were parameterized linearly. In our study, ϵ is a n-vector of disturbances with
the characteristics E(ϵ) = 0 and E(ϵϵ′) = V , where V is a symmetric, positive definite unknown matrix.

For the main purposes of this paper we will employ the ridge regression concept that was proposed in the 1970’s to
combat the multicollinearity, in the partial linear model. The existence of multicollinearity may lead to wide confidence
intervals for individual parameters or linear combination of the parameters and may produce estimates with wrong signs,
etc. Most of the literature judges the performance of ridge regression estimators on the basis of the concentration of
estimates around the true value of the parameter (see e.g. [15,13,5,8,20,19,16,10,11,2]).

The rest of the paper is organized as follows: In Section 2, the estimators under study are given, while their asymptotic
biases and distribution risks are derived in Section 3. Section 4 includes some comparison result of the proposed estimators.
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The relevant selection of shrinking parameter is discussed in Section 5 and we end this approach by some numerical
computations in Section 6. Finally, some concluding important results are stated in Section 7.

2. The proposed estimators

In this paperwe confine ourselves to the partial kernel smoothing estimator ofβ, which attains the usual parametric con-
vergence rate n1/2 without under smoothing the nonparametric component f (·) [14]. Assume that (x′

i, ti, yi; i = 1, . . . , n)
satisfy model (1.1). Since E(εi) = 0, we have f (ti) = E(yi − x′

iβ) for i = 1, . . . , n. Hence, if we know β, a natural nonpara-
metric estimator of f (·) is

f̂ (t, β) =

n
i=1

Wni(t)(yi − x′

iβ), (2.1)

where the positive weight functionsWni(·) satisfy three conditions below:

(i) max1≤i≤n
n

j=1 Wni(tj) = O(1),
(ii) max1≤i,j≤n Wni(tj) = O(n−2/3),
(iii) max1≤i≤n

n
j=1 Wni(tj)I(|ti − tj| > cn) = O(dn),

where I is the indicator function, cn satisfies lim supn→∞ nc3n < ∞, and dn satisfies lim supn→∞nd3n < ∞.
The above assumptions guarantee the existence of f̂ (t, β) at the optimal convergence rate n−4/5, in partial linear models

with probability one. See [9] for more details.
To estimate β, we use the weighted least squares estimator given by

β̂ = argmin
β

SS(β) = C−1X ′V−1y, C = X ′V−1X (2.2)

where SS(β) = (y − Xβ)′V−1(y − Xβ),y = (y1, . . . ,yn)′,X = (x1, . . . ,xn)′,yi = yi −
n

j=1 Wnj(ti)yj andxi = xi −n
j=1 Wnj(ti)xj for i = 1, . . . , n.

It is observed from (2.2) that the properties of the β̂ depend heavily on the characteristics of the information matrix C . If
the C matrix is ill-conditioned (near dependency among various columns of C ), then the β̂ produces unduly large sampling
variances. Moreover, some of the regression coefficients may be statistically insignificant with wrong signs and meaningful
statistical inferences become difficult for the researcher. As a remedy, Hoerl and Kennard [7] suggested to use the following
estimator instead of β̂, say ridge weighted least squares estimator given by

β̂(k) = Tkβ̂, Tk = (kC−1
+ Ip)−1, (2.3)

where k ≥ 0 is the shrinking parameter.
Now consider the exact linear non-stochastic constraint Rβ = r , for a given m × p matrix R with rank m < p and a

given m × 1 vector r . The full row rank assumption is chosen for convenience and can be justified by the fact that every
consistent linear equation can be transformed into an equivalent equation with a coefficient matrix of full row rank. Subject
to the imposed linear restriction, the restricted weighted least squares estimator is given by

β̂r = β̂ − C−1R ′(RC−1R ′)−1(Rβ̂ − r). (2.4)

So, the restricted ridge weighted least squares estimator can be written as

β̂r(k) = β̂(k) − C−1
k R ′(RC−1

k R)−1
[Rβ̂(k) − r], Ck = C + kIp. (2.5)

Since the covariance matrix V is unknown, as it usually is, the β̂ in (2.2) is non-operational as it depends upon the un-
known covariancematrix of the errors andwemust define the estimators β̂r(k) and β̂r based on two stage feasible weighted
least squares estimator by replacing the unknown V with a consistent estimator of it as follows:

