| JOURNAL OF MULTIVARIATE ANALYSIS | 卷:155 |
| Optimal Berry-Esseen bound for statistical estimations and its application to SPDE | |
| Article | |
| Kim, Yoon Tae1  Park, Hyun Suk1  | |
| [1] Hallym Univ, Dept Stat, Chunchon 200702, Gangwon, South Korea | |
| 关键词: Berry-Esseen bound; Central limit theorem; Kolmogorov distance; Malliavin calculus; Maximum likelihood estimator; Multiple stochastic integral; Stein's method; Stochastic partial differential equations; | |
| DOI : 10.1016/j.jmva.2017.01.006 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
We consider asymptotically normal statistics of the form F-n/G(n), where F-n and G(n) are functionals of Gaussian fields. For these statistics, we establish an optimal Berry-Esseen bound for the Central Limit Theorem (CLT) of the sequence F-n/G(n), is phi (n) in the following sense: there exist constants 0 < c < C < infinity such that c <= d(Kol) (F-n/G(n), Z)/phi(n) <= C, where d(Kol) (F-n, Z) = sup(z is an element of R). vertical bar Pr(F-n, <= z) - Pr(Z <= z)vertical bar. As an example, we find an optimal Berry-Esseen bound for the CLT of the maximum likelihood estimators for parameters occurring in parabolic stochastic partial differential equations. (C) 2017 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_jmva_2017_01_006.pdf | 801KB |
PDF