期刊论文详细信息
JOURNAL OF MULTIVARIATE ANALYSIS 卷:100
Bandwidth selection for a data sharpening estimator in nonparametric regression
Article
Naito, Kanta1  Yoshizaki, Masahiro1 
[1] Shimane Univ, Dept Math, Matsue, Shimane 6908504, Japan
关键词: Bandwidth;    Bias reduction;    Data sharpening;    Kernel;    Nonparametric regression;    Plug-in method;   
DOI  :  10.1016/j.jmva.2008.12.016
来源: Elsevier
PDF
【 摘 要 】

This paper is concerned with data-based selection of the bandwidth for a data sharpening estimator in nonparametric regression. Two kinds of bandwidths are considered: a bandwidth vector which has a different bandwidth for each covariate, and a scalar bandwidth that is common for all covariates. A plug-in method is developed and its theoretical performance is fully investigated. The proposed plug-in method works efficiently in our simulation study. (c) 2009 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmva_2008_12_016.pdf 1922KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:1次