β̂
F

= C∗
−1X ′S−1y, (2.6)

where C∗
= X ′S−1X, S =

1
n−(p−m)

(y − Xb)(y − Xb)′ and b is ordinary least squares estimator, (X ′X)−1X ′y. As it has been
shown in [18], β̂

F
= β̂ + O(n−1) and so,

√
n(β̂

F
− β) and

√
n(β̂ − β) have the same asymptotic normal distribution. So,

when the covariance matrix is unknown, the feasible estimators are defined as follows:

β̂
F
r = β̂

F
− C∗

−1
R ′(RC∗

−1
R′)−1(Rβ̂

F
− r), (2.7)

β̂
F
r (k) = β̂

F
(k) − C∗

−1

k R′(RC∗
−1

k R ′)−1
[Rβ̂

F
(k) − r], (2.8)

where β̂
F
(k) = C∗

−1

k
XS−1y and C∗

k = C∗
+ kIp.
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Then it is easy to see that the proposed estimators are restricted with respect to Rβ = r . It is also clear that for k = 0,
we get β̂r(0) = β̂r , β̂

F
r (0) = β̂

F
r .

We close this section with the following assumptions required to derive the main results. These assumptions are quite
general and it can be shown that under these assumptions the proposed estimators are asymptotically normal estimators
of β at the rate of

√
n. See [6] for more details.

Assumption 1. There exist bounded functions hs(·) over [0, 1], s = 1, . . . , p, such that

xis = hs(ti) + uis, i = 1, . . . , n, s = 1, . . . , p, (2.9)

where ui = (ui1, . . . , uip) are real vectors satisfying

lim
n→∞

n
i=1

uijuil

n
= zlj, for l = 1, . . . , p, j = 1, . . . , p (2.10)

and the p × p matrix Z = (zlj) is nonsingular.

Assumption 2. The functions f (·) and hs(·) satisfy the Lipschitz condition of order 1 on [0, 1] for s = 1, . . . , p.

Assumption 3. For any permutation (j1, . . . , jn) of (1, . . . , n) andm = 1, . . . , p, as n → ∞,

1
an

max
1≤k≤n

 k
i=1

ujim

 < ∞, (2.11)

where an = n1/2 log n and Z is a positive definite matrix.

3. Asymptotic characteristics

In this section, we derive expressions for asymptotic distributional biases (adbs) and asymptotic distributional risks
(adrs) of the estimators considered in Section 2. The objective is to estimate the unknownparameter vectorβ by an estimator
β̂ when the performance is evaluated by the squared error loss. To study the asymptotic quadratic risk of β̂, we define a
quadratic loss function using a positive definite and symmetric matrix Q , by

L(β̂, β) = n(β̂ − β)′Q (β̂ − β), (3.1)

where β̂ can be any estimator of β.
The entire vectorial parameter space is subjected to lie in the following null hypothesis

Ho : Rβ = r. (3.2)

Further, following Saleh [12], consider the following regularity conditions hold

(i) max1≤i≤nx′

i(
X ′V−1X)−1xi → 0 as n → ∞, wherex′

i is the ith row ofX .
(ii) limn→∞ n−1C = Bp×p, for symmetric and finite matrix B.

Consequently, the asymptotic distributional bias (adb) of the estimator can be evaluated through

adb(β̂) = lim
n→∞

E
√

n(β̂ − β)

. (3.3)

Assume that the asymptotic distribution function of β̂ exists and is given by

F(x) = lim
n→∞

P
√

n(β̂ − β) ≤ x

, (3.4)

where F(x) is non-degenerate. Then the asymptotic distributional risk (adr) of β̂ is also defined as

adrQ (β̂) = tr

Q


ℜp

(x − µx)(x − µx)
′dF(x)


= tr


Q 1/2VxQ 1/2


, (3.5)

where Vx is the dispersion matrix for the distribution F(x).
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Now for calculating theadbs and adrs of the proposed estimators in the last section andderiving a necessary and sufficient
condition for the superiority of the β̂

F
r (k) over the β̂

F
r , first we obtain a new formula for β̂r(k) that simplifies the calculation

of adb and adr as follows:

β̂r(k) = β̂(k) − C−1
k R ′(RC−1

k R′)−1
[Rβ̂(k) − r]

