期刊论文详细信息
STOCHASTIC PROCESSES AND THEIR APPLICATIONS 卷:150
AR(1) processes driven by second-chaos white noise: Berry-Essen bounds for quadratic variation and parameter estimation
Article
Douissi, Soukaina1  Es-Sebaiy, Khalifa2  Alshahrani, Fatimah3  Viens, Frederi G.4 
[1] Cadi Ayyad Univ, Fac Semlalia, Lab LIBMA, Marrakech 40000, Morocco
[2] Kuwait Univ, Fac Sci, Dept Math, Kuwait, Kuwait
[3] Princess Nourah bint Abdulrahman Univ, Dept Math Sci, Riyadh, Saudi Arabia
[4] Michigan State Univ, Dept Stat & Probabil, E Lansing, MI 48824 USA
关键词: Central limit theorem;    Berry-Ess?en;    Malliavin calculus;    Parameter estimation;    Time series;    Wiener chaos;   
DOI  :  10.1016/j.spa.2020.02.007
来源: Elsevier
PDF
【 摘 要 】

In this paper, we study the asymptotic behavior of the quadratic variation for the class of AR(1) processes driven by white noise in the second Wiener chaos. Using tools from the analysis on Wiener space, we give an upper bound for the total-variation speed of convergence to the normal law, which we apply to study the estimation of the model's mean-reversion. Simulations are performed to illustrate the theoretical results.(C) 2020 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_spa_2020_02_007.pdf 1047KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:2次