= C−1
k Ckβ̂(k) − C−1

k R ′(RC−1
k R ′)−1RC−1

k Ckβ̂(k) + C−1
k R ′(RC−1

k R′)−1Rβ0 − C−1
k Ckβ0 + β0

= MkX ′V−1y − MkCkβ0 + β0, (3.6)

where, β0 = R′(RR′)−1r and Mk = C−1
k − C−1

k R ′(RC−1
k R ′)−1RC−1

k .
Now, we can calculate the bias and covariance matrix of β̂r(k) by using Eq. (3.6) as follows:

E[β̂r(k) − β] = MkCβ − MkCkβ0 + β0 − β
= MkCk(β − β0) − kMkβ + β0 − β
= β − β0 − kMkβ + β0 − β
= −kMkβ, (3.7)

Cov[β̂r(k)] = MkCMk. (3.8)

Thus we get

adb[β̂r(k)] = lim
n→∞

E
√

n(β̂r(k) − β)


= −k
√
nMkβ + o(1),

adrQ [β̂r(k)] = ntr

Q 1/2MkCMkQ 1/2


+ o(1). (3.9)

Using assumption (ii) from page 6, further straightforward algebra shows that

adb[β̂r(k)] = lim
n→∞

−k
√
nMkβ

= lim
n→∞

−k(
√
n)−1B−1

− B−1R ′(RB−1R ′)−1RB−1β
= 0,

adrQ [β̂r(k)] = lim
n→∞

tr

nQ 1/2MkCMkQ 1/2


= lim

n→∞
tr


Q 1/2(nMk)(n−1C)(nMk)Q 1/2


= tr


Q 1/2B−1

− B−1R ′(RB−1R ′)−1RB−1B
B−1

− B−1R′(RB−1R ′)−1RB−1Q 1/2


= tr

Q 1/2B−1

− B−1R ′(RB−1R ′)−1RB−1Q 1/2

.

So, β̂r(k) is an asymptotically unbiased estimator of β with stabilized asymptotic dispersion matrix Q 1/2

B−1

− B−1R′

(RB−1R ′)−1RB−1

Q 1/2.

By the fact that C = Ck − kIp, it can be obtainedMkCMk = Mk − kM2
k . Thus the amse function of β̂r(k) is

amseQ [β̂r(k), β] = adb′
[β̂r(k)]adb[β̂r(k)] + adrQ [β̂r(k)]

= nk2β′M2
k β + ntr


Q 1/2(Mk − kM2

k )Q 1/2


+ o(1). (3.10)

As it has been shown in [18], β̂
F
r has asymptotic normal distribution with mean β and covariance matrix C∗

−1
+ o(n−1),

So, the amse functions of the feasible form of proposed estimators are

amseQ [β̂
F
r (k), β] = nk2β′M∗

2

k β + ntr

Q 1/2(M∗

k − kM∗
2

k )Q 1/2


+ o(n−1), (3.11)

amseQ (β̂
F
r , β) = ntr


Q 1/2M∗

0Q
1/2


+ o(n−1), (3.12)

whereM∗

k = C∗
−1

k − C∗
−1

k R ′(RC∗
−1

k R ′)−1RC∗
−1

k .

Lemma 3.1. The matrixM∗

k can be written as

M∗

k =


PC∗

k P
+

= H


(3 + kIp−m)−1 0
0 0


H ′,
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where P = Ip − R ′(RR′)−1R, 3 is a diagonal matrix containing the p − m nonzero eigenvalues of PC∗P on its diagonal, and
H is an orthogonal matrix. Note that by a + superscript we denote the unique Moore–Penrose inverse of a matrix. Moreover,
∂M∗

k
∂k = −M∗

2

k .

Proof. The first identityM∗

k =


PC∗

k P
+

is a special case of a more general result by Baksalary et al. [1, Theorem 3]. For the
second identity, consider the matrix

PC∗

k P = PC∗P + kP .

Since PC∗P and P are two commuting symmetric matrices with the same range and with rank p − m, they can be
diagonalized by the same orthogonal matrix in such a way that

PC∗P = H


3 0
0 0


H ′, P = H


Ip−m 0
0 0


H ′,

where the diagonal elements of3 are the p−m positive eigenvalues of PC∗P . From this, the second asserted identity follows
immediately.

For the second assertion, from the formula of matrix differential we have

∂C∗
−1

k

∂k
= −C∗

−1

k
∂C∗

−1

k

∂k
C∗

−1

k = −C∗
−2

k .

So we have
∂M∗

k

∂k
= −C∗

−2

k −


−C∗

−2

k R ′
[RC∗

−1

k R ′
]
−1RC∗

−1

k + C∗
−1

k R ′
[RC∗

−1

k R ′
]
−1RC∗

−2

k R′
[RC∗

−1

k R ′
]
−1RC∗

−1

k

− C∗
−1

k R ′
[RC∗

−1

k R ′
]
−1RC∗

−2

k


=


C∗

−1

k − C∗
−1

k R ′
[RC∗

−1

k R ′
]
−1RC∗

−1

k

2

= −M∗
2

k . �

4. Superiority conditions

In this section, we provide necessary and sufficient conditions for amse-superiority of the β̂
F
r (k) over β̂

F
r .

From (3.10) and (3.11), the difference δ = amseQ (β̂
F
r , β) − amseQ [β̂

F
r (k), β] is given by

δ = ntr

Q 1/2M∗

0Q
1/2

+ Q 1/2(kM∗
2

k − M∗

k )Q 1/2


− nk2β′M∗
2

k β. (4.1)

Lemma 4.1. The ADRQ [β̂
F
r (k)] is consistently smaller than ADRQ (β̂

F
r ), that is to say the following inequality always holds for

arbitrary k > 0

1̃ = ADRQ (β̂
F
r ) − ADRQ [β̂

F
r (k)] > 0,

where ADRQ [β̂
F
r (k)] = nQ 1/2(M∗

k − kM∗
2

k )Q 1/2
+ o(n−1) is the matrix form of adrQ [β̂

F
r (k)]. Moreover, 1̃ is monotonously

increased with respect to k.

Proof. According to Lemma 3.1, we have

1̃ = nQ 1/2M∗

0Q
1/2

− Q 1/2M∗

k Q
1/2

+ kQ 1/2M∗
2

k Q 1/2

= nQ 1/2H


3−1
− (3 + kIp−m)−1

+ k(3 + kIp−m)−2 0
0 0


H ′Q 1/2.

Since k > 0 and 3 > 0, we get 3−1
− (3 + kIp−m)−1 > 0. Then we have

3−1
− (3 + kIp−m)−1

+ k(3 + kIp−m)−2 > 0,

from which we can conclude the first assertion.
For proving the second assertion, we just need to prove that

Q 1/2H


3−1
− (3 + kIp−m)−1

+ k(3 + kIp−m)−2 0
0 0


H ′Q 1/2,
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is increased monotonously with respect to k, i.e., the function

g(k) = 3−1
− (3 + kIp−m)−1

+ k(3 + kIp−m)−2,

is increased monotonously with respect to k. After simplifying, we obtain

∂g(k)
∂k

= (3 + kIp−m)−2
[Ip−m − (k−13−1

+ Ip−m)−1
] > 0.

Since k > 0 and 3 > 0, we know that (3 + kIp−m)−2 > 0 and Ip−m > (k−13−1
+ Ip−m)−1, So the lemma is proved. �

The results of Lemma 4.1 are correct for δ̃ = adrQ (β̂
F
r ) − adrQ [β̂

F
r (k)].

Lemma 4.2 ([4]). Let A be a symmetric positive definite n× n matrix, a an n× 1 vector and α a positive number. Then αA− aa′

is nonnegative definite if and only if a′A+a ≤ α is satisfied.

Lemma 4.3 ([17]). If β̂2 is superior to β̂1 with respect to amse, then it is superior to β̂1 with respect to MSE and vice versa.

Theorem 4.1. Let us be given the estimator β̂
F
r (k) under the linear regression model. If k > 0, then the amse difference δ is

nonnegative if and only if

β′G+β ≤ 1, (4.2)

where G = 2(
√
nk)−1P + (

√
n)−1(PC∗P)+.

Proof. We prove the necessary and sufficient condition for the AMSEQ difference 1. Then, the Eq. (4.2) follows by using
Lemma 4.3 and letting Q = Ip. We can write

1 = AMSEQ (β̂
F
r , β) − AMSEQ [β̂

F
r (k), β] ≥ 0

↔ ADRQ (β̂
F
r ) − ADRQ [β̂

F
r (k)] − nk2M∗

k ββ′M∗

k ≥ 0

↔ (
√
nk)−21̃ − (M∗

k β)(M∗

k β)′ ≥ 0.

From Lemma 4.1, we know that 1̃ is symmetric nonnegative definite andM∗

k β is a p×1 vector. According to Lemma 4.2,
the last equation is equivalent to β′M∗

k 1̃
+

M∗

k β ≤ (
√
nk)−2. From Lemmas 3.1 and 4.1, the last expression is equivalent to

β′(Q 1/2)+H


0 0
0 0


H ′(Q 1/2)+β ≤ (

√
nk)−2,

where 0 = (3 + kIp−m)−1

3−1

− (3 + kIp−m)−1
+ k(3 + kIp−m)−2

−1
(3 + kIp−m)−1.

It can be simplified as follows:

β′(Q 1/2)+H

(3 + kIp−m)−1


(3 + kIp−m)2 − 32

(3 + kIp−m)23

−1

(3 + kIp−m)−1 0

0 0

H ′(Q 1/2)+β ≤ (
√
nk)−2

↔ nk2β′(Q 1/2)+H

 3

(3 + kIp−m)2 − 32 0

0 0

H ′(Q 1/2)+β ≤ 1

↔ nk2β′(Q 1/2)+H

 3

2k3 + k2Ip−m
0

0 0

H ′(Q 1/2)+β ≤ 1

↔ nβ′(Q 1/2)+H

 3

2k−13 + Ip−m
0

0 0

H ′(Q 1/2)+β ≤ 1

↔ nβ′(Q 1/2)+H


(2k−1Ip−m + 3−1)−1 0
0 0


H ′(Q 1/2)+β ≤ 1

↔ nβ′


Q 1/2H


2k−1Ip−m + 3−1 0

0 0


H ′Q 1/2

+

β ≤ 1

↔ nβ′


Q 1/2H


2k−1Ip−m 0

0 0


H ′Q 1/2

+ Q 1/2H


3−1 0
0 0


H ′Q 1/2

+

β ≤ 1

↔ β′

2(

√
nk)−1Q 1/2PQ 1/2

+ (
√
n)−1Q 1/2(PC∗P)+Q 1/2+

β ≤ 1. �
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Assumptions (i)–(iii) and 1–3 are used throughout the manuscript.

5. Range of shrinkage parameter

It is difficult to give a satisfying answer about how to select k. This is because the best k always depends on the unknown
β in the practical applications which make the problem to be complicated.

In the process of deciding k, on one side, we must control the condition number of C∗

k to a lesser level if we want to
avoid the instability of estimated coefficients brought by the morbidity of C∗. Hence, we must do our best to let the ridge
parameter k be big. Furthermore, we know the bigger the k is, the smaller the covariance of the estimated coefficients is. It
implies that the estimator is more stable. On the other side, we know, in view of the biased estimator, when the k is smaller,
the estimator will be better (the β̂

F
r (k)will be apart badly from the actual β as k increasing). In other words, wemust comply

some principles to select k.
As stated in Theorem 4.1, we do not need to find out the best k in the practice. That is to say, we just need to find a k

which can make β̂
F
r (k) be superior to the β̂

F
r in the sense of amse.

Although the criterion mentioned above is simple, our problem to select k is not yet completely solved. Therefore, we
give a range to select k in Theorem 5.1.

Theorem 5.1. Let us be given the estimator β̂
F
r (k) under the linear regression model with true restrictions Rβ = r and β ≠ β0.

If

0 < k ≤
2

β′Q 1/2PQ 1/2β
, (5.1)

then the amse difference δ is nonnegative.

Proof. Since nonnegativity of δ follows from the nonnegative definite of 1, then it is sufficient that we prove 1 is
nonnegative definite if Eq. (4.2) holds. From Theorem 4.1, the difference 1 is nonnegative definite for k > 0 if and only
if β′


Q 1/2GQ 1/2

+
β ≤ 1. The matrix G is symmetric nonnegative definite and has the same range as P . Therefore, we can

equivalentlywriteβ′P

Q 1/2GQ 1/2

+Pβ ≤ 1,wherePβ belongs to the range ofG . FromLemma4.2, this inequality is satisfied
if and only if Q 1/2GQ 1/2

− Pββ′P is nonnegative definite. A sufficient condition for nonnegative definiteness of this matrix
is the nonnegative definiteness of the matrix 2k−1Q 1/2PQ 1/2

− Pββ′P , which in turn is equivalent to kβ′Q 1/2PQ 1/2β ≤ 2,
i.e. k ≤

2
β′Q 1/2PQ 1/2β

. Note that β′Q 1/2PQ 1/2β is nonzero if and only if PQ 1/2β ≠ 0, which is satisfied for every vector β with
Rβ = r and β ≠ β0. �

Remark 5.1. If we have no restriction at all, the result of Theorem 5.1 can also be used for the ridge estimation in which
R could be regard as 0. Then, the necessary and sufficient condition (4.2), and sufficient condition (5.1) are, respectively,
simplified as

β′


2(

√
nk)−1Ip +

√
nC∗

−1
+

β ≤ 1, 0 < k ≤
2

β′Qβ
.

6. Method demonstration

In this section, we examine the amse function performance of the proposed estimators numerically. Our sampling
experiment consists of different values of k, i.e., k = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Adopting the model (1.1) we simulate the
response for n = 50 with 105 iteration from the following model:

y = Xβ + f (t) + ϵ, (6.1)

where β = (−2, 1, 3, −2, −5, 4)′, xi ∼ N5(µx, 6x) for i = 1, . . . , nwith

µx =


2.5
2
3
1

−1

 , 6x =


1.9 1.8 1.8 1 1
1.8 1.8 1.8 1 1
1.8 1.8 4.25 1 1
1 1 1 2.49 1
1 1 1 1 2.25

 ,

f (ti) =


ti(1 − ti) sin


2.1π

ti + 0.05


,

that is called the Doppler function for ti = (i − 0.05)/n and ϵ ∼ N(0,V ) where the elements of V are vij = (0.05)|i−j|. The
main reason for selecting such a structure for the nonlinear part is to check the efficiency of nonparametric estimations for
the wavy function.
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Table 1
Evaluation of parameters at different k values in model (6.1).

Coefficients k
0 1 2 3 4

β̂0 −2.013830 −2.013880 −2.013930 −2.013979 −2.014029
β̂1 1.007080 1.007106 1.007131 1.007156 1.007182
β̂2 3.008268 3.008297 3.008327 3.008356 3.008386
β̂3 −2.003012 −2.003023 −2.003034 −2.003045 −2.003056
β̂4 −5.000220 −5.000221 −5.000221 −5.000222 −5.000223
β̂5 3.974054 3.973961 3.973868 3.973775 3.973682

adb[β̂r (k)]
′adb[β̂r (k)] 0 6.72675e−07 2.69018e−06 6.05170e−06 2.07564e−05

adr[β̂r (k), β] 0.019685 0.019680 0.019680 0.019675 0.019670
amse[β̂r (k), β] 0.019685 0.019680 0.019680 0.019680 0.019680
δ 0 3.20297e−06 5.05995e−06 5.57180e−06 4.37924e−06
mse[f̂ (t), f (t)] 0.0569625 0.0569737 0.0569849 0.0569961 0.0570074

k
5 6 7 8 9

β̂0 −2.014078 −2.014128 −2.014177 −2.014227 −2.014276
β̂1 1.007207 1.007232 1.007258 1.007283 1.007308
β̂2 3.008416 3.008445 3.008475 3.008504 3.008534
β̂3 −2.003066 −2.003077 −2.003088 −2.003099 −2.003109
β̂4 −5.000224 −5.000225 −5.000225 −5.000226 −5.000227
β̂5 3.973589 3.973496 3.973404 3.973311 3.973218

adb[β̂
F
r (k)]

′adb[β̂
F
r (k)] 1.68037e−05 2.41925e−05 3.29223e−05 4.29921e−05 5.44010e−05

adr[β̂
F
r (k), β] 0.019665 0.019660 0.019660 0.019655 0.019650

amse[β̂
F
r (k), β] 0.019685 0.019685 0.019690 0.019700 0.019705

δ 2.56310e−06 −9.55835e−07 −5.81675e−06 −1.20189e−05 −1.95614e−05
mse[f̂ (t), f (t)] 0.0570187 0.0570300 0.0570414 0.0570528 0.0570642

For the weight functionWni(tj), we use

Wni(tj) =
1

nhn
K


ti − tj
hn


=

1
nhn

.
1

√
2π

exp

−

(ti − tj)2

2h2
n


, hn = 0.01,

which is Priestley and Chao’s weight with the Gaussian kernel. We also apply the cross-validation (C.V.) method to select
the optimal bandwidth hn, which minimizes the following C.V. function

C.V. (hn) =
1
n

n
i=1

y(−i)
− X (−i)β̂

(−i)
r (k)

2
,

where β̂
(−i)
r (k) is obtained by replacing X andy with X (−i)

=


x(−i)
jk


, 1 ≤ k ≤ n, 1 ≤ j ≤ p,y(−i)

=


y(−i)
1 , . . . , y(−i)

n


,

x(−i)
sk = xsk −

n
j≠i Wnj(ti)xsj, y

(−i)
k = yk −

n
j≠i Wnj(ti)yj in (2.5). Herey(−i) is the predicted value of y = (y1, . . . , yn) at

xi = (x1i, x2i, . . . , xpi) with yi and xi left out of the estimation of the β.
For the linear restriction, suppose the pre-specified matrix R is given by

R =


1 5 −3 −1 −1 0

−2 −1 0 −2 3 1
1 2 1 3 −2 0
4 −1 2 2 0 −2
5 3 4 −5 1 0

 .

All computations were conducted using the statistical package R. The ratio of the largest eigenvalue to the smallest
eigenvalue of matrix C∗ is λ5/λ1 = 354.91 which implies the existence of multicollinearity in the data set.

In Table 1, we compute the restricted ridge estimators of linear parameter. We numerically estimate the adb′adb, adr,
amse, δ and mse[f̂ (t), f (t)] =

1
n

n
i=1[f̂ (ti) − f (ti)]2 for different values of k and 105 samples with size of 50.

In Fig. 1, in the left part, the amse of β̂
F
r (k) (dot line) and β̂

F
r (solid line) and in the right part, the δ versus ridge parameter

k are plotted for the model (6.1). For estimating the nonlinear part, we simulate response from model (6.1) for n = 1000
again. In Fig. 2, the nonparametric part of the model (6.1) is plotted in the top left plot. This function is difficult to estimate
and provides a good test case for the nonparametric regression method. The function is spatially inhomogeneous which
means that it’s smoothness (second derivatives) vary over t . The top right plot shows n = 1000 data points after removing
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Fig. 1. The diagram of amse and δ versus k.

Fig. 2. Estimation of the nonparametric part by local linear regression for n = 1000.

the linear part, i.e., y − Xβ. In the continuation, the middle left and the right plots show the residuals which obtained after
estimation of the linear part of themodel by β̂

F
r , that is, y−X β̂

F
r and the fitted function, respectively. The bottom left and right

plots are themiddle part when β̂
F
r is replacedwith β̂

F
r (k)when k equals to themedian range of (5.1), which is approximately

equal to 2.8806. The minimum of C.V. occurred at hn = 0.0512 for the model (6.1) for n = 1000.

7. Summary and conclusions

In this paper, we proposed two new estimators in a partial linear model when the errors were dependent and some
additional linear constraints held on the whole parameter space β. It was also assumed that the covariance matrix of
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the errors are unknown for operational use. In the presence of multicollinearity in a partial linear model we introduced
the restricted feasible ridge regression estimator β̂

F
r (k) versus the non-ridge version β̂r under dependency among column

vectors of the design matrix. The asymptotic properties of proposed estimators were derived and the superiority conditions
of the feasible ridge estimator over non-ridge form based on ridge parameter k was proved by theorems. Applying Kernel
smoothing and cross-validation methods, we estimated the nonlinear functions of the proposed model.

Some points arising from this study are listed below.

• A near dependency among the column of C∗ from λ5/λ1 = 354.91, that is, the feasible restricted ridge weighted least
squares estimator should be taken as a leading estimator in our studies.

• As it can be seen from Fig. 1, the δ increases (amse decreases) at first and then decreases (increases), that provides a
reason for the assertion in Theorem 5.1. Furthermore, the maximum of δ (minimum of the amse) is obtained when k
equals the median range of (5.1) i.e., 1

β′Q 1/2PQ 1/2β
which is approximately equal to 2.8806 in model (6.1).

• From Fig. 2, it can be concluded that our semiparametric approach is truly efficient in the sense of better nonparametric
function estimation.